鄱阳湖重金属污染特征研究及环境容量估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖位于江西省北部,是我国最大的淡水湖泊,也是重要的保护湿地和候鸟栖息地。近年来,随着经济社会的快速发展,鄱阳湖受重金属污染的范围和程度均有所增加。2009年底,“鄱阳湖生态经济区规划”上升为国家战略,鄱阳湖生态经济区的建设将进一步加快,环鄱阳湖城市群及相关产业将蓬勃兴起,如光电产业、新能源产业、生物制药产业、铜冶炼及精深加工产业、优质钢材深加工产业、炼油及化工产业、航空产业、汽车及零部件产业等,这给鄱阳湖“永保一湖清水”,减少或者控制鄱阳湖受重金属污染的程度和范围,带来新的重要挑战。因此,对鄱阳湖受重金属污染程度进行更多的了解,研究其重金属污染特征、影响因素以及在一定环境目标下对重金属的最大承受力等是非常重要的研究课题。
     本文采集鄱阳湖湖区及主要河流入湖口处水体、表层沉积物及柱状沉积物样品并进行分析,全面研究鄱阳湖重金属含量水平和空间分布情况,运用相关分析法、主成分分析法等对重金属来源进行深入探讨,并结合鄱阳湖水文周期,分析鄱阳湖重金属污染的季节性变化特征。分别运用健康风险评价模型、潜在生态风险指数模型对鄱阳湖水体、表层沉积物受重金属污染程度进行评价。分析鄱阳湖重金属主要输入输出途径,运用相应重金属通量估算方法对鄱阳湖重金属出入湖通量进行估算。以II类地表水标准作为环境标准目标值,对鄱阳湖水体重金属进行对比约束,运用重金属环境容量模型,对鄱阳湖重金属环境容量进行估算。本文研究的主要结论如下:
     鄱阳湖水体中,Fe、Mn、Zn含量较高,且Fe>Mn>Zn,Cd最低;Pb和Cu、Zn及Cr具有相同的污染来源——大气沉降;Cu与Mn有很好的相关性,说明Cu污染来源包括自然因素;Zn和Fe,Cd与Pb、Cu及Zn可能存在拮抗作用。主成份分析表明,第一、第二和第三等前三个主成份的累积贡献率约为78.853%,大体上能够反映鄱阳湖水体中重金属污染物的基本来源情况:在第一主成份上,研究区域内重金属元素Pb、Cu、Fe、Mn表现出较高的正载荷,说明第一主成份代表所研究的各类污染来源的影响是最主要的。
     鄱阳湖表层沉积物中,总平均值Fe>Mn>Zn>Cu>>Pb>Cr>Cd,较上世纪末期有不同程度的改变。除Fe、Mn外,大多数重金属具有相同的人为同源性——工业废水、生活污水和大气沉降;Fe和Mn两种元素主要来源于岩石圈矿物的溶解释放,具有一定的同源性;主成份分析表明,前两个主成份的累积贡献率约为70%,大体上能够反映鄱阳湖表层沉积物中重金属污染物的基本来源情况:在第一主成份上,研究区域的重金属元素Zn、Cr、Cu、Pb、Cd表现出较高的正载荷,说明第一主成份主要代表人为污染源输入的影响;Pb在第二主成份上呈现较高正载荷,主要表征了沉积物受大气飘尘沉降的影响;Fe、Mn在第三主成份上的载荷较高,主要表征了沉积物受径流携带土壤及岩石自然风化和侵蚀的影响。
     鄱阳湖柱状沉积物中,湖口湖域和都昌湖域柱状沉积物重金属元素平均含量大小依次是:Fe>Mn>Zn>Cu>Pb>Cr>Cd,与表层沉积物相同。以湖口湖域柱状沉积物为例,各重金属元素含量变化规律不明显,垂直分布图均呈不规则锯齿状,多数元素含量有上升趋势。各研究元素峰值出现深度不同,Fe含量在最浅层有峰值,Cr与Cu峰值出现在-2cm,可知近年Fe、Cr、Cu污染严重;Zn、Mn、Cd和Pb峰值出现于-20cm;Zn、Mn、Cr、Cd和Pb含量在表层至-32cm间呈现锯齿多峰状,说明该时间段,其空间内主要污染物呈现多元化,异质性较大;Cu与Fe在-6cm至-18cm之间,含量较为稳定,垂直分布图中间段呈现较为平坦的部分,说明该时间段内Cu与Fe沉积量稳定,接受外源污染输入较少。相关分析和主成份分析表明,柱状沉积物中重金属主要来源于流域矿业开采、冶炼过程以及化工产业的废水排放、自然风化、侵蚀和大气沉降。
     鄱阳湖水体中,各种重金属含量具有较明显的季节性变化特征。在丰水期,Zn、Pb、Cu的含量出现最高值,Cd的含量在平水期1出现最高值;健康风险评价结果表明,各种重金属的健康风险值水平为:Cd>>Zn>Cu>Pb,Cd的健康风险值高出Zn、Cu、Pb的健康风险值2-4个数量级;各时期健康风险值水平为平水期1>枯水期>平水期2>丰水期。鄱阳湖重金属具有低害性特征,其水体的健康风险值水平低于国家辐射防护委员会(ICRP)推荐的最大可接受风险值水平(5.00×10-5a-1)。对鄱阳湖底泥进行生态风险评估时发现,其底泥重金属生态风险程度较低。
     鄱阳湖重金属污染特征受自然因素及人为因素的共同作用。自然因素中,全球气候条件变化下鄱阳湖地区气温升高,水体中悬浮物对重金属吸附量增加;雨水对尾矿中重金属的淋溶作用加剧,使尾矿、矿渣中重金属加快进入水体;强降雨作用增加了鄱阳湖地区大气重金属湿沉降、加剧了城市非点源污染及矿区重金属对水体污染;鄱阳湖湖区较强的风浪作用通过对表层沉积物的扰动促进了其中重金属释放。人为因素中,水利工程人为改变着重金属污染物在鄱阳湖区的生物地球化学行为;矿业开采属于鄱阳湖重金属的一大来源,降雨的淋溶也加剧了尾矿、矿渣中的重金属进入水体;湖区采砂通过对底泥的搅动导致重金属由底泥进入水体;船只的活动与运作加剧了重金属污染;人为调控一方面降低了鄱阳湖区域居民饮用水的健康风险,另一方面,导致重金属污染治理、控制的相对滞后,可能将给后期的防控工作增加困难。
     Pb、Cu、Zn、Cd等4种主要重金属出入湖通量中,溶解态、悬浮态Zn、Cu、Pb、Cd的入湖总通量均依次降低。在组成上,溶解态重金属通量普遍低于悬浮态,表明重金属在赣江、抚河、信江、饶河、修水等5河水体中的主要存在形式为悬浮态。受河流上游影响,5河重金属入湖通量相差甚大,4种重金属的入湖总通量是:赣江>饶河>信江>修水>抚河;具体分析5大河流4种重金属元素的入湖通量如下:对于Pb,赣江>信江>修水>饶河>抚河,对于Cu,赣江>信江>饶河>修水>抚河,对于Zn,赣江>饶河>信江>修水>抚河,对于Cd,赣江>信江>饶河>修水>抚河;在4种主要重金属Pb、Cu、Zn、Cd的入湖总通量中,以陆源中的5河入湖通量为主,其大小顺序为:Zn>Cu>Pb>Cd;全年出湖通量Pb、Cu、Zn、Cd等4种重金属均为悬浮态平均值>溶解态平均值,出湖重金属存在形态仍然以悬浮态为主,全年悬浮态、溶解态Pb、Cu、Zn、Cd出湖总通量均为Zn>Cu>Pb>Cd,总出湖通量为Zn>Cu>Pb>Cd。
     以II类地表水标准为水环境标准目标值,估算结果表明,鄱阳湖重金属Pb、Cu、Zn、Cd年均水环境容量分别为:0.63 t/a、66.86 t/a、66.59 t/a、0.33t/a;鄱阳湖重金属水环境容量的季节性差异与规律性比较明显,丰水期重金属水环境容量最高,其次为平水期,枯水期的重金属水环境容量最低;全年重金属水环境容量变化趋势为先升后降的“单峰型”。
Located in northern Jiangxi Province, Poyang Lake is the largest freshwater lake in China as well as one of the important international wetlands of protection. In recent years, with the development of economic society, the pollution of heavy metals in Poyang Lake has increased both in scope and extent. Moreover, associated industries are springing up in urban agglomeration around Poyang Lake, such as photoelectric industry, new energy industry, biological industry, copper smelting and intensive processing industry, the high quality steel products processing industry, petroleum refining and chemical industry, aviation industry, automobile and automobile parts industry, etc. New crucial challenges come when we try to control the level of contamination with heavy metals. Therefore, it is an urgent subject to study the characteristics, impact factors and the maximum capacity in certain environment objective of heavy metals pollution in Poyang Lake.
     Based on analyzing the water of lake region and main river estuaries as well as the sample of surface sediment and columnar sediment, the content level and space distribution of heavy metals are studied comprehensively. The method of correlation analysis and principle component analysis is applied to further discuss the source of heavy metals. Analysis of the seasonal characteristics of heavy metals in Poyang Lake was combined with hydrology cycle. And health risk assessment model and the potential of the ecological risk index model are applied to evaluate the heavy metal pollution of water and surface sediments, respectively. The main input and output channels of heavy metal within Poyang Lake are analyzed and the corresponding flux calculation method is used to estimate the flux. Take Class II surface water as environmental standard target, the environmental carrying capacity of Poyang Lake is estimated. The main conclusions have been summarized as follows:
     In the water of Poyang Lake, the content of Fe, Mn, Zn is relatively higher which varied in descending order, while the content of Cu is minimum; Pb, Cu, Zn and Cr have the same pollution source---atmospheric sedimentation; According to the correlation between Cu and Mn, the natural factor is one of the sources of Cu pollution; Besides, Zn and Fe, Cd and Pb, Cu and Zn maybe antagonistic. Principal component analysis shows that, the cumulative contribution rate of the first three principal components is about 78.853%, which could largely reflect the basic source of heavy metals pollution in Poyang Lake Basin:based on the first principal component, Pb, Cu, Fe, Mn show higher positive-load, indicating that the first principal component represents the effect of various pollution sources.
     In the surface sediment of Poyang Lake, the total average value of seven heavy metals which is Fe>Mn>Zn>Cu>>Pb>Cr>Cd have different degree of changes compare with the situation at the end of the last century. Most heavy metals have the same human homology---industrial waste water, sanitary wastewater and atmospheric sedimentation, except for Fe and Mn which mainly come from the release of dissolved lithospheric mineral. According to the result of principal component analysis, the cumulative contribution rate of the first two principal components---about 70%, could largely reflect the changes of the basic source of pollution:Zn, Cr, Cu, Pb, Cd in the area showed higher positive-load in the first principal component, indicating that the first principal component mainly represents the effect of pollution by human beings; And Pb, in the second principal component, shows a higher positive-load which represents the influence of atmosphere sedimentation; Fe and Mn, with higher load in the third principal component, represent the effect of runoff, rock weathering and natural erosion.
     In the columnar sediment of Poyang Lake, the average content of heavy metal varies in descending order of Fe, Mn, Zn, Cu, Pb, Cr, Cd as well as in the lake of Du Chang. Take Hukou as an example, the content of heavy metal elements change irregularly with the irregular jagged vertical distribution, but most elements are in an upward trend. The elementary peak appears in different depth, Cr and Cu appeare in-2cm which shows that pollution is serious; Zn, Mn, Cd and Pb appeared in-20cm while Fe appeare in the most shallow layer. Zn, Mn, Cr, Cd and Pb from surface to-32cm are multi-peak sawtooth-shaped, indicating that this period of time within the space, the major pollutants is diversified and has large heterogeneity; While Cu and Fe appeared between-6cm and-18cm which have a relatively stable content, stating that the deposition of Cu and Fe are stable and accept little pollution outside. According to correlation analysis and principal component analysis, heavy metals in columnar sediment mainly come from mining, smelting, discharge of sewage from chemical industries, natural weathering and erosion, atmospheric sedimentation.
     Heavy metals obviously have seasonal characteristics in Poyang Lake. In the wet period, the concentration of Zn, Pb and Cu is the highest. The maximum value of Cd appears in the normal river flow period. According to the result of health risk assessment, the health risk level is Cd>>zn>Cu>Pb and the health risk of Cd is 2-4 orders of magnitude higher than Zn, Cu and Pb; The heavy risk level in the period ranks as:the normal river flow periodl>dry season>the normal river flow period2>wet period. Heavy metals in Poyang Lake are low harm. Its level of health risk is lower than the maximum acceptable level of risk--- (5.00×10-5a-1) which is recommended by ICRP. After the ecological risk of sediment in Poyang Lake was evaluated, the results show that ecological risk of heavy metal in sediment is also relatively low.
     The characteristics of heavy metal pollution are the result of natural and man-made factors. As far as natural factor, the water temperature tended to raise, in addition, the adsorption of heavy metal for suspended matter tends to increase in the condition of global climate change. Meanwhile, the eluviation of rain on heavy metal in the tailings will also increase; The effect of intensive rainfall not only increase atmospheric heavy metal wet deposition in Poyang Lake region but as well aggravate urban non-point source pollution and heavy metal pollution in mining area; Strong wind wave action also promote the release of heavy metal in surface sediment through disturbing. As far as man-made factors, the water conservancy project is artificially changing the biogeochemical behavior of heavy metal pollution in Poyang Lake, mining could be a mainly source of heavy metal, the effect of eluviation also make heavy metal from tailings into water. Sand excavation caused the pollution by agitating the sediment. The pollution is exacerbated for the activities and operation of vessels. On the one hand, artificial adjustment reduces the health risks of drinking water, on the other hand, it causes the relatively backward of administrating and controlling, which might make more difficulties in later work.
     According to the flux of heavy metal, the total inflow flux of Zn, Cu, Pb,Cd is decreasing in order, in general, the flux of suspended heavy metal is lower than the dissolved. Affected by the upper reaches of the river, the flux of heavy metals' inflow among five rivers is dramatically different, the flux of four heavy metals is Ganjiang>Rao River>Xinjiang River>Xiushui>Fu River; The flux of certain kind of heavy metal in five rivers have been analyzed concretely. For the flux of Pb: Ganjiang>Xinjiang>Xiushui>Rao River>Fu River, for Cu and Cd: Ganjiang>Xinjiang>Rao River>Xiushui>Fu River, for Zn:Ganjiang>Rao River>Xinjiang>Xiushui>Fu River; The total flux value varies in the descending order of Zn, Cu, Pb, Cd, which mainly come from fiver rivers. As far as the outflow flux around the year, heavy metals mainly exist in suspended form and the total flux of four heavy metals is Zn>Cu>Pb>Cd.
     Take ClassⅡsurface water as environmental standard target, based on the result of estimation, the environmental capacity of Pb, Cu, Zn, Cd in Poyang Lake are 0.63t/a、66.86t/a、66.59t/a、0.33t/a, respectively. With obvious seasonal differences, the environmental carrying capacity is wet period>flow period>dry season. The environmental carrying capacity increases first and decreases afterwards around the year which shows a single peak pattern.
引文
[1]贾晓慧.水生植物受重金属污染毒害的相关研究[J].焦作大学学报,2005,(3):54~55.
    [2]潘嘉芬.膨润土和沸石的改性及在废水处理中的应用[J].矿产保护与利用,2004,(4):34~37.
    [3]宋眴.加强机制专业的环保教育[J].教学研讨,2002,(6):21-22.
    [4]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1986.
    [5]Kiikkila,O.Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland[J].SILVA FENNICA,2003,37(3):399-415.
    [6]韩伟民,胡水景等.千岛湖水环境质量调查与保护对策[J].湖泊科学,1996,8(4)337~341.
    [7]袁旭音.中国湖泊污染状况的基本评价[J].火山地质与矿山,2000,21(2):128~136.
    [8]金相灿.中国湖泊水库环境调查研究[C].北京:中国环境出版社,1990.
    [9]杨爱玲,朱颜明.城市地表饮用水源保护研究进展[J].地理科学.2000,20(1):72~77.
    [10]赵旋,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水,1998,24(10):22~25.
    [11]徐小清,邓冠强.长江三峡库区江段沉积物的重金属污染特征[J].水生生物学报.1999,23(1):1-9.
    [12]徐小清,丘昌强.三峡库区汞污染的化学生态效应[J].水生生物学报,1999,23(3):197~203.
    [13]Zhang W,Yu L,Hutchinson S M,et al. Chinaps Yangtze Estuary:I.Geomorphicinfluence on heavy metal accumulation in intertidal sediments[J].Geomorphology,2001,41(2,3):195-205.
    [14]牛永生,崔树彬.黄河水质现状评价及污染趋势和对策[J].环境保护,1995,(3):37~39.
    [15]Ho KC,Hui KC C.Chemical contamination of the East River (Dongjiang) and its implica-tion on sustainable development in the Pearl River Delta[J].Environment International.2001, 26 (5,6):303-308.
    [16]李惠敏,霍家明.海河流域水污染现状与水资源质量状况综合评价[J].水资源保护,2000,(4):12~14.
    [17]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~74.
    [18]王宁,朱颜明.松花湖水源地重金属非点源污染调查[J].中国环境科学,2000,20(5):419~421.
    [19]陈祖军,谭显英.论我国海洋资源与环境的可持续发展[J].水资源保护.2001,(1):7~10.
    [20]李建军,冯慕华,喻龙.辽东湾浅水区水环境质量现状评价[J].海洋环境科学,2001,20(3):42~45.
    [21]Weber J.Wastewater Treatment [J].Metal Finishing,1999,97(1):801-802,806,810,812,814, 816,818.
    [22]Thornton GJ P,Walsh P D.Heavymetals in the waters of the Nanty 2 Fendrod:change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley,South Wales,UK [J].The Science of the Total Environment,2001,278(1-3):45-55.
    [23]Helle V A,Jesper K, Christian P,etal. Environmental risk assessment of surface water and sediments in Copenhagen harbor [J].Water Science and Technology,1998,37(6,7):263-272.
    [24]Rybicka E H. Environmental impact ofmining and smelting industries in Poland [J].Fuel and Energy Abstracts,1997,38(3):186.
    [25]李鸣,吴结春,李丽琴.鄱阳湖湿地22种植物重金属富集能力分析[J].农业环境科学学报,2008,27(6):2413~2418
    [26]陈双雅.中国水环境重金属污染的研究现状与防治对策[J].漳州职业大学学报,2001,3,54~58.
    [27]李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997.16(1):18~22.
    [28]邬建中,黄爱珠.浈水水体的重金属迁移与吸附特性[J].人民珠江,1996,(1):45~48.
    [29]覃振邦,梁涛,林健枝等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报,1997,33(4):485~492.
    [30]刘勇,夏之宁,袁佩.水体中重金属形态的毒性研究方法[J].理化检验-化学分册,2001,37(6):286~290.
    [31]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89~92.
    [32]范文宏,陈静生,洪松等.沉积物中重金属生物毒性评价的研究进展[J].环境科学与技术,2002.25(1):36~39.
    [33]朱毅,徐虹.分子生物学在渔业环境保护中的运用[J].环境导报,1999,(3):13~16.
    [34]Chen W,Bruhlmann F,Riehins R D eta 1.Engineering of improved microbes and enzymes for bioremediation[J].Current Opinion in Biotechnology,1999,(10):137-141,
    [35]张林,孙咏梅,林春竹等.细菌脱氢酶生物试验法检测野外水质毒性的探索[J].解放军预防医学,1997,15(6):423~425.
    [36]张振克,王苏民,沈吉等.黄河下游南四湖地区黄河河道变迁的湖泊沉积响应[J].湖泊科学,1999,11(3):231~236.
    [37]王国平,刘景双,高峰.向海湿地沉积芯重金属对流域环境污染示踪[J].地理科学,2001,21(6):549~553.
    [38]吴建政,余晓玲,鲍鹏等.芝罘湾近期沉积物中重金属元素记录[J].中国海洋大学学报,2006,36(1):141~144.
    [39]Basu A.and Molinaroli E. Toxic metals in Venice lagoon sediments:Model,observation and Possible removal[J].Environmental Geology,1994(24):203-216.
    [40]马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究[J].环境科学,1999,20(2):7-11.
    [41]宋金明,李延,朱仲斌.Eh和海洋沉积物氧化还原环境的关系[J].海洋通报,1990,9(4):33~39.
    [42]张雁生,侯诗宝,杜晶晶等.河流沉积物重金属研究进展[J].云南农业大学学报,2009,24(4):630~633.
    [43]毕春娟,陈振楼,郑祥民等.根际环境重金属地球化学行为及其生物有效性研究进展[J].地球科学研究进展,2001,16(3):387~393.
    [44]洪斌.微生物对砷的地球化学行为的影响[J].地球科学进展,2006,21(1):77~83.
    [45]王国平,刘景双,张君枝等.湿地表层沉积物对重金属的吸附研究[J].农业环境科学学报,2003,22(3):325~328.
    [46]Ryxsen R V.etal.Theues oflfux.co er rexpe irmentsin thedeter.misntionofheayv metalre distribution in an dofop tentialleachign from thesediments[J].Wat Sei ch,1998,37(6-7);283-290.
    [47]Davidson C.M.Evaluation of a sequential extraction procedure for the speciation of heavymetals in sediments[J].Analytica Chimica Acta,1994,291:277-286.
    [48]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D].广州:暨南大学.2004.
    [49]刘景春,严重玲,胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报,2004,24(4):812~818.
    [50]姚志刚,鲍征宇,高璞.湖泊沉积物中重金属的环境地球化学[J].地质通报,2005,24(10-11):997~1001.
    [51]Kumaqa H,SaekiK. Variation. Attern of heavy metal content of short neckclam Tapes Japonica with its growth[J].Bull Jap Soc Fish,1981,47(11).
    [52]陈水土,桶慧辉.九龙江口和厦门西港海域若干重金属元素的生物地球化学特性[J].台湾海峡,1993,12(4):379~384.
    [53]Schumnaener M.Variations of heavy metals in water,sediment and biota from the delta of Ebro River,Spain[J].Journal of Env Science and Health,Patr A.1995,90(6);1961-1372.
    [54]Cline J T,Upchurch S B.Mode of heavy metal imgration in the upper strata of lake sediment[J].Proc 16th Conf Great Lakes Research Int Asset Grear Lakes Res,1973,349-359
    [55]陈宗团,徐立,洪华生.河口沉积物—水界面重金属生物地球化学研究进展[J].地球科学进展,1997,12(5):434~439.
    [56]Isabel Cacador, Carlos Vale, Fernando Catarino. Accumulation of Zn, Pb, Cu, Cr and Ni insediments between roots of the Tagus Estuary salt marshes, Portugal[J].Estu arine Coastal and Shelf Science,1996,(42):393-403.
    [57]Chow T J,SnyderC D,EarlJL.Isotope raitos of lead as polutant source indicators[A].In;Proc.IAEA-SM-191/4I[S].1975,95-108.intern.Atoim c Eneryg Con'an,Vienna,Australia
    [58]Graney J R.Isotopic record of lead poluiton in lake sedimenst from the northesatem United Sattes[J].Geochiimca et Cos-mochiimca Acta,1995,59(9):1728-1751.
    [59]Dlae E Buckley.Accumulaiton of conatminnat metals in marine seidments of Hahfax Harbour, Nova Scoita:enivronmental factosr and histoircla trensd[J].Appled Geocheimstry,1995, 10:175-195.
    [60]Yan Ping,Dong Guanrgong,Dong Zhibao.137Cs tracing of lacustrine sedimenst in the Dalian Like,Qinghai Province,China[J].Chinese Science Bulletin,2001,46(Supp):83-87.
    [61]Milna C S.Swenson M E,Tunrer R E.Assesment of the 37Cs method for seitmating seidment accumulaiton rates:Louisiana salt marshse[J]J.of Coasatl Research,1995,11:296-307.
    [62]Wan Guojiang, Lin Wenzxhu,Hunag Konggui,et la.Verticla dating feature and erosion tracing of 137Cs in Hongfeng lake,Giuzhou Province[J].Chinsee Science Bulleitn,1990,35:1487.
    [63]Wan Guojinag,Huang Ronggui,Wang Changsheng,et la.Venila 210pb variaiton of lake seidmenst in Hongfeng lake,Giuzhou Province[J].Chinese Science Bulleitn,1990,35(8):612.
    [64]万国江.137Cs及210Pb方法湖泊沉积计年研究新进展[J].地球科学进展,1995,10(2):188~192.
    [65]叶立群.珠江重金属入海通量探讨[J].环境与开发,2001,16(2):52~54.
    [66]张经.中国河口地球化学的一些研究进展[J].海洋与湖沼,1994,25(4):438~445.
    [67]刘昌岭,张经.颗粒态重金属通过河流与大气向海洋输送[J].海洋环境科学,1996,15(4):68~76
    [68]Zhuang G,Yi Z,Duce R.A,et al.Chemistry of iron in marine aerosols[J].Global Biogeochemical Cycles,1992,6(2):161-173
    [69]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报,2002.
    [70]刘锦明.控制污染物入海量问题初探[J].海洋环境科学,1987,(02).
    [71]刘海洋.城志军.中国近海污染现状分析及对策[J].环境保护科学,2001,106(8).
    [72]杨元根,刘丛强,张国平等.铅锌矿山开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报,2003,22(4):305~309.
    [73]甘华阳,卓慕宁,李定强等.广州城市道路雨水径流的水质特征[J].生态环境,2006,15(5):969~973.
    [74]W. Kinzelbach,侯然杰等,河流中BOD---DO动态的数学模拟方法[J].环境科学学报.No.21998
    [75]夏青,韩伟等.沱江水质管理模型研究[J],中国环境科学,1986.
    [76]金相灿,张玉清.湘江重金属迁移转化模型研究[J].中国环境科学,1987.
    [77]黄铭荣,秦大立等.深圳市水污染控制规划研究[J].中国环境科学,1986.
    [78]夏青,唐荣发等.计算非点源污染负荷的流域模型[J].中国环境科学,1985.
    [79]刘家殿,温晓丹.水质箱式模型的建立及应用[J].中国环境科学,1987.
    [80]陈治谏.模糊最优化方法在河流水质规划中的应用[J].中国环境科学,1989.
    [81]过孝民,罗桂玲等.区域环境经济规划模型[J].中国环境科学,1985.
    [82]谭建强,顾丁锡.湖泊岸边污染带水质预测研究[J].中国环境科学,1988.
    [83]叶常明,殷兴军等.非定向河网水质及计算方法[J].环境科学学报,1986.
    [84]孙卫红,姚国金,逢勇.基于不均匀系数的水环境容量计算方法探究[J].水资源保护,2006(2):25~26.
    [85]熊风,罗浩.河流水环境容量计算模型分析[J].中国测试技术.2005,31(1):116~117.
    [86]周孝德,郭瑾珑,程文等.永环境容量计算方法研究[J].西安理工大学学报,1999,15(3):1~6.
    [87]张俊,余宗莲,王成见等.大沽河干流青岛段水环境容量研究[J],青岛海洋大学学报,2003,33(5):665~678.
    [88]阎非,苏保林,贾海峰.基于排污口权重的一维河流水环境容量计算[J].水资源保护,2006,22(2):16~18.
    [89]陈振洪.双向流模型在赶潮河段水环境容量计算中的应用探讨[J].福建师范福清分校学报,2005(2):5-8.
    [90]郑孝宇,褚君达,朱维斌.河网非稳态水环境容量研究[J].水科学进展,1997,8(1):25~31.
    [91]孙秀玲,霍太英,褚君达.水环境容量的不确定性分析计算[J].人民黄河,2005,27(3):34~36.
    [92]蒲迅赤,赵文谦.纳污河道水环境自净容量的精确计算方法[J].四川大学学报,2001,33(1):1-4.
    [93]王霞,吕宪国.基于富营养化阀值的松花江水环境容量分析[J].湖泊科学,2006,18(5):503~508.
    [94]牛志广,张宏伟.地理统计学和DIS用于计算近海水环境容量的研究[J].天津工业大学学报,2004,25(1):74~76.
    [95]李鸣,吴结春.生态安全及其研究进展[J].江西科学,2008,26(1):105~108
    [96]全为民,严力蛟,虞左明.湖泊富营养化模型研究进展[J].生物多样性,2001,9(2):168~175
    [97]樊华,陈然,刘志刚.柘林水库水环境容量及水污染控制措施研究[J].人民长江.2009.12
    [98]刘伟,徐南妮,刘振宇.巢湖清淤合肥项目区域污染底泥调查研究[J].环境导报,2000(2):30~31.
    [99]孙胜龙,丁蕴铮.长春南湖底泥磷、氮和重金属元素环境地球化学行为研究[J].环境科学研究,1999,12(4):37~41.
    [100]邓书平,毕德纯,孙晓怡.松花湖及入湖河流的重金属污染调查分析[J].辽宁城乡环境科技,2002,22(4):28~30.
    [101]胡勤海,胡志强,叶昭杰.西湖沉积物中元素分布特征研究[J].环境污染与防治,1996,18(1):8-10.
    [102]殷效彩,杨永亮,乌大年等.山东荣城湾月湖沉积物底泥重金属研究[J].青岛大学学报,1999,12(4):75~79.
    [103]王晓君,刘玉青,佘中盛.镜泊湖沉积物中重金属的研究[J].环境科学丛刊,1990,11(1):46~51.
    [104]朱敏,王国祥,王建等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报(工程技术版)2004,4(2):66~69.
    [105]杨丹敏,陈春华,王焰新.武汉东湖沉积物中金属元素垂直分布研究[J].安全与环境工程,2004,11(2):17~18.
    [106]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~74.
    [107]黎秉铭,万国江,江成忠.滇池、洱海水及沉积物中重金属元素行为[J].环境科学,1995,16(2):50~52.
    [108]贾振邦,安凯,赵智杰等.北京大学未名湖沉积物中主要重金属250年以来的变化[J].环境化学,2003,22(1):93~94.
    [109]鄱阳湖研究编委会.鄱阳湖研究[M].上海:上海科学技术出版社,1988.
    [110]吕兰军.鄱阳湖水及其沉积物中的重金属调查[J].上海环境科学,1994,13(5):17~26.
    [111]刘恩峰,沈吉.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,2004,12(2):113~119.
    [112]杨永强.珠江口及近海沉积物中重金属元素的分布、赋存形态及其潜在生态风险评价[D].广州:中国科学院广州地球化学研究所,2007,36.
    [113]Chatterjee M,Silva Filho E V,Sarkar S K,et al.Distribution and possible source of trace the elements in sediment cores of a tropical macrotidal estuary and their ecotoxicological significance[J].Environ Int,2007,33:346-356.
    [114]马统一.经济应用数学——概率论与数理统计[M].北京:高等教育出版社,2004,319
    [115]弓晓峰,黄志中,张静等.鄱阳湖湿地重金属形态分布及植物富集研究[J].环境科学研究,2006,19(3):34~40.
    [116]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989,253~260.
    [117]夏汉平.土壤一植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(3):289~298.
    [118]弓晓峰,陈晓丽,周文斌等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732~736.
    [119]简敏菲,游海,倪才英.鄱阳湖饶河段重金属污染[J].湖泊科学,2006,18(2):127~133.
    [120]万金保,闫伟伟,谢婷.鄱阳湖流域乐安河重金属污染水平[J].湖泊科学,2007,19(4):421-427.
    [121]戎秋涛.环境地球化学[M].北京:地质出版社,1990,225~228.
    [122]Del Vall T A,Forja J M,Gonza Elez-Mazo E,et al.Determining contamination sources in marine sediments using multivariate analysis [J].Trends Anal Chem,1998,17:181-19.
    [123]Zhang H, Shan B Q.Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region,China[J].Sci Total Environ,2008,399:113-120.
    [124]Graney J R,Eriksen T M.Metals in pond sediments as archives of anthropogenic activities:a study in response to health concerns[J].Appl Geochem,2004,19:1177-1188.
    [125]Andrew B,Ian W C,et al.Reconstructing historical trends in metal input in heavily-disturbed,contaminated estuaries:studies from B ilbao,Southamp ton Water and Sicily [J].Applied Geochemistry,2003,18(2):311-3251.
    [126]叶崇开,张怀真,王秀玉等.鄱阳湖湖近期沉积速率的研究[J].海洋与湖沼,1991,22(3):272~278.
    [127]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003:291-310.
    [128]盛周君,孙世群,王京城等.基于主成份分析的河流水环境质量评价研究[J].环境科学与管理,2007,32(12):172~175.
    [129]Krzysztof Loska,Danuta Wiechula. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J].Chemosphere,2003,51:723-733.
    [130]DelValls T, Forja J M, Gonza.E lez-Mazo E,et al.Determining contamination sources in marine sediments using multivariate analysis [J].Trends in analytical chemistry,1998,17:181-192.
    [131]鲁斐,李磊.主成份分析在辽河水质评价中的应用[J].水利科技与经济,2006,12(10):660~662.
    [132]李玉,俞志明,宋秀贤.运用主成份分析(PCA)评价海洋沉积物中重金属污染来源[J].环境科学,2006,27(1):137~141.
    [133]王晓鹏.河流水质综合评价之主成份分析方法[J].数理统计与管理,2001,20(4):49~52.
    [134]许薇薇,袁旭音,黄小荣.通吕运河河滩沉积物重金属及营养元素的季节性特征[J].长江流域资源与环境,2009,18(7):674~679.
    [135]谢陈笑,丁振华,高卫强等.漳江口红树林区沉积物中Cu、Zn、Cr的分布及形态特征[J].厦门大学学报(自然科学版),2006(增刊):100-104.
    [136]毕春娟,陈振楼,许世远.上海滨岸潮滩根际重金属含量的季节变化及形态分布[J].海洋与湖沼,2003,34(2):194~200.
    [137]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539~543.
    [138]PATRO S R. Nature of biogenic elements in the surface sediments of the eastern continental shelf of India [J].Environment Pollution,2001,8(4):385-389.
    [139]毕春娟,陈振楼,许世远等.长江口潮滩植物根际重金属的分布与累积[J].矿物岩石地球化学通报,2003,22(1):38~41.
    [140]王铁军,查学芳,熊威娜.贵州遵义高坪水源地岩溶地下水重金属污染健康风险初步评价[J].环境科学究,2008.21(1):47~48.
    [141]陈鸿汉,谌宏伟,何江涛等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,13(1):216~223.
    [142]USEPA.Superfund public health evaluation manual[R].Washington DC:Office of Research and Development USEPA,EPAP540P1286P060,1986.
    [143]USEPA.Available infonnation on assessment exposure from pesticides in food[R]. Washington DC:Office of Pesticide Programs USEPA,2000.
    [144]胡二邦.环境风险评价实用技术和方法[M].北京:中国环境科学出版社,2000.
    [145]李剑,马建华,宋博等.路旁土壤-小麦系统重金属积累及其健康风险评价[J].植物生态学报,2009,33(3):624~628.
    [146]Hakanson L.An ecological risk index for aquatic pollution control a sediment logical approach [J].Water Research,1980,14(8):975-1001.
    [147]郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108~112.
    [148]武永锋,刘丛强,涂成龙.贵阳市土壤重金属污染及其潜在生态风险评价[J].矿物岩石地球化学通报,2007,26(3):254~257.
    [149]杨忠芳,夏学齐,余涛等.湖南洞庭湖水系As和Cd等重金属元素分布特征及输送通量[J].现代地质,2008,22(6):897~908.
    [150]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~74.
    [151]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[R].北京:科学出版社,2007.
    [152]郭生练.气候变化对洪水频率和洪峰流量的影响[J].水科学进展,1995,6(3):224~230.
    [153]徐立荣,雒昆利.C02加倍对弥河流域水文极端事件的影响研究[J].中国科学院研究生院学报,2002,19(2):121~124.
    [154]郑康.水沙环境中重金属迁移转化数学模型初探[D].天津:天津大学.2008.
    [155]张继生,王平义.泥沙吸附重金属污染物的主要影响因子研究进展[J].中国环境水力学报,2004,351~356.
    [156]林美群,马少健等.环境因素对硫化矿尾矿重金属溶出影响的模拟试验[J].金属矿山,2008,6:108~115.
    [157]郭华,姜彤,王国杰等.1961-2003年间鄱阳湖流域气候变化趋势及突变分析[J].湖泊科学,2006,18(5):443~445.
    [158]吴攀,刘丛强,张国平等.黔西北炼锌地区河流重金属污染特征[J].农业环境保护,2002,21(5):443~446.
    [159]Dang Zhi,Liu CongOqiang,Martin J Haigh.Mobility of heavy metals associated with the natural weathering of coal [J].Environmental Pollution,2002,118(3):419-426.
    [160]Aydinalp C, Fizpat rick E A, Cresser M S.Heavy metal pollution in some soil and water resources of Bursa Province,Tukey [J].Communication in soil Science and Plant Analysis,2005,36(13-14):1691-1716.
    [161]Sheoran A S,Sheoran V. Heavy metal removal mechainism of acid mine drainage in Wetlands:A Critical review [J].Minerals Engineering,2006,19(2):105-116.
    [162]周建民,党志,蔡美芳等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005,18(5):5~10.
    [163]弓晓峰,等.鄱阳湖湿地重金属形态分布及植物富集研究[J].环境科学研究,2006,19(3):34~40.
    [164]张业成,等.加强矿山环境管理促进矿业可持续发展[J].国土资源科技管理,2002,19(1):67~69.
    [165]简敏菲,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境,2004,13(6):589~593.
    [166]王庆仁,刘秀梅,崔岩山等.我国几个工矿与污灌区土壤重金属污染状况及原因探讨[J].环境科学学报,2002,22(3):354~358.
    [167]宋书巧,梁利芳,周永章等.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿物岩石地球化学通报,2003,22(3):152~155.
    [168]宋书巧,吴欢,黄钊等.刁江沿岸土壤重金属污染特征研究[J].生态环境,2005,14(1):34~37.
    [169]蔡美芳,党志,丈震等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8.
    [170]常青山.重金属超富集植物的筛选与鳌合吸附研究[D].福州:福建农林大学,2005.
    [171]DELETIC A B,Maksimovic C T.Evaluation of water quality factors in storm runoff from paved areas.1998 (09).
    [172]韩冰,王效科等.城市面源污染特征的分析[J].水资源保护,2005,21(2):1-4.
    [173]王成坤.北京城市路面颗粒物吸附多环芳烃和重金属研究[D].北京师范大学.2008.
    [174]Loppi S,Paoli L,et al.Biodiversity of epiphytic lichens and heavy metal contents of flavoparmelia caperate thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy) [J].Sci Total Environ,2004,29(1/3):113-122.
    [175]Sezgin N,Ozcan H K,Demir G,et al.Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway[J].Environment International,2004,29(7):979-985.
    [176]Klumpp A,Hintemann T,Lima J S,et al.Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties [J].Environ Pollut,2003,126(3):313-321.
    [177]龚香宜,祁士华等.福建省兴化湾大气重金属的干湿沉降[J].环境科学研究,2006,19(6):31-34.
    [178]Duce R A,Liss P S,Merrill J T,et al.The atmospheric input of trace species to the world ocean[J].Global Biogeochem Cycles,1991,5:193-259.
    [179]高原,Buce R A.沿海海-气界面的化学物质交换[J].地球化学进展,1997,12(6):553~563.
    [180]王苏民.窦鸿身.中国湖泊志[M],1998.
    [181]Zhu Guangwei,Chi Qiaoqiao,Qin Boqiang.Heavy-metal contents in suspended solids of Meiliang Bay,Lake Taihu and its environmental significances. Journal of Environmental Sciences,2005,17(4):676-680.
    [182]Sheng Y P,Lick W.The transport and resuspension of sediments in a shallow lake.Journal of Geophysical Research,1979,84(C4):1809-1826.
    [183]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193~201.
    [184]陈时长,李良文.鄱阳湖风情及风浪特征浅析[J].江西水利科技,1993,19(4):317~324.
    [181]苏守德,周维功,谭晖如等.鄱阳湖地图集[M].北京:科学出版社,1993:12.
    [186]Petts G.Impounded rivers:perspectives for ecological management [M].New York: Wiley,Chichebster,1984.
    [187]Ward J V,Stanford J A.The Ecology of regulated streams[M].New York:Plenum Press,1979.
    [188]石晓丹,焦涛.大坝运行过程中泄水对坝下游生态系统的影响分析及控制[J].水利科技与经济,2007,13(5):320~323.
    [189]Chang S Y,Liaw S L, Railsback S F,Sale MJ. Modeling alternatives for basin-level hydropower development 1.Optimization methods and apphcations [J].Water Resources Research,1992,28(10):2581-2590.
    [190]Bogen J,Bonsnes T E.The impact of a hydroelectric power plant on the sediment Load in downstream water bodies.Svartisen,northern Norway[J]. Science of the Total Environment, 2001,266(1-3):273-280.
    [191]薛联芳.东江水电站对环境影响的研究[J].水电站设计,1997,13(3):79~83.
    [192]王海云.三峡水库蓄水对香溪河水环境的影响及对策研究[J].长江流域资源与环境,2005,14(2):233~237.
    [193]李若男,陈求稳,蔡德所等.水库运行对下游河道水环境影响的一维-二维耦合水环境模 型[J].水利学报,2009,40(7):769~775.
    [194]吴迪,李存雄.贵州省典型铅锌矿区土壤重金属污染状况评价[J].贵州农业科学,2010,38(1):92~94.
    [195]廖国礼,吴超.矿山环境重金属污染的事故树分析[J].安全与环境工程,2006,13(3):29-32.
    [196]戴玉华,饶运章.矿山酸性废水与重金属污染规律研究[J].黄金,2007,7(28):45~47.
    [197]Hochella Jr M F,White A F. Mineral-Water interface geochemistry:An overview[J].Reviews in Mineralogy,1990,23:1-16.
    [198]Castro-Larrgotia J,Kramar U,Puchelt H.200 years of mining activities at La Paz/San Luis Potos/Moxico-Consequences for wnvirongment and geochemical wxploration[J].Geochem Explor,1997,58:81-91.
    [199]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197~1203.
    [200]刘玥,薛喜成.灰色关联分析在铅锌矿区地表水重金属污染评价中的应用[J].能源环境与保护,2009,23(2):55~59.
    [201]吴燕红,曹斌,夏建新.铅锌矿区环境中重金属含量及其分布特征[J].科技导报,2008,26(8):56~62.
    [202]张晓晶,李畅游.呼伦湖沉积物重金属分布特征及生态风险评价[J].农业环境科学,2010,29(1):157~162.
    [203]张子林,黄立章.浅析鄱阳湖采砂对生态环境的影响[J].江西水利科技,2008,34(1):7~10.
    [204]程华.鄱阳湖可采沙区确定的意义及规则[J].江西水利科技,2008,34(1):11~19.
    [205]向伦辉,郭祖鹏.武汉市汉江和长江水源饮用水中有机物污染谱系分析[J].上海预防医学杂志,2010,22(5):234~237.
    [206]乔梦,安太成.广东西江流域饮用水源中典型持久性有机污染物的含量与来源[J].生态环境学报,2010,19(3):556~561.
    [207]刘文利.唐山市饮用水体有机物污染现状及生物毒性研究[D].北京:北京工业大学,2007.
    [208]王霞,叶振国,宁强.扬州市饮用水水源地潜在风险性及应急处置研究[J].环境科学与管理,2008,33(11):13~16.
    [209]刘贵春.长江口战略水源地持久性有机污染物的赋存特征及生物毒性[D].上海:同济大学,2008.
    [210]Chen J S,Zhou J Y.Heavy Metals of Acqueo us Environment In China[M].Beijing:China Environment Science Press,1992.
    [211]张世霞.水环境重金属污染的现状及其评价[J].中国科技信息,2009,13:32~33.
    [212]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700