尾砂充填料流变特性和高浓度料浆输送性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于工程流体力学、流变学、两相流输送理论等相关理论,利用试验研究、理论分析、数值模拟等研究方法,针对某矿山高浓度尾砂胶结充填料浆自流输送技术应用的实际问题,对高浓度尾砂胶结充填料浆进行系统、深入研究,主要研究内容和结论如下:
     (1)本文研究高浓度充填料浆的主要对象是某矿山分级尾砂或全尾砂作为骨料的高浓度料浆,对尾砂进行物理化学性质研究做为研究料浆性能的基础,从尾砂的物理化学性质、粒度分布、沉降性能、渗透性能等方面进行研究。尾砂的物化性能稳定,沉降性较好而渗透性较差,分级尾砂粒度粗细搭配较全尾砂更为合理。
     (2)选取灰砂比和浓度等因素多水平进行配合比全面试验,从而研究尾砂料浆配合比对所形成充填体强度的影响。以试验数据为基础,采用极差分析和方差分析进行充填体影响因素的定性和定量分析,从而为充填体质量控制措施提供依据。经拟合分析获得了满足充填采矿工艺要求的最佳灰砂比。
     (3)为更准确、更有效地测取管道输送参数,本研究设计并重建了长沙矿山研究院环管试验系统。在高浓度料浆环管试验开始前,本文对不同浓度料浆的流动性、泌水性、沉降性开展研究,确定了高浓度料浆的浓度范围,选取了全尾砂和分级尾砂各3个浓度进行环管试验,测得了众多不同工况条件下的管道阻力损失数据,以此为基础对影响阻力损失的各因素进行分析,从而获悉确保高浓度充填系统稳定性的关键因素。
     (4)对多种流体模型的研究,确定宾汉模型基本符合高浓度料浆的流变模型。基于环管试验的管道阻力损失数据,结合理论分析进行数据处理,确定不同种类高浓度料浆的流变参数,同时证实了高浓度充填料浆对宾汉模型的适用性。对各浓度料浆的流变参数进行拟合分析,结合流变模型和流体力学等理论,获得经验公式。分析自流输送系统,获得自流输送系统倍线计算公式。并将这些公式应用于具体矿山高浓度充填料浆自流输送的适用性研究。
     (5)对分级尾砂高浓度料浆进行研究,表明分级尾砂一定配合比的高浓度料浆具有良好的流动性和较少的泌水和沉缩特征,说明级配合理的分级尾砂,也可实现高浓度充填。且其输送性能不逊色于全尾砂,而形成充填体质量则优于全尾砂。
     (6)应用FLUENT软件建立某矿山实际管网的全尺寸管道模型,通过数值模拟分析高浓度料浆在实际管网中输送的流动状态细节和压力分布情况,从而为优化管道布置和运营提供参考。
This article based on the engineering fluid dynamics, rheology, two-phase fluid pipeline transportation theory and so on. The integrated use of literature search, laboratory testing, mechanical analysis and other means were performaced to solve the practical issue of a mine,about high-density slurry gravity flow pipeline transportation backfill system. Aiming at high-density cemented backfilling slurry, this paper put up systematic and deep research to theory and technology. Main contents and main conclusions of this paper are summarized as follows:
     (1) The thesis is focused on the discussion of high-density cemented backfilling slurry of the classified tailings 0r the unclassified tailings. We analysed the physical and chemical properties of the tailings form the several aspects such as material physicochemical property, particle size distribution, settle ability and permeability. It’s the foundation and the Premise of backfilling slurry study. The tailings have stable physical and chemical properties, good settle ability and poor permeability. The particle size distribution of the unclassified tailings is more appropriate.
     (2) The study of influence factors of filling body intensity is by performing a series of ratio tests. The search for control measures of filling body intensity bases on quantitative analysis of tests data. By curve fitting analysis, optimal ratio is presented.
     (3) Using round-pipe experiment system of Changsha Institute of Mining Research,we get some friction resistance losses under various operating conditions and research the main factors that determinates the pipe conveying parameteer scope,to find the critical factor of the stability and reliability of high-density slurry gravity flow pipeline transportation backfill system.
     (4) The study of several fluid model determine which high-density cemented backfilling slurry is. The research based on round-pipe experiment data of resistance losses resistance losses, analysed the rheological properties of high-density cemented backfilling slurry and get experiential formulas through academic analysis.We get the formula for calculating times of line by analysing gravity flow system.These formulas were applied to feasibility study of mines gravity flow system.
     (5) Research of the classified tailings high-density backfilling slurry suggests that the slurry has good flow property, little bleeding and subsiding. It says that classified tailings with a suitable particles grade match can be applied to high density filling. In addition its transportation performance is not inferior the unclassified tailings and achieve better filling mass quality.
     (6) The article developly utilized software FLUENT to established model of a mine actual pipe systerm and to numerical damage simulate the high-density cemented backfilling slurry gravity flow in the pipe systerm. Simulation results show the pressure distribution and liquid status of pipe systerm, provide reference for optimization arrangement of pipline and system operation.
引文
[1]周爱民.矿山废料胶结充填[M].北京:冶金工业出版社,2007,1~15
    [2]古德生,李夕兵,等.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006,1~12
    [3] BLUHM S., and BIFFI M., 2001, Variation in ultra-deep, narrow reef stoping configuration and the effects on cooling and ventilation, The Journal of The South African Institute of Mining and Metallurgy, v. 101,.127~134
    [4] Singer D A, Mosier D L. A review of regional mineral resource assessment methods. Economic Geology, 1981, v. 76, p. 1006~1015
    [5]刘同有等.充填采矿技术与应用[M].北京:冶金工业出版社,2001
    [6]李向东.湘西金矿胶结充填材料研究及充填体稳定性分析[D].长沙:中南工业大学,1999.1~10
    [7]王新民.基于深井开采的充填材料与管输系统的研究[D].中南工业大学博士学位论文,2006,10~11
    [8] C.W. Hirt and J.M. Sicilian, A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes, Proc. Fourth International Conf. Ship Hydro.,National Academy of Science, Washington, DC, September 1985
    [9]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术[J].中国矿业,2001,10(6):47~50
    [10]余斌,张绍才,李政等.高浓度尾砂充填料浆管道输送性能试验[J].河北冶金,2003,3:7~10
    [11]许毓海,许新启.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,2004,13(3):16~19
    [12] R. Barrett, et al., Templates for the Solution of Linear Systems Building Blocks for Iterative Methods.1994
    [13]周爱民等.矿山充填技术的发展及其新概念.第四届全国充填采矿会议论文集.昆明:中国有色金属采矿学术委员会,1999,15
    [14]杨立根,姚中亮.赤泥浆体泵送胶结充填采矿方法与研究[J].矿业研究与开发,1996,16(1):18~22
    [15] PIPER, P S, RYDER J A. Assessment of backfill for regional support in deep mines. Backfill in South African Mines. Johannesburg, S.AIMM, 1988.111~136
    [16] HELMS W. The development of backfill techniques in Germain metal mines during the past decade. Minefill 93. Johannesburg, SAIMN, 1993
    [17] BOLDT C M, ATKINS L A, JONES F M. The backfilling research being conducted by the U.S. Bureau of Mines. MINEFJLL 93. Johannesberg, SAIMM, 1993. 389~395
    [18]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002.
    [19]钱鸣高,许家林.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343~348
    [20] MAVROV V, ERWET, BIOCHERC, et al. Study of new integrated processes combining adsorption membrane separation and flotation for heavy metal removal from waste water[J]. Desalination, 2002,157(1~3): 97~104
    [21] C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys., 1981, 201:39
    [22] V. Yakhot and S.A. Orszag, Renormalization Group Analysis of Turbulence. I. Basic Theory, J. Scientific Computing, 1986,1:1~51
    [23] F.H. Harlow and P.I. Nakayama, Turbulence Transport Equations, Phys. of Fluids, 1967,10:2323
    [24] W. Rodi, Turbulence Models and Their Application in Hydraulics - A State of the Art Review, International Association of Hydraulic Research publication, June 1980.
    [25]刘同有.中国有色矿山充填技术的现状及发展[J].中国矿业,2002, 11(1):28~34
    [26] Golder Assouates. Laboratory Evaluation and Flow Loop Teoting of Canningtor Project Tailings for Suitability as a Paste Backfill.1996
    [27]程金桥. 90年代末我国胶结充填技术展望[J].新疆有色金属,1996,6(2):11~13
    [28]郑德雪.铜精矿远距离自流输送的应用研究[J].金属矿山,2002,7(1):43~45张志雄.大红山铜矿自流输送充填系统输送参数的确定[J].有色金属设计,1999, 26(1):7~10
    [29] HINDE .A.L., KRMERS.C.P., KRUGER. F.J.A. LAMOS A.W., NAMI. M.南非深部黄金矿山充填技术发展的过去、现在和将来[A],1989~1990年度国际深井采矿大会论文选集[C].北京:北京有色冶金设计研究总院编译,1993. 71~80
    [30]李云武.膏体泵送充填技术在金川二矿区的试验研究及应用[J].有色金属(矿山部分),2004,56(5):9~11
    [31]吴飞.武山铜矿北矿带深部采矿方法探讨与研究[J].有色金属(矿山部分),2002,54(6):2~3
    [32]袁世伦,胡国斌,杨承祥.金属矿山充填技术的回顾与展望[J].江西有色工程,2004,18(3):11~15
    [33]靳社英.全尾砂分类充填技术的研究与应用[J].黄金,2004,25(8):21~24
    [34]王来军,孙涛,陈华珍.焦家新型尾砂胶结材料在低配比条件下固化特征初探[J].黄金,2006,27(10):24~26
    [35]李向东,郑伯坤等.大红山铁矿Ⅰ号铜矿带深部150万t/a工程充填试验研究报告[R].长沙:长沙矿山研究院,2011.
    [36]中华人民共和国交通部.公路土工试验规程(JTG E40-2007),2007
    [37]姜凡均,何远富.黄岗矿业公司I矿区充填试验研究报告[R].北京:长沙矿山研究院,2008
    [38]刘同有等.充填采矿技术与应用[M].北京:冶金工业出版社,2001:17~18.
    [39]刘可任.充填理论基础[M].北京:冶金工业出版社,1982:4~19.
    [40]李向东等,万宝源矿业有限责任公司充填材料试验研究报告[R].长沙:长沙矿山研究院,2008.
    [41]长沙矿山研究院,获各琦铜矿充填材料试验研究报告[R].长沙:长沙矿山研究院,2008.
    [42]宋功业,绍界立.混凝土工程施工技术与质量控制[M].北京:中国建材工业出版社,2003.
    [43]文梓芸,钱春香,杨长辉.混凝土工程与技术[M].武汉:武汉理工大学出版社,2004.
    [44]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002.
    [45]长沙矿山研究院.低廉充填胶凝材料的开发与应用研究[R].长沙:长沙矿山研究院,华锡集团铜坑矿.
    [46]孙海珍,刘宝友等.概率与数理统计[M].北京:中国铁道出版社,2003.
    [47]黄润龙.数据统计与分析技术—SPSS软件适用教程[M].北京:高等教育出版社,2004.
    [48]梁冯珍,宋占杰,张玉环.应用概率统计[M].天津:天津大学出版社,2002.
    [49]飞思科技产品研发中心.MATLAB 7基础与提高[M].北京:电子工业出版社,2006.
    [50]刘同有等.充填采矿技术与应用[M].北京:冶金工业出版社,2001:79~107
    [51]周爱民.矿山废料胶结充填[M].北京:冶金工业出版社,2007:92~105
    [52]姚中亮等.全尾砂结构流体胶结充填及无间柱分层充填采矿法报告[R].长沙:长沙矿山研究院,2006.
    [53]尹慰农等.凡口铅锌矿高浓度全尾砂胶结充填新工艺和装备的研究报告[R].长沙:长沙矿山研究院,1991
    [54]刘同有等编著.充填采矿技术与应用[M].北京:冶金工业出版社,2001.75~76,147~149
    [55]贺礼清,工程流体力学[M].北京:石油工业出版社,1998.135~160
    [56]周爱民.矿山废料胶结充填[M].北京:冶金工业出版社,2007:92~108
    [57] WINGROVE ,A.C. Engineering research and development with respect to JCI backfill operations. Backfill in South African Mines, Johannesburg, SAIMM, 1998: 525~546
    [58] GILCHRIST, I.C.R. Predicting the values of flow parameters for the design of pipelines conveying backfill slurries. Backfill in South African Mines Johannesburg, SAIMM, 1998:235~261
    [59] DEDEGIL, J. Drag Coefficient and Settling velocity of Particles in Non-Newtonian Suspensions International Symposium on Slurry-Flows. American Society of Mechanical Engineers, Fluid Engineering Division Vol 38.89~15
    [60]韩占忠,王敬,兰小平.FLUENT—流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [61]王瑞金,张凯,王刚.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007
    [62]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [63] C.W. Hirt and J.M. Sicilian, A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes, Proc. Fourth International Conf. Ship Hydro., National Academy of Science, Washington,DC, September 1985.
    [64] C.W. Hirt, Simplified Solution Algorithms for Fluid Flow Problems, Proc. Numerical Methods for Partial Differential Equations Seminar, University of Wisconsin, Academic Press, 1978.
    [65] C.L. Bronisz and C.W. Hirt, Flows with Density Stratification: AnIllustration of Higher Order Scalar Transport, Flow Science Technical Note #32, November 1991
    [66]王新民,基于深井开采的充填材料与管输系统的研究[D].长沙:中南大学,2005
    [67]王佩勋.矿山充填管道磨损经验分析[J].有色矿山,1998,8(1):14~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700