德兴铜矿污染土壤重金属形态分布特征及微生物分子生态多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是重金属的一个重要蓄积库,其所含重金属的毒性不仅与其总量有关,更大程度上由其形态分布所决定,其中重金属的生物可利用性含量部分可以通过食物链被植物、动物数十倍地富集,从而对人体健康造成危害。土壤中的微生物是土壤有机组分和生态系统中最活跃的部分,在促进土壤质量和植物健康方面发挥着重要的作用,被认为是最敏感的土壤质量生物学指标。重金属对土壤中微生物的生态效应一方面表现在生物量、代谢活性、种类数量和多样性降低;一方面又因为重金属的选择和生物的适应性反应,使得污染环境中生长有大量耐受重金属污染的类群。可以说,微生物群落组成和多样性动态变化,能反映土壤中生物类群的多变性和土壤质量在微生物数量和功能上的差异性。为了更好地了解土壤健康状况,了解重金属污染对微生物群落结构的影响,非常有必要深入对污染土壤的微生物多样性、群落结构组成以及与重金属相互作用关系等进行研究。本文以德兴铜矿4#尾砂库为研究对象,采集尾砂样品以及周围农田和菜地土壤样品共16件进行相关分析研究。
     (1)对样品中重金属以及其他元素总量进行测定,采用Tessier顺序提取方法对重金属Cu, Cd和Zn进行形态分析,然后分别根据总量采用国标方法(GB15618-1995)以及根据重金属生物可利用性含量采用风险评价编码(Risk Assessment Code, RAC)两种方法评价土壤重金属污染情况。结果发现该地区样品受到不同程度的Cu、Cd、Zn、Ni、Pb、和Cr的污染,说明该尾矿库重金属污染对周边农业土壤有影响。形态分析结果表明,Cu主要以有机结合态和残渣态存在;Cd主要以离子交换态存在;Zn在大部分样品中主要以残渣态存在。采用两种方法对样品中重金属Cu、Cd和Zn环境风险进行评价,结果表明除了重金属Cd评价的结果比较一致外,对于重金属Cu和Zn,大部分样品中两种评价结果存在明显差异。从研究结果来看,该地区重金属Cd污染已经达到了污染非常严重的程度,需要人们给予更多的关注。同时,从结果来看我们认为一个适当的、充分的、合理的环境风险评价标准应该同时包含重金属总量和生物可利用性含量两部分标准。本文对德兴铜矿4#尾矿库及周边农业土壤样品进行重金属形态分析,并结合风险评价编码(RAC)方法首次根据重金属可利用性含量对该地区长期受重金属土壤样品进行重金属污染风险评价,具有重要参考价值。
     (2)样品中微生物分子生态多样性变化情况研究。首先对16个样品中可培养异养细菌进行平板计数,结果发现在尾砂样品T4和T7中可培养异养细菌数量最少,约0.5×107cfu/g土壤干重;在菜地土壤样品中为1.40-2.75×107cfu/g土壤干重,在农田土壤样品中为0.60-3.60×107cfu/g土壤干重。
     对不同土壤样品16S rDNA V3区片断扩增产物采用变性梯度凝聚电泳(DGGE)进行分离,获得DNA指纹图谱,采用Quantity One软件进行UPGMA聚类分析等,发现尾砂样品T4和T7相似性比较高,达56.4%;菜地土壤样品中V11、V13、V15、V18和V20基本聚类在一起,而V8与其它样品都分离开来,说明该样品中微生物多样性与其他样品相比差异比较大;农田土壤样品中G10、G12、G14和G16聚类在一起,而样品G17、G19和G21聚类在一起。
     对样品进行多样性指数(Shannon-Weaver index H)计算,结果发现多样性最大出现在距离尾矿中等距离的样品中如菜地土壤样品V13、V15,农田土壤样品G12和G14等,在这些样品中重金属铜和锌的含量不高,均不超过国家土壤质量Ⅱ级标准,但也不是最低;在重金属铜和锌含量都是最高的菜地土壤样品V8、农田土壤样品G10中,以及在重金属铜和锌含量几乎都是最低,远离尾矿10 km之外的菜地土壤样品V20和农田土壤样品G19中,微生物的多样性指数相近,且均低于最大值。说明重金属浓度对微生物多样性的影响可能并不是简单的线性关系,在一定的浓度范围内有可能促进微生物多样性的发展。
     (3)样品中微生物群落结构组成研究。主要是采用以PCR为基础的限制性片段长度多态性分析(RFLP)方法,结合分子克隆构建基因文库,16S rDNA测序等,对样品中微生物群落结构组成进行分析。共获得236OTUs (Operational Taxonomic Units),测序后各个样品中菌种数分别为T4(9种),V8(56种),V20(40种),G10(56种)和G19(46种)。
     根据测序结果发现,在五个样品中优势菌种主要有:uncultured Pseudoxanthomonas sp. clone GI5-005-C10, Burkholderia sp.383, uncultured Acinetobacter sp. clone TCCC 11180等十多种。进行系统发育树分析,发现在五个样品中共207种细菌被划分为15大类,即Acidobacteria纲,Actinobacteria纲,Bacteroidetes纲等细菌。在尾砂T4样品中86%的细菌克隆子数归属于Y-proteobacteria类群,是该样品中绝对优势菌群;在菜地土壤样品V8中,菌群分布为:γ-proteobacteria,α-proteobacteria,δ-proteobacteria, Planctomycetes, Acidobacteria和Bacteroidetes,分别占细菌总克隆子数的14.5%,12%,8%,14.5%,10%和9.7%,为优势菌群;在菜地土壤样品V20中,优势菌群依次为:γ-proteobacteria占25%,β-proteobacteria占16%,Cyanobacteria占12%,a-proteobacteria和Acidobacteria各占10%;在G10样品中,占最优势主导地位的类群是β-proteobacteria,包含22.5%的克隆子数,紧随其后的优势类群分别是γ-proteobacteria,α-proteobacteria, Chloroflexi和Firmicutes,各占百分比10%;在样品G19中,优势菌群依次是Acidobacteria,β-proteobacteria,α-proteobacteria, Chloroflexi和Planctomycetes,分别占G19样品中155个有效克隆子百分比为22%,17%,14%,13%和11%。总的来看,在五个样品中细菌群落结构组成差异是比较明显的。T4尾砂样品中细菌多样性最少,群落结构比较简单,优势菌群单一,优势明显;在菜地和农田样品中,细菌多样性明显增加,群落数增多,结构复杂,优势菌群多元化,优势不明显。与Janssen等人提出的典型健康土壤样品中微生物多样性及平均群落结构组成进行比较,发现本研究中的土壤样品在长期的重金属污染压力条件之下,其中微生物群落结构组成与健康土壤相比已经发生了明显改变,微生物的功能也可能发生了改变,使得这些土壤可能处于不健康状态。
     另外,采用PCA方法对重金属Cu, Cd和Zn及各形态与微生物群落之间的相互关系在所研究样品中首次进行了分析讨论。发现不同重金属,不同重金属形态对微生物群落分布都有不同影响。着重考虑重金属生物可利用性含量(即离子交换态和碳酸盐结合态重金属含量)与微生物群落之间的相互关系,发现离子交换态重金属铜和锌与细菌类群Act (Actinobacteria)、Bet (β-proteobacteria)、Chl (Chlorobi)、Chlo (Chloroflexi)、Fir(Firmicutes)之间相关性较大;碳酸盐结合态铜和锌与细菌类群Bac (Bacteroidetes)和Ver (Verrucomicrobia)紧密相关;离子交换态和碳酸盐结合态重金属镉与细菌类群Gam (γ-proteobacteria)相关性尤为显著。我们认为或可根据微生物群落与重金属生物可利用性含量之间的相关性,用微生物群落结构的变化来指示重金属生物可利用性含量的变化,比如用Gam (γ-proteobacteria)类群数量变化来指示重金属镉的生物可利用性含量变化等。
     (4)重金属高抗性菌株分离鉴定及基本性质研究。采用平板分离的办法,经重金属梯度浓度诱导培养,从尾矿样品中分离筛选到三株重金属高抗性菌株:菌株DX-T3-01在镉浓度10 mM/L的固体平板和18 mM/L液体培养基中生长良好,在镉浓度16 mM/L的固体平板上能生长;DX-T3-02在铜浓度3 mM/L的固体平板和6 mM/L液体培养基中生长良好,在铜浓度5 mM/L的固体平板上能生长;菌株DX-T3-03在锌浓度为35 mM/L固体平板和30 mM/L液体培养基中生长良好,在锌浓度50 mM/L的固体平板上能生长。
     三株菌进行生理生化特性研究以及16S rDNA的同源性分析比对,发现菌株DX-T3-01与Ralstonia pickettii的菌株(GenBank登录号为CP001069)同源性为99%,菌株DX-T3-02与Methylobacterium sp的菌株(GenBank登录号为AM910531)同源性为99%,菌株DX-T3-03与Sphingomonas sp.的菌株(GenBank登录号为AF131295)同源性为99%。分别构建系统发育树,发现其基因进化距离与同属菌种很近,与不同属的菌种相距较远,将三株菌分别命名为:Ralstonia pickettii strain DX-T3-01, Methylobacterium sp. strain DX-T3-02和Sphingomonas sp. strainDX-T3-03。本文分离到的这三株菌与已报道的同种属其他菌株相比,在重金属抗性方面具有非常显著优势。可望成为待开发的重金属生物修复优良菌剂。
     初步应用DGGE方法来检测特殊菌种在环境样品中的分布情况,发现三株菌在不同样品中的分布和丰度存在较大差异。基本上Ralstonia pickettii strainDX-T3-01在尾砂样品和距离尾矿库距离较近的几个样品中广泛存在,且数量较多,可能为各样品中优势菌种之一。Methylobacterium sp. strain DX-T3-02只在尾砂样品T4和菜地土壤样品V8中存在且特征条带亮度较大,在其他样品中极微弱存在或不存在,说明该菌种的分布受样品性质影响较大,特异性比较明显。而Sphingomonas sp. strain DX-T3-03在尾砂样、各菜地土壤样品和农田土壤样品中都有特征条带存在,亮度不大,说明该菌种分布广泛,特异性不明显,菌数量少,在各样品中一般为非优势菌株。该方法有可能利用来进行重金属污染监测,寻找重金属污染微生物标记物,开发重金属污染快速检测技术等。
Soil is an important container of heavy metals accumulation, heavy metals in which can be enrichmented for times by plants, animals through the food chain. The toxicity of heavy metals in soil is not only related to the total concentration, but to a greater extent is determined by its speciation distribution. Microbes is the most active part of organic components, and ecological system in soil, which plays an important role in the promotion of soil quality and plant health, and is considered as the most sensitive biological indicators of soil quality. The ecological effects of heavy metals on soil organisms, on one hand had bad performance in the bio mass, metabolic activity, reducing the number and diversity of species; On the other hand, a large number of tolerance taxa could grow and resistant to heavy metal contamination, because of the choice stress of heavy metals and biological adaptive responses. Change of microbial community composition and diversity may reflect soil variability and soil quality, based on the quantity and function of microbes. In order to better understand the health status of the soil, the impact of heavy metal pollution on microbial community structure, it is very necessary to study the microbial diversity, microbial community composition and their interaction with heavy metals in the contaminated soil further. In this study, we chose the 4# tailing of Dexing Copper Mine as object,16 samples were obtained, including tailing samples, vegetable field soil samples and grain field soil samples, and were investigated.
     (1) The distribution and chemical speciation of heavy metals in mine tailing and near soils were investigated. The total content of heavy metals and speciation of heavy metals (Cu, Cd and Zn) were investigated by atomic emission or atomic absorption spectroscopy. Tessier's extraction scheme was used in the investigation of the mobility and transport of the metals. The potential risk of environmental pollution of heavy metals Cu, Cd and Zn was assessed, both based on total concentrations, and on bioavailable fractions according to a Risk Assessment Code (RAC) for the first time, in these long-term heavy metal-polluted tailing soil samples. High levels of heavy metals were detected in samples, showing a certain extent of dispersion of heavy metal pollution from the mine tailing. The Tessier's sequential extraction results showed that Cu was mainly associated with the fraction bound to organic matter (ORG) and residual fraction (RES). Cd was mainly associated with the exchangeable fraction (EXC) and Zn appeared mainly associated with the residual fraction (RES) in the samples. According to the Risk Assessment Code (RAC), cadmium showed high to very high environmental risk, which agreed with the heavy pollution classification (III) proposed by the standard (GB 15618-1995), China, in almost all the samples; While copper and zinc showed low to medium risk in many samples, which disagreed with the classifications proposed by the standard GB 15618-1995 for total metal concentrations. The results revealed that cadmium pollution is serious in the studied area and has high environmental risk, should be paid more attention as soon as possible. Besides, it may suggest that bioavailable metal fractions should be included in an adequate criterion for environmental risk assessment, not only based on the total metal contents.
     (2) Microbial diversity in samples. Firstly, the number of culturable heterotrophic bacteria in 16 samples was investigated by plate counting. It was found that, in the tailing samples T4 and T7, the number of culturable heterotrophic bacteria was the least, about 0.5 X 107cfu/g dry soil; in the vegetable field soils it ranged from 1.40 to 2.75 X 107cfu/g dry soil, and in the grain field soils it ranged from 0.60 to 3.60 X 107 cfu/g dry soil, were higher than that in tailing samples.16S rDNA V3 variable segments were obtained and separated by DGGE (denaturing gradient gel electrophoresis). UPGMA cluster analysis of the DNA fingerprint was carried out by Quantity One software, and the result showed that, samples T4 and T7 has similarity 56.4%; vegetable field soil samples V11, V13, V15, V18 and V20 were gathered, and were separated form the sample V8, which indicated the big difference of microbial diversity between sample V8 and other samples; in grain field soil samples, samples G10, G12, G14 and G16 were together, and were separated from clustered samples G17,G19 and G21.
     Diversity index of the samples (Shannon-Weaver index H) was calculated, it found that the greatest diversity in the samples that were at middle distance away from the mine tailing, such as vegetable field soil samples V13, V15, grain field soil samples G12 and G14. In these samples, the contents of heavy metals copper and zinc are not high (not exceed the national soil quality standard II), but also are not the lowest. On contrary, in samples which has the highest contents of heavy metals copper and zinc (such as vegetable soil sample V8 and grain soil sample G10), as well as the samples which has the lowest contents of heavy metals copper and zinc, and were 10 km distance away from the tailing (such as vegetable soil sample V20 and grain soil sample G19), the microbial diversity index H was similar to each and were lower than the maximum. The results may indicate that the influence of heavy metals on microbial diversity is not a simple linear relationship with heavy metals concentration, and in a certain concentration range, heavy metals may contribute to the development of microbial diversity.
     (3) Composition of microbial communities in samples. The compositions and structures of microbial communities in the soil samples were determined by a PCR-based cloning approach (restriction fragment length polymorphism, RFLP). A total of 236 OTUs (operational taxonomic units) were obtained in these samples. After sequencing, the bacterial species in each sample were determined as:T4 (9 species), V8 (56 species), V20 (40 species), G10 (56 species) and G19 (46 species).
     The main dominant bacterial species in these samples were:uncultured Pseudoxanthomonas sp. clone GI5-005-C10, Burkholderia sp.383, uncultured Acinetobacter sp. clone TCCC 11180 and so on, more than ten kinds. The results of phylogenetic analysis revealed that a total of 207 bacterial species in the five samples fell into fifteen putative phylogenetic divisions, which were Acidobacteria, Actinobacteria, Bacteroidetes and so on. The distribution of dominant groups in samples was different. In sample T4, the predominant group wasγ-proteobacteria, representing 86% of the total clones in T4 bacterial library; in sample V8, the dominant groups wereγ-proteobacteria, a-proteobacteria,δ-proteobacteria, Planctomycetes, Acidobacteria and Bacteroidetes, representing 14.5%,12%,8%, 14.5%,10% and 9.7% of the total clones in V8 bacterial library, respectively; in sample V20, groups y-proteobacteria (25%),β-proteobacteria (16%), Cyanobacteria (12%),α-proteobacteria (10%) and Acidobacteria (10%) were dominant bacterial phylogenetic divisions; in sample G10, the dominant groups wereβ-proteobacteria (22.5%),γ-proteobacteria (10%),α-proteobacteria (10%), Chloroflexi (10%) and Firmicutes (10%); in sample G19, the dominant groups were Acidobacteria,β-proteobacteria,α-proteobacteria, Chloroflexi and Planctomycetes, representing 22%,17%,14%,13% and 11% of the total clones in G19 bacterial library, respectively. Overall, the differences of bacterial community composition in five samples were apparent. T4 tailing sample had the least bacterial diversity, the community structure in it was relatively simple, the dominant group was single and predominance was obvious; in vegetable and grain field soil samples, a marked increase in bacterial diversity was investigated, the number of communities increased, the structure of microbial community composition was more complex, dominant groups were not obvious. Compared with the standard of microbial diversity and the average community composition in typical healthy soil samples proposed by Janssen, the studied soil samples with long term heavy metal pollution, in which the composition of microbial community structure has occured an obvious change, indicating that the soils may be in an unhealthy state.
     In addition, the correlation between total concentration and bioavailability of heavy metals Cu, Cd, Zn and microbial groups for the impact have firstly been investigated by PC A in this study. We found that different heavy metals and different forms of heavy metals had different effects on the distribution of microbial communities. Focus on considering the relationship between bioavailability of heavy metals content (ie, exchangeable and carbonate-bound heavy metals) and microbial communities, found that exchangeable heavy metals copper and zinc was correlated to bacterial populations Act (Actinobacteria), Bet(β-proteobacteria), Chl (Chlorobi), Chlo (Chloroflexi) and Fir (Firmicutes); Carbonate-bound copper and zinc was closely related to bacterial groups Bac (Bacteroidetes) and Ver (Verrucomicrobia); correlation between exchangeable, carbonate-bound heavy metal cadmium and bacterial population Gam (γ-proteobacteria) is particularly significant. From the results, we believed that according to the correlation between the microbial communities and heavy metal bioavailability, the changes of microbial community structure might be used to indicate the bioavailability of heavy metals, such as changes in the number of Gam (y-proteobacteria) may indicate the changes of cadmium bioavailability contents.
     (4) Isolation and characterization of highly heavy metal resistant bacterial strains. Highly heavy metal resistant indigenous bacterial strains DX-T3-01, DX-T3-02 and DX-T3-03 were isolated from the tailing sample by plating method. The strain DX-T3-01 exhibited high tolerance to cadmium:grow well on YTPG agar plates with 10 mM Cd2+and in liquid medium with 18 mM Cd2+; The strain DX-T3-02 exhibited high tolerance to copper:grow well on YTPG agar plates with 3 mM Cu2+ and in liquid medium with 6 mM Cu2+; The strain DX-T3-03 was highly resistant to zinc and could endure 35 mM Zn2+ on YTPG agar plates and 30 mM Zn2+ in liquid medium. On the basis of 16S rDNA sequencing, BLAST and phylogenetic analysis, the strains were identified as Ralstonia pickettii strain DX-T3-01, Methylobacterium sp. strain DX-T3-02 and Sphingomonas sp. strain DX-T3-03, respectively. This study supplied potential indigenous bacterial materials for tailing bioremediation studies in the future. Compared to other reported strains, the bacteria isolated in this study had very significant advantages in heavy metal resistance, and was expected to be developed into excellent bacterial materials in bioremediation of heavy metals.
     The DGGE method was also applied to detect the distribution of these three bacterial strains in the samples. It was found that in different samples the distribution and abundance of different bacterial strains was different obviously. Generally, the characteristic band of Ralstonia pickettii strain DX-T3-01 was detected in tailing samples and several samples near the tailing, with high brightness, which indicated the big amount of Ralstonia pickettii strain DX-T3-01 and it might be one of the dominant bacterial species in these samples; The characteristic band of Methylobacterium sp. strain DX-T3-02 was only detected in samples T4 and V8 with great brightness, and was detected faintness or not detected at all in other samples, which might indicate the strain could be strict to the characteristics of samples, and the speciality of this strain was obvious. While the characteristic band of Sphingomonas sp. strain DX-T3-03 was detected in all of the samples with low brightness, which might indicate that this bacterial strain was spread widely in environmental samples and not the predominant bacterial species in these samples. This method may be utilized measuring the heavy metal pollution, seeking for heavy metal microbial marker, and developing new fast detecting technology in future.
引文
[1]许嘉琳,杨居荣.陆地生态系统中的重金属.中国环境科学出版社,1995,157-287.
    [2]陈怀满.土壤一植物系统中的重金属污染.北京:科学出版社,1996,17-25.
    [3]朱永官,陈保冬,林爱军.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报,2005,25(12):1575-1579.
    [4]黄圣彪,王子健.天然水体中铜的形态及其对Q67淡水发光菌的毒性作用.环境科学研究,2003,16(2):43-46.
    [5]刘春生,孙百哗,王正直,郑永明,叶优良,张福锁.铜对不同苹果砧木实生苗生长的影响差异研究.植物营养与肥料学报,2003,9(3):364-368.
    [6]刘慧,王晓蓉,王为木,于海霞.不同形态锌离子对卿鱼谷肤甘肤系统的影响.中国环境科学,2005,25(2):169-173.
    [7]孙铁衍,周启星,李培军.污染生态学.科学出版社,2001,298-312.
    [8]孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标.环境科学,2004,25(2):104-110.
    [9]王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复.环境污染治理技术与设备,2004,5(11):2-5.
    [10]Ebbs S D, Lasat M M, Brady D J, et al. Phytoextration of cadmium and zinc from a contaminated soil. J. Environ. Qual.,1997,26:1424-1430.
    [11]周启星.污染土壤修复的技术再造与展望.环境污染治理技术与设备,2002,3(8):36-40.
    [12]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望.环境污染治理技术与设备,2001,2(5):48-53.
    [13]周启星,宋玉芳.植物修复的技术内涵及展望.安全与环境学报,2001,1(3):48-53.
    [14]Doleman P, Janson E, Michels M, et al. Biol. Fertil. Soils,1994,17:177-184.
    [15]Allen H E, Yin Y. Combining chemistry and biology to derive soil quality criteria for pollutants. Proceedings of the 16th World Congress of Soil Science. Montpellier, France,1998.
    [16]Sauv S. Derivation of soil quality criterial using chemical speciation of Pb2+ and Cu2+ Proceedings of the 16th World Congress of Soil Science. Montpellier, France,1998.
    [17]刘晶,滕彦国,崔艳芳,王金生.土壤重金属污染生态风险评价方法综述.环境监测管理与技术,2007,19(3):6-11.
    [18]闵航,赵宇华.微生物学.浙江大学出版社,1999.
    [19]东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社,2001.
    [20]杨元根.用土壤微生物方法评价重金属Cu的毒性及其时间效应.自然科学进展,2001,11(3).
    [21]李志博,骆永明,宋静,赵其国,刘志全.土壤环境质量指导值与标准研究--污染土壤 的健康风险评估.土壤学报,2006,43(1):142-151.
    [22]王远鹏.重金属污染土壤的微生物分子生态及对修复效应的影响.浙江大学博士学位论文,2006.
    [23]许光辉,李振高.微生物生态学.南京:东南大学出版社,1991.
    [22]Robert M, Berthelin J. Role of biological and biochemical factors in soil minerals weathering. In:Huang P M, Schnizer Mled. Interactions of soil minerals with natural organics and microbes[J]. Madison:Soil ScilSoclAml, Special Publication,1986,17:453-465.
    [25]周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004.
    [26]王志楼.典型矿区重金属污染特性及其土壤酶活性研究.东华大学硕士学位论文,2010.
    [27]Blaser P, Zimmermann S, Luster J, Shotyk W. Critical examination of trace element enrichments and depletions in soils:As,Cr,Cu,Ni,Pb and Zn Swiss forest soils. The Science of the Total Environment,2000,249 (1-3):257-280.
    [28]李永康,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004,24(1):95-100.
    [29]蓝崇钮,束文圣,孙庆业.采矿地的复垦.持续发展与生态学.北京:中国科技出版社,1993.
    [30]侯俊华,霍进臣.辽宁采矿业对环境的影响与水土流失防治对策.中国水土保持,2005(4):44-45.
    [31]胡振琪,凌海明.金属矿山污染土地修复技术及实例研究.金属矿山,2003(6):53-56.
    [32]Castrol-Larrgoitia J, Kramar U, Pucheh H.200 years of mining activities at La Paz/SanLuis Potosi/Moxico consequences for environment and geochemical exploration. Journal of Geochemical Exploration,1997,58 (2):81-91.
    [33]周康民,汤志云,黄光明,肖灵,江冶,高孝礼.土壤中重金属形态分析方法研究.江苏地质,2007,31(3):165-175.
    [34]王亚平,黄毅,王苏明,许春雪,刘妹.土壤和沉积物中元素的化学形态及其顺序提取法.地质通报,2005,24(8):728-734.
    [35]Comelis R C, Crews H M, Caruso J A, et al. Handbook of elemental speciation:Techniques and methodology. John Wilev&Sons, Ltd.,2003.
    [36]Comelis R C, Crews H M, Caruso J A, et al. Handbook of elemental II:species in the environment, food, medicine and occuoational health. John Wiley&Sons, Ltd.,2005.
    [37]Lamy L, Boutgeviset S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge dvsposal. J. Environ. Qual,1993,22:731-737.
    [38]Agata loot, Jacek Nanuesnik. The role of speciation in analytical chemvstry. Trends in Anal. Chem.,2000,19(2-3):69-79.
    [39]Stunnn W, Brauner P A. A chemical speciation [A]. In:Riley J P, Skirrow G eds. Chemical oceanography, ch.3. New York:Academic Press,1975,173-279.
    [40]汤鸿肖.试论重金属的水环境容量.中国环境科学,1985,5(5):38-43.
    [41]戴树桂.环境分析化学的个重要方向—形态分析的发展.上海环境科学,1992,11(11):20-27.
    [42]袁东星,王小如,黄本立.化学形态分析.分析测试通报,1992,11(4):1-9.
    [43]周天泽.无机微量元素形态分析方法学简介.分析实验室,1991,10(3):44-50.
    [44]Templeton D M, Ariese F, Cornelis R, et al. IUPAC guide lines for terms related to speciation of trace elements. Pure Appl, Chem,2000,72(8):1453-1470.
    [45]宋照亮,刘从强,彭渤.逐级提取(SEE)技术及其在沉积物和土壤元素形态中的应用.地球与环境,2004,34(2):70-77.
    [46]尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法进展.农业环境保护,2001,20(4):266-269.
    [47]Tessier A, Campbell P G C. Conmaent on "Pitfalls of sequential extractions " by F. M. M.MOREL. Water Research,1991,25 (1):115-117.
    [48]雷鸣,廖柏寒,秦普丰.土壤重金属化学形态的生物可利用性评价.生态环境2007,16(5):1551-1556.
    [49]朱婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法.土壤,1989,10(5):163-166.
    [50]Burger J, Diaz-B F, Marafante E. Methodologies to examine the importance of host factors in bioavailability of metals. Ecotox Environ Safe,2003,56:20-31.
    [51]Mao M Z. Speciation of metals in sediments along the Le An River. CERP Final Report [A], France:Imprimerie Jouve Mayenne,1996,55-57.
    [52]Janssen C R, Hejierck G G, Schamphelaere K A C D. Environmental risk assessment of metal:tools for incorporating bioavailability. Environmental International,2003,28:793-800.
    [53]高怀友,赵玉杰,师荣光等.区域土壤环境质量评价基准研究.农业环境科学学报,2005,24:342-345.
    [54]Lanno R, Wells J, Conder J, et al. The bioabailability of chemicals in soil for earthworms. Ecotoxicology and Environmental safety,2004,57:39-47.
    [55]杨金燕,杨肖娥,何振立.平衡时间及含水量对红壤有效态铅提取量的影响.土壤通报,2005,36(4):595-597.
    [56]刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究.环境污染与防治,2003,25(4):215-217.
    [57]刘俊华,张天红,薛澄泽.黑麦幼苗法对污泥中元素生物有效性的研究.陕西环境,1994, 1(1):1-4.
    [58]周永章,宋书巧,杨志军等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应.地质通报,2005,24(10-11):945-951.
    [59]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展.地球科学进展,2001,16(1):86-92.
    [60]薛澄泽,刘俊华,李宗利等.用黑麦幼苗法测定土壤中污染元素的生物有效性.环境化学,1995,14(1):32-37.
    [61]孟昭福,张增强,薛澄泽等.替代黑麦幼苗测定土壤中重金属生物有效性的研究.农业环境保护,2001,20(5):337-340.
    [62]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价.土壤,2000,3:130-134.
    [63]Weissenhom, Leynalo C. Spore germination of arbuscular mycorrhizal fungi in soils difering in heavy metal content and other parameters. European Journal of Soil Biology,1996,32: 165-172.
    [64]Moreno J L, Garcia C, Land I L. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biology & Biochemistry, 2001,33:483-489.
    [65]窦磊,周永章,高全洲,彭先芝,蔡立梅,古志宏.土壤环境中重金属生物有效性评价方法及其环境学意义.土壤通报,2007,38(3):577-583.
    [66]Holm P E, Christensen T H, Tjill J C and McGrath S P J. Environ. Qual,1995,24:183-190.
    [67]Luo Y M, Christie P. Intern. J. Environ. Anal. Chem,1998,72:59-75.
    [68]崔艳芳,滕彦国,刘晶,王金生.生物可利用性及其在重金属污染生态风险评价中的作用.环境保护科学,2008,34(1):44-46.
    [69]U. S. EPA, Framework for Ecological Risk Assessment. EPA/630/R-92/001,1992.
    [70]NFESG Guide for incorporating bioavailability adjustments into human health and ecological risk assessments at U. S. Navy and Marine Corps Facilities. Part 1:Overview of Metals Bioavalability. NFESC User's Guide UG-2041-ENV,2000.
    [71]储昭升,刘文新,汤鸿霄.官厅水库-永定河沉积物中AVS-SEM的分析.环境化学,2003,22(4):313-317.
    [72]Hakanson L. An ecological risk ind ex for aquatic pollution control, a sedimentological approach. Water Res.,1980,14:975-1001.
    [73]Jain C K. Metal fractionation study on bed sodiments of River Yamuna, India. Water Research,2004,38:569-578.
    [74]Kunwar P. Sing h, Dinesh Mohan, Vinod K. Sing h. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. Journal of Hydrotogy, 2005,312(1-4):14-27.
    [75]Habes Ghrefat, Nigem Yusulb. Asessing Mn, Fe, Cu, Zn and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere.
    [76]郭广勇,朱慧琦,汪洁,潘笑文,张舒,余志清,周智曼.奉贤地区土壤Cu、Zn和Pb形态与其生物可利用性研究.环境科学与管理,2009,34(1):127-130.
    [77]Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, and Turco R F. Microbial Biomass and Activity in Lead-Contaminated Soil. Appl Environ Microb,1999,65:2256-2259.
    [78]Brookes P C, Boil. Fertil. Soils,1995,19:269-279.
    [79]Knight Bruce P, Mcgrath Steve P and Chaudri Amar M. Biomass Carbon Measurements and Substrate Utilization Patterns of Microbial Populations from Soils Amended with Cadmium, Copper, or Zinc. Appl Environ Microb,1997,63:39-43.
    [80]Kumar Jha D, et al. Soil microbial population number and enzyme activities in relation to altitude and forest degradtion. Soil Biol Biochem,1992,24:761-767.
    [81]Kandeler E, Luftenegger G, Schwatz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fert Soils,1997,23:299-306.
    [82]Kandeler E, Luxhoi J, Tscherko D, Magid J. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biol Biochem,1999,31:1171-1179.
    [83]车玉伶,王慧,胡洪营,梁威,郭玉凤.微生物群落结构和多样性解析技术研究进展.生态环境,2005,14(1):127-133.
    [84]Kandeler E, Tscherko D, Bruce K D, Stemmer M, Hobbs P J, Bardgett R D and Amelung W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fert Soils,2000,32:390-400.
    [85]Shi W, Becker J, Bischoff M,Turco R F and Konopka A E. Association of Microbial Community Composition and Activity with Lead, Chromium, and Hydrocarbon Contamination. Appl Environ Microb,2002,68:3859-3866.
    [86]Bath Erland, Montserrat Diaz-raviina, Frostegard Asa and Campbell Colin D. Effect of Metal-Rich Sludge Amendments on the Soil Microbial Community. Appl Environ Microb,1998, 238-245.
    [87]Pennanen Taina, Frostegfird Asa, Fritze Hannu and Berth Erland. Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Appl Environ Microb,1996,62:420-428.
    [88]李永涛,Thierry Becquer, Cecile Quantin, Marc Benedetti, Patrick Lavelle,戴军.酸性矿山废水污染的水稻田土壤中重金属的微生物学效应.生态学报,2004,24(11):2430-2436.
    [89]龚平等.Cd, Zn、菲和多效哇复合污染土壤的微生物生态毒理效应.中国环境科学,1997, 17(1):139-146.
    [90]顾宗镰,谢思琴,吴留松.土壤中锡、砷、铅的微生物效应及其临界值.土壤学报,1987,24(4):327-334.
    [91]陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法.生态学报,2006,26(10):3404-3412.
    [92]Griffiths B S, Ritz K, Glover L A, et al. Broad-scale approaches to the determination of soil microbial community structure:application of the community DNA hybridization technique. Microbial Ecology.1996,31:269-280.
    [93]Torsvik V, Goskyr J, Daae F L. High diversity in DNA of soil bacteria. Applied Environmental Microbiology.1990,56:782-787.
    [94]Atlas R M, Horwitz A, Krichevsk Y M, et al. Response of microbial populations to environmental disturbance. Microbial Ecology.1991,22:249-256.
    [95]Holben W E, Harris D. DNA-based monitoring of total bacterial community structure in environmental samples. Molecular Ecology.1995,4:627-631.
    [96]张晓君,冯清平,白玲.分子生态学方法在微生物多样性研究中的应用.微生物学通报,1999,26(1):68-70.
    [97]Henckel Thilo, Friedrich Michael and Conrad Ralf. Molecular Analyses of the Methane-Oxidizing Microbial Community in Rice Field Soil by Targeting the Genes of the 16S rRNA, Particulate Methane Monooxygenase and Methanol Dehydrogenase. Appl Environ Microb, 1999,65:1980-1990.
    [98]Godfrey S A C, Harrow S A, Marshall J W and Klena J D. Characterization by 16S rRNA Sequence Analysis of Pseudomonads Causing Blotch Disease of Cultivated Agaricus bisporus. Appl Environ Microb,2001,67:4316-4323.
    [99]Mccaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied Environmental Microbiology,1999,65:1721-1730.
    [100]Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-indep-endent molecular techniques:application to soil environment. Research in Microbiology,2000,151:167-177.
    [101]Smit E, Leeflang P, Wermars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology.1997,23(3):249-261.
    [102]Selvaratnam S, Schoedel B A, Mefarland B L, et al. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor. Appl Environ Microbiol,1995,61(11):3981-3985.
    [103]Marschner P, Yang C H, R Lieberei. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem,2001,33:1437-1445.
    [104]Feris Kevin, Ramsey Philip, Frazar Chris, Moore Johnnie N, Gannon James E and Holben William E. Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient. Appl Environ Microb,2003,69:5563-5573.
    [105]Stephen John R, Kowalchuk George A, Bruns Mary-ann V, Mccaig Allison E, Phillips Carol J, Embley T Martin and Prosser James L. Analysis of Subgroup Proteobacterial Ammonia Oxidizer Populations in Soil Denaturing Gradient Gel Electrophoresis Analysis and Hierarchical Phylogenetic Probing. Appl Environ Microb,1998,64:2958-2965.
    [106]Watanabe Kazuya, Kodama Yumiko and Harayama Shigeaki. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Meth,2001,44:253-262.
    [107]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展.生态学报,2003,29(5):988-995.
    [108]赵祥伟,骆永明,腾应,李振高,宋静,吴龙华.重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报,2005,25(2):186-191.
    [109]张晶,张惠文,张成刚.实时荧光定量PCR及其在微生物生态学中的应用.生态学报,2005,25(6):1445-1450.
    [110]Feris Kevin P, Ramsey Philip W, Frazar Chris, Rillig Matthias, Moore Johnnie N, Gannon James E and Holben William E. Seasonal Dynamics of Shallow-Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient. Appl Environ Microb,2004, 70:2323-2331.
    [111]Tyson Gene W, Chapman Jarrod, Philip Hugenholtz, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature,2004, 428(4):37-43.
    [112]Venter J C, Remington K, Heidelberg J F, Halpern A L. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science,2004,304(2):66-74.
    [113]陈新才.重金属在土壤-微生物界面相互作用的分子机制.浙江大学博士学位论文.2006.
    [114]Dedyukhina E G, Eroshin V K. Essential metal ions in the control of microbial metabolism. Proc. Biochem.1991,26:31-37.
    [115]Gadd G M. Fungal response towards heavy metals, In:Herbert, R.A., Codd, G.A. (Eds), Microbes in Extreme environments, pp.83-110, Academic Press, London.1986.
    [116]Perry J, Carol A. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol.2000,182:4899-4905.
    [117]Ana A, Patricia S, Martinez J L. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob. Agents Chemother.2000,44:1778-1782.
    [118]Trevors J T, Stratton C W, Gadd G M. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol.1986,32:447-464.
    [119]Gadd G M. Heavy metal accumulation by bacteria and other microorganisms. Experientia. 1990,46:834-840.
    [120]Silver S, Walderhaug M. Gene regulation of plasmid and chromosome determined inorganic ion transport in bacteria. Microbiol. Rev.1992,56:195-228.
    [121]Rosen P B. Bacterial resistance to heavy metals and metalloids. J. Biol. Chem.1996, 1:273-277.
    [122]Silver S, Phung L T. Bacterial heavy metal resistance:New surprises. Annu. Rev. Microbiol.1996,50:753-789.
    [123]Wilhelmi B S, Duncan J R. Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotech. Lett.1995,17:1007-1010.
    [124]Gadd C M. Interactions of fungi with toxic metals. New Phytol.1993,124,25-60.
    [125]Gadd G M. Metal transformations, in:Gadd, C.M. (Ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge,2001, pp.359-382.
    [126]Hiroki M. Effects of heavy metal contamination on soil microbial population. Soil Sci. Plant Nutr.,1992,38:141-147.
    [127]Rohit M, Sheela S. Uptake of zinc in Pseudomonas sp. strain UDG26. Appl. Environ. Microbiol.,1994,60:2367-2370.
    [128]Kunito T, Nagaoka K, Tada N, Saeki K, Senoo K, Oyaizo H, Matsumoto S. Characterization of Cu-resistant bacterial communities in Cu-contaminated soil. Soil Sci. Plant Nutr.,1997,43:709-717.
    [129]Wang L C, Michels P, Dawson C, Kitisakkul S, Baross J, Clark D. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol.,1997,63: 4075-4078.
    [130]Hassen A, Saidi N, Cherif M, Baudabous A. Resistance of environmental bacteria to heavy metals. Bioresour. Technol.,1998,64:7-15.
    [131]Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishino T. Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. strain HZM-1. Appl. Microbiol. Biotechnol., 2000,54:581-588.
    [132]Gilotra U, Srivastava S. Plasmid-encoded sequetration of copper by Pseudomonas pickettii strain US321. Curr. Microbiol.,1997,34:378-381.
    [133]Mark R. Bruins, Sanjay Kapil, Frederick W. Oehme. Pseudomonas pickettii:a common soil and groundwater aerobic bacteria with pathogenic and biodegradation properties[J] Environmental Research, Section B, Ecotoxicology and Environmental Safety,2000,47: 105-111.
    [134]Dietrich H.Nies.Heavy metal-resistant bacteria as extremophiles:molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles,2000,4:77-82.
    [135]Koo, S.Y., Kyung-Suk C. Characterization of a heavy metal-resistant and plant growth-promoting Rhizobacterium, Methylobacterium sp. SY-NiR1. Kor. J. Microbiol. Biotechnol.2007,35(1):58-65.
    [136]Le-Ni Sun, Yan-Feng Zhang, Lin-Yan He, et.al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology,2009,101:501-509.
    [137]Tangaromsuk J, Pokethitiyook P,Kruatrachue M, et.al. Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technology,2002,85:103-105.
    [138]Hyo-Bong H, In-Hyun N, Young-Mo K. Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium. Journal of Hazardous Materials,2007,140:145-148.
    [139]初娜.江西省德兴铜矿地区重金属元素的环境效应研究.中国地质科学院硕士学位论文,2008.
    [140]陈怀满,郑春荣,周东美,涂从,高林.德兴铜矿尾矿库植被重建后的土壤肥力状况和重金属污染初探.土壤学报,2005,42(1):29-36.
    [141]Wang Y P, Shi J Y, Lin Q, Chen X C, Chen Y X. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J. Environ. Sci.,2007,19: 848-853.
    [142]Rodniguez L, Ruiz E, Alonso-Azcarate J, Rincon J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manage.,2009,90: 1106-1116.
    [143]Abollino O, Aceto, M, Malandrino M, Mentasti E, Sarzanini C, Petrella F. Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere,2002,49:545-557.
    [144]Battels J M. Methods of Soil Analysis. Part Ⅲ. Chemical Methods. In:Sparks, D.L. (Ed.), Soil Science Society of America. Madison, Wisconsin, USA,1996, pp.1201-1230.
    [145]Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem.,1979,51:844-851.
    [146]Tessier A, Campbell P, Bisson M. Trace metal speciation in the Yamaska and St. Francois Rivers (Quebec). Can. J. Earth Sci.,1980,17:90-105.
    [147]Gummuluru S, Krishnamurti R, Naidu R. Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ. Sci. Technol.,2002,36:2645-2651.
    [148]Lane D J.16S/23S rDNA sequencing, In E. Stackebrandt and M.Goodfellow (ed.), Nucleic acid techniques in bacterial systematics[M]. John Wiley & Sons, Chichester, England,1991: 115-175.
    [149]Muyzer G, De Waal, E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.,1993,59:695-700.
    [150]奥斯伯F,布伦特R,金斯敦R E.精编分子生物学实验指南[M].北京:科学出版社,2001:16-34.
    [151]Yuko Takada Hoshino, Naoyuki Matsumoto. DNA-versus RNA-based denaturing gradient gel electrophoresis profiles of a bacterial community during replenishment after soil fumigation. Soil Biology & Biochemistry,2007,39:434-444.
    [152]Bhattacharya A, Routh J, Jacks G, Bhattacharya P, Morth M. Environmental assessment of abandoned mine tailings in Adak, Vasterbotten district (northern Sweden). Appl. Geochem., 2006,21:1760-1780.
    [153]汤中立,李小虎,焦建刚.矿山地质环境问题及防治对策.地球科学与环境学报,2005,27(2):1-4.
    [154]Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:a review of research and practice. Sci. Total. Environ.,2006,357: 38-53.
    [155]Li Y T, Becquer T, Dai J, Quantin, C, Benedetti M F. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils. Environ. Pollut.,2009,157:1249-1257.
    [156]Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J. Environ. Qual.,1997,13:372-376.
    [157]He Z L, Yanga X E, Stoffellab P J. Trace elements in agroecosystems and impacts on the environment. Review. J. Trace Elem. Med. Biol.,2005,19:125-140.
    [158]Pickering W F. Metal ion speciation-soils and sediments. Ore Geol. Rev.,1986,1:83-146.
    [159]The Cuong D, Obbard J P. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Appl. Geochem.,2006,21:1335-1346.
    [160]Moreno L, Neretnieks I. Long-term environmental impact of tailings deposits. Hydrometallurgy,2006,83:176-183.
    [161]国家环保总局.GB 15618-1995,《土壤环境质量标准》.
    [162]初娜,赵元艺,张光弟.德兴铜矿低品位矿石堆浸场与大坞河流域土壤重金属元素形态的环境特征.地质学报,2007,81(5):670-683.
    [163]赵元艺,张光弟,初娜.德兴铜矿(山)地质环境模型再建.西北地质,2006,25:531-534.
    [164]Marin B, Valladoon M, Polve M, Monaco A. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta,1997,342:91-112.
    [165]Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro Rive (Galicia, Spain) using chemometric analysis:a case study. Sci. Total Environ.,2004,330:115-129.
    [166]Chlopecka A. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in southwest Poland. Sci. Total Environ.,1996,188:253-262.
    [167]Whiteley J D. Metal distribution during diagenesis in the contaminated sediments of Dulas Bay, Anglesey, N. Wales, UK. Appl. Chem.,2003,18:901-913.
    [168]McLean J E, Bledsoe B E. Behaviour of metals in soils. USEPA Ground Water Issue. EPA/540/S-92/018.1992.
    [169]Karczewska A. Metal species distribution in top-and sub-soil in an area affected by copper smelter emissions. Appl. Geochem.,1996,11:35-42.
    [170]Wilson B, Pyatt F B. Heavy metal dispersion, persistence, and bioaccumulation around an ancient copper mine situated in Anglesey, UK. Ecotox. Environ. Safe,2007,66:224-231.
    [171]Davidson C M, Urquhart G J, Ajmone-Marsan F, Biasioli M, da Costa Duarte A, Diaz-Barrientos E, Grcman H, Hossack I, Hursthouse A S, Madrid L, Rodrigues S, Zupan M. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal. Chim. Acta,2006,565:63-72.
    [172]He Z L, Yanga X E, Stoffellab P J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol.,2005,19:125-140.
    [173]Covelo E F, Alvarez N, Andrade Couce M L, Vega F A, Marcet P. Zn adsorption by different fractions of Galician soils. J. Colloid Interf. Sci.,2004,280:343-349.
    [174]Alvarez J M, Lopez-Valdivia L M, Novillo J, Obrador A, Rico M I. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma,2006,132:450-463.
    [175]Lee S. Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma,2006,135:26-37.
    [176]Wang Y, Wei F S. Environmental Chemistry of Soil Elements. Beijing:China Environmental Science Press,1995,58-150.
    [177]Sahuquillo A, Lo'pez-Sanchez J F, Rubio R, Rauret G, Thomas R P, Davidson C M, Ure A M. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal. Chim. Acta,1999,382: 317-327.
    [178]Kaasalainen M, Yli-Halla M. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut.,2003,126:225-233.
    [179]Gleyzes C, Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures. Trend. Anal. Chem.,2002,21: 451-467.
    [180]Cappuyns V, Swennen R, Niclaes M. Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb-Zn mining:a combined geochemical and mineralogical approach. J. Geochem. Explor.,2007,93:78-90.
    [181]Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanette M L, Orio A A. Heavy metal speciation in the sediments of Northern Adriatic Sea-a new approach for environmental toxicity determination. In:Lekkas, T.D. (Ed.), Heavy Metal in the Environment,1985, pp: 454-456.
    [182]Adriano D C. Trace Elements in Terrestrial Environments:Biogeochemistry, Bioavailability and Risk of Metals. Springer-Verlag, New York,2001,866 pp.
    [183]Keller C, Hammer D. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environ. Pollut.,2004,131:243-254.
    [184]Maarit N, Ilse H, Kaisa W. Extraction and purification of DAN in rhizosphere soil samples for PCR-DGGE analusis of bacterial consortia. Journal of Microbiological Methods,2001,45(1): 155-165.
    [185]Brock T D. The study of microorganisms in situ:progress and problems. Symp. Soc Gene Microbiol,1987,41:1-17.
    [186]王慧,王远鹏,林琦,施积炎,陈英旭.应用PCR-DGGE研究铜冶炼厂附近根际土壤微生物生态变化.农业环境科学学报,2006,25(4):903-907.
    [187]付琳林,李海星,曹郁生.利用变性梯度凝胶电泳分析微生物的多样性.生物技术通报.2004,2:38-40.
    [188]Pal leroni NJ. Anton Van Leeuwenhoek,1997,72:3-19.
    [189]马悦欣,Carola Holmstrm, JeremyWebb.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,2003,23(8):1561-1569.
    [190]Amann R I, LudwigW, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev,1995,59 (1):143-169.
    [191]Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol.,1996,62(2):340-346.
    [192]Zhang T, Herbert H, Fang P. Phylogenetic diversity of a SRB-rich marine biofilm. Appl Microbiol Biotschnol.,2001,57:437-440.
    [193]邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性.环境科学,2005,26(2):172-176.
    [194]Abaye DA, Lawlor K, Hirsch P R, Brookes P C. Changes in the microbial community of an arable soil caused by long-term metal contamination. European Journal of Soil Science,2005, 56:93-102.
    [195]Atlas R M. Use of microbial diversity measurements to assess environmental stress. In Current Perspectives in Microbial Ecology, eds. M. J. Klug and C. A. Reddy, pp.540-545. American Society for Microbiology, Washington.1984.
    [196]Bernard L, Maron P A, Mougel C, Nowak V, Leveque J, Marol C, Balesdent J, Gibiat F, Ranjard L. Contamination of Soil by Copper Affects the Dynamics, Diversity, and Activity of Soil Bacterial Communities Involved in Wheat Decomposition and Carbon Storage. Applied and Environmental Microbiology,2009,23:7565-7569.
    [197]Concas A, Ardau C, Cristini A, Zuddas P, Cao G. Mobility of heavy metals from tailings to streams waters in a mining activity contaminated site. Chemosphere,2006,63:244-253.
    [198]Cooksey D A. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiology Review,1994,14:381-386.
    [199]David P H, Lejon V N, Sabrina B, Noemie P, Christophe M, Jean M F, Martins L R. Fingerprinting and diversityof bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiology Ecology,2007,61:424-437.
    [200]De La Iglesia R, Castro D, Ginocchio R, Van Der Lelie D, Gonzalez B. Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. Journal of Applied Microbiology,2006,100:537-544.
    [201]Fabienne G, Antonis C, Hauke H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal contaminated bulk and rhizosphere soil. Environmental Microbiology, 2003,10:896-907.
    [202]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review. Soil Biology & Biochemistry,1998,30: 1389-1414.
    [203]Giller K E, Witter E, McGrath S P. Heavy metals and soil microbes. Soil Biology & Biochemistry,2009,41:2031-2037.
    [204]Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environmental Microbiology,2003,5: 896-907.
    [205]Hui L I, Zhang Y, Kravchenko I, Hui X U, Zhang C. Dynamics changes in microbial activity and community structure during biodegradation of petroleum compounds:a laboratory experiment. Journal of Environmental Science,2006,19:1003-1013.
    [206]Huang Q Y, Shindob H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biology & Biochemistry,2000,32:1885-1892.
    [207]Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology,2006,72:1719-1728.
    [208]Kartal S, Aydin Z, Tokaliog L S. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials,2006,132:80-89.
    [209]Kot A, Namiesnik J. The role of speciation in analytical chemistry. Trends in Analytical Chemistry,2000,19:69-79.
    [210]Krzaklewski W, Pietrzykowski M. Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water, Air, and Soil Pollution,2002,141:125-142.
    [211]Li X, Thornton I. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry,2001,16:1693-1706.
    [212]Londry K, Sherriff B. Comparison of microbial biomass, biodiversity, and biogeochemistry in three contrasting gold mine tailings deposit. Geomicrobiology Journal,2005,22:237-247.
    [213]Mummey D L, Stahl P D, Buyer J S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology,2002,21:251-259.
    [214]Munshower F F. Practical handbook of disturbed land revegetation. Lewis Publishing, Boca Raton, FL.1994.
    [215]Monica O M, Julia W N, Raina M M. Characterization of a Bacterial Community in an Abandoned Semiarid Lead-Zinc Mine Tailing Site. Applied and Environmental Microbiology, 2008,74:3899-3907.
    [216]Moynahan O S, Zabinski C A, Gannon J E. Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restoration Ecology,2002,10: 77-87.
    [217]Pawloska T E, Chaney R L, Chin M, Charvat I. Effects of metal phytoextraction practices on the indigenous community of Arbuscular mycorrhizal fungi at a metal-contaminated landfill. Applied and Environmental Microbiology,2000,66:2526-2530.
    [218]Ranjard L, Lignier L, Chaussod R. Cumulative effects of short term poly-metallic contaminations on soil bacterial community structure. Applied and Environmental Microbiology, 2006,72:1684-1687.
    [219]Rowe O F, Sanchez-Espana J, Hallberg K B, Johnson D B. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology,2007,9:1761-1771.
    [220]Schippers A, Jozsa P G, Sand W, Kovacs Z M, Jelea M. Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiology Journal,2000, 17:151-162.
    [221]Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands:a critical review. Minerals Engineering,2006,19:105-116.
    [222]Sitaula B K, Almas A, Baken L R. Assessment of heavy metals associated with bacteria in soil. Soil Biology & Biochemistry,1999,65:489-498.
    [223]Walder I F, Chavez W X. Mineralogical and geochemical behavior of mill tailing material produced from lead-zinc skarn mineralization, Hanover, Grant County, New Mexico, USA. Environmental Geology,1995,26:1-18.
    [224]Wielinga B, Lucy J K, Moore J N, Seastone O F, Gannon J E. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings. Applied and Environmental Microbiology,1999,65:1548-1555.
    [225]Wong J W C, Ip C M, Wong M H. Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation. Environmental Geochemistry and Health,1998,20: 149-155.
    [226]Xiao S M, Xie X H, Liu J S. Microbial communities in acid water environments of two mines, China Environmental Pollution,2009,157:1045-1050.
    [227]Xie X, Xiao S, He Z, Liu J, Qiu G. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. Journal of Applied Microbiology,2007, pp. 1364-5072.
    [228]Young J P. Sex and the single cell:The population ecology and genetics of microbes. In Beyond the Biomass. Compositional and Functional Analysis of Soil Microbial Communities, eds. K. Ritz, J. Dighton and K. E. Giller, pp.101-107. John Wiley. Chichester.,1994.
    [229]Gupta U C, Gupta S C. Trace element toxicity relationships to crop production and livestock and human health:implications for management. Commun Soil Sci Plan.1998,29: 1491-1522.
    [230]Hu Q, Dou M N, Qi H Y, Xie X M, Zhuang G Q, Yang M. Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. Journal of Environmental Sciences,2007,19:1114-1119.
    [231]Ge H W, Lian M F, Wen F Z, Yun Y F, Jian F Y, Ming T. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mater,2009,162:50-56.
    [232]Karnachuk O V, Kurochkina S Y, Nicomrat D, Frank YA, Ivasenko DA, Phyllipenko EA, Tuovinen OH. Copper resistance in Desulfovibrio strain R2, Anton. Leeuw.2003,83:99-106.
    [233]Carrasco J A, Armario P, Pajuelo E, Burgos A. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol. Biochem.,2005,37:1131-1140.
    [234]Cha J S, Cooksey D A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci.,1991,88:8915-8919.
    [235]Delorme T A, Gagliardi J V, Angle JS. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil. Soil Sci. Soc. Am. J.,2003,67:1746-1752.
    [236]Diels L, Mergeay M. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol,1990,56:1485-1491.
    [237]Nies D H. Heavy metal-resistant bacteria as extremophiles:molecular physiology and biotechnological use of Ralstonia sp. CH34. Extromophiles,2000,4:77-82.
    [238]Goris J, De VP, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol,2001,51:1773-1782.
    [239]Yong J P, Jae J K, S LY, Eun Y L, So J K, Sung W K, Byung C L, Seog K K. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresour Technol, 2008,99:7458-7463.
    [240]Brim H, Heyndrickx M, De Vos P, Wilmotte A, Springael D, Schlegel HG, Mergeay M. Amplified rDNA restriction analysis and further genotypic characterisation of metal-resistant soil bacteria and related facultative hydrogenotrophs. Syst Appl Microbiol,1999,22:258-268.
    [241]Duan X J, Min H. Isolation, identification and preliminary studies on the resistance gene detection of a Cd2+ resisting bacterium. Acta scientiae circumstantiae,2004,1:154-158.
    [242]Alice S. Weissfeld, etal. Bacterial Nomenclature:How Organisms are Named and Renamed and Renamed. Clinical Microbiology Newsletter,2009,31:1.
    [243]Diego Bonatto, Fernanda Matias. Production of short side chain-poly[hydroxyalkanoate] by a newly isolated Ralstonia pickettii strain. World Journal of Microbiology & Biotechnology, 2004,20:395-403.
    [244]Ryan M P, Pembroke J T, Adley C C. Ralstonia pickettii:a persistent Gram-negative nosocomial infectious organism. Journal of Hospital Infection,2006,62:278-284.
    [245]Gilotra U, Srivastava S. Plasmid-encoded sequetration of copper by Pseudomonas pickettii strain US321. Curr Microbiol,1997,34:378-381.
    [246]Hyung-Yeel-Kahng, Armando M B. Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. Journal of Bacteriology,2000,182(5):1232-1242.
    [247]Margarete Bucheli-Witschel,Tina Hafner, etal Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate. Biodegradation 2009,20:419-431.
    [248]Fava F, Armenante P M, Kafkewitz D. Aerobic degradation and dechlorination of 2-chlorophenol,3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lett Appl Microbiol,1995,21:307-312.
    [249]欧倩,韦东,武波.丝氨酸生产菌的筛选及静息细胞培养系统中L-丝氨酸的合成.氨基酸和生物资源,2006,28(3):41-44.
    [250]李佳喜,顾继东.对苯二甲酸二甲酯及其异构体的好氧微生物降解.应用与环境生物学报,2004,10(6):782-785.
    [251]Rughia Idris, Melanie Kuffner, Levente Bodrossy, Markus Puschenreiter, Sebastien Monchy, Walter W. Wenzel, Angela Sessitsch. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Systematic and Applied Microbiology.,2006, (29):634-644.
    [252]Yabuuchi E, Yano I, Oyaizu H, Hashimoto H, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen nov. and comb nov., Sphingomonas parapaucimobilis sp.nov.,Sphingomonas yanoikuyae sp.nov.,Sphingomonas adhaesiva sp.nov.,Sphingomonas capsulatecomb nov., and two genospecies of genus Sphingomonas. Microbiol Immunol,2: 99-119.
    [253]Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria:emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Bacteriol,1993,16:2227-2238.
    [254]Baraniecki C A, Aislable J, Foght J M. Characterization of Sphingomonas sp. Ant 17,an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microbial Ecol,2002,1: 44-54.
    [255]Mergeay M, Monchy S, Vallaeys T, Auquier V, Bentomane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals:towards a catalogue of metal-responsive genes. FEMS Microbiol Rev,2003,27: 385-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700