加热炉加热过程的智能优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢坯加热是轧钢生产过程中一个重要的环节,直接影响着产品质量、产品成本和生产设备安全等多项生产过程指标。因此,建立先进且实用的加热炉控制系统,对于钢铁企业来说,有着十分重要的现实意义。
     目前,轧钢企业的加热炉通常为推钢式或步进式加热炉,其主要控制目标是加热炉生产出的钢坯在满足轧制工艺要求的前提下有高的钢坯加热效率,节能降耗,降低企业成本,减少钢坯表面的氧化烧损和脱碳,延长设备的使用寿命。由于轧钢加热炉是一个比较复杂的工业系统,其中包括化学、热力学和物理上的各种过程,其控制具有大滞后、多变量、强耦合、非线性、大惯性等特点,对其进行准确的建模非常困难,而且炉内钢坯温度分布不能直接测量、外界扰动因素多,加热过程受多种生产工艺因素的制约,因此采用传统的优化控制方法难于收到理想的效果。目前,大部分加热炉的生产还只能依靠操作人员凭经验调节底层控制回路的设定值,当工况发生变化时,总是出现过氧燃烧或缺氧燃烧现象,既浪费了大量的能源,又降低了钢坯的加热质量。针对以上情况,本文做了如下工作:
     (1)钢坯加热工艺的制定。以金属学原理为基础,分析了金属的加热温度、加热速度和加热制度,结合鞍钢厚板厂的生产实际,对加热钢坯进行了分类,对每一类钢种在炉内各段的加热温度和加热速度分别进行了设定。
     (2)加热炉控制策略的设计。根据控制系统自身的特点,同时结合生产实际,对加热炉的炉膛温度、煤气与空气流量及其炉膛压力分别设计一套控制系统。
     (3)加热炉炉温的优化设定。以加热炉的能耗最小、钢坯氧化烧损最小、钢坯断面温差最小为约束条件,建立优化目标函数,并采取优化算法对该函数进行求解,获得最优炉温分布曲线,同时根据专家经验知识对最优炉温分布进行修正,以满足实际生产过程的要求。
     (4)采用耐高温温度测试记录装置对Q345A钢的加热过程进行在线测试,检验加热炉控制系统的运行状况,同时获得钢坯温度随时间变化的曲线,为加热制度的优化提供了可靠的数据支持。
Heating slab process is an important part in steel rolling production process, which not only affects directly product performance, but also influences product cost and safety of production equipment in production process. So it is very important to steel makers by using advanced control means.
     At present, most of furnace is pusher-type or walking beam type, the main content of furnace control system is on the premise of that slab met the demands of rolling can be produced in the furnace, to improve heating efficiency of slab, to save energy consumption, to reduce oxidation burning loss and decarburization of slab surface, and to prolong service life of equipment. But furnace is a typical complex industry controlled object, in which all kinds of chemical, thermodynamic and physical process are contained. Furnace system has characteristics of pure hysteresis, multivariable, compact coupling, nonlinear and big inertia. It is very difficult to make an accurate mathematical model. The temperature in furnace can not be measured directly because of much disturbance outside. Heating process is constrained by many kinds of production technology factor. So it is difficult to reach a satisfied controlled effect by applying classical optimization control method. Now, most production of furnace only depends on operators by experience to control base loop set-point value. When operating condition is changed, under heating or overheating will occur, which not only wastes resource, but also decreases production quality. According to the above things, main work is done in the paper as follows.
     (1) A heating process was set. Based on the metallography principle, analyzed the metal heating temperature, heating speed and heating schedule, combined with the Heavy Plate Plant of Anshan Iron and Steel production situation, classified the reheating billet, each type of steel’s reheating temperature and heating rate in the furnace are set.
     (2) Designed an automatic control strategy of reheating furnace. According to the characteristics of control system and the production condition of reheating furnace, the control system of furnace temperature, gas and air flow rate and pressure of furnace were respectively designed.
     (3) The optimization of the heating furnace temperature was set in this paper. In order to realize minimum energy consumption, minimum billet oxidation burning loss, minimum billet temperature difference between billet surface and center, the optimal target function was established, the function was solved by optimization algorithm. In the last we got the optimal temperature distribution curve. According to the furnace operators’experience and knowledge, the optimal furnace temperature distribution was modified, to meet the needs of practical production process.
     (4) Using high thermo stability temperature testing device, we actually measured the on-line temperature of Q345A steel in the reheating process, to check the running state of automatic control strategy. Meanwhile, the steel temperature changing curve was obtained, which could provide dependable data for the optimizing of reheating schedule.
引文
[1].胡维安,陈涛,姚银萍.“两型社会”背景下的钢铁企业困境与路径选择[J].企业导报, 2011, 1(上): 51--52.
    [2].李连诗.我国轧钢生产电耗分析[J].钢铁,1989,24(12):34--38
    [3]. G.K. Lausterer, W.H.Ray,H.R.Martens.Real time distributed parameter state estimation applied to two dimension heat ingot [J].Automatica, 1988, 14(4):335--344
    [4]. H.J.Wick.Estimation of ingot Temperatures in a soaking pit using an extended kalman filter, Preprints papers for IFAC 8th triennial World Congress[J]. Congress.Kyoto,1981.VⅦ:94--99
    [5]. T. J.Mcdonald, R. Velan. Use of level controls for optimizing a reheat furnace [J]. Iron & steel engineer, 1988,65(8):57--61
    [6].金兹波格编著.高精度板带材轧制理论与实践[M].北京:冶金工业出版社,2000:230--241
    [7].孙一康编著.带钢热连轧的模型与控制[M].北京:冶金工业出版社,2002,6--8
    [8].汪详能.现代带钢连轧机控制[M].沈阳:东北大学出版社,1996,65
    [9]. T.Ishii,S,Wada,M.Miyokawa,et a1.Recent technology in hot strip milt[J] .Proceedings of the 7th International Conference on Steel Roiling, Tokyo:The iron and steel institute of Japan,1998:711--716.
    [10]. F.P.Nicklaus,L.Dieter,S.Gunter,et a1.Application of neural networks in roiling mill automation[J].Iron & Steel Engineer,1995,72(2):33--66
    [11]. Y Z.Lu.Meeting the challenge of intelligent system technologies in the iron and steel industry[J].Iron& Steel Engineer,1996,73(9):139--149
    [12].温治.连续加热炉计算机控制技术综述[J].金属世界,2004,1:45--48
    [13].刘智勇,苏琮.纯滞后工业系统的复合模糊控制[J].自动化仪表,1998,19(5) :24--26
    [14].杨永耀,吕永哉.加热炉动态优化控制策略的开发[J].信息与控制,1987, 16(5):15--19
    [15].吴晓锋,李恩伟,都锡才.神经网络在加热炉自控系统中的应用[J].冶金自动化, 1997,21(4):32--34
    [16].王中杰,柴天佑,邵诚.基于RSF神经网络的加热炉钢温预报模型[J].系统仿真学报,1999,11(3):181--183
    [17].肖兵,叶乐年.基于趋势分析的模糊智能燃烧控制[J].华南理工大学学报,1998,26(5):36--39
    [18]. Misaka, J., Takahashi, R.. Computer Control of a Reheat Furnace at Kashima Steel Work’s Hot Strip Mill. Iron & Steel Engineer, 1982,59(5):51--55
    [19]. Pike, H. E., Citron, S. J.. Optimization Study of a Slab Reheating Furnace. Automatic, 1970,6(1):41--50
    [20]. Wick, H. J.. Estimation of Ingot Temperature in a Soaking Pit Using an Extented Kalman Filter. Preprints for IFAC 8th Triennial World Congress, Koyto,1981,9:94--99
    [21]. A. Kusters, van Ditzhuijzen, G.A.J.M..MIMO System Identification of a Slab Reheating Furnace. Proceeding of the Third IEEE Conference on Control Applications,1994, 3:1557--1563
    [22].陈永,张卫军,陈海耿.炉子优化控制中真实目标函数的研究[J],节能,1997,No6,7--9
    [23].梁军.自适应控制系统的鲁棒性研究及应用[D]:[浙江大学博士学位论文].浙江:浙江大学,1993
    [24].杨宗山,陆宗武.轧钢加热炉最优Q-P供热模型的研究[J],冶金自动化,1992,No6,7~10
    [25].陈南岳.现代加热炉过程控制技术及数学模型[J].冶金自动化, 1982, 5(1):12--22
    [26].范章珠,施宏.轧钢炉窑计算机控制的现状及我国推广应用中的几个问题[J],冶金自动化,2001,15(6),3--10
    [27]. Yoshitani, N., Ueyama, T., Usui, M.. Optimal Slab Heating Control with Temperature Trajectory Optimization. IECON’94., 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994(3):1567--1572
    [28].顾根香译.加热炉最佳曲线的计算和优化控制[J],国外钢铁,1998,No3,118--122
    [29].金仁杰、陈海耿、宁宝林.连续加热炉数学模型控制中的炉温决策方法[J].钢铁,1995,30(1):67--71
    [30].王中杰,柴天佑,邵诚.加热炉多模式动态优化控制策略[J].控制与决策,1999,14(5):465--468,472
    [31].马太.步加热炉HMI控制系统仿真研究[D]:[东北大学硕士学位论文].沈阳:东北大学,2009
    [32].王中杰,柴天佑,邵诚.基于RBF神经网络的加热炉钢坯温度预报模型[J].系统仿真学报, 1999,11(3):181--183
    [33].张卫军,聂宇宏,赫冀成.加热炉控制中炉温模糊决策[J].中国有色金属学报,1998,第8卷,增刊2:712--714
    [34].张卫军,聂宇宏,卜庆才等.加热炉炉温制度的多目标模糊优化方法[J].中国有色金属学报1998,第8卷,增刊2:715--717
    [35].刘建伟,徐兴元,庞京玉等.专家控制系统研究进展[J].微型机与应用, 2005,24(11):4--6
    [36].吴小芳.步进梁加热炉炉温控制与优化[D]:[上海交通大学硕士学位论文].上海:上海交通大学,2007
    [37].蔡乔方主编.加热炉[M].北京:冶金工业出版社,2002,126--127
    [38].王子兵,赵斌,张素娟等[J].轧钢加热炉最佳加热工艺制度的讨论.冶金能源, 2008,27(5):32--36
    [39].施仁.自动化仪表与过程控制[M].北京:电子工业出版社,1990,198--204
    [40].左为恒,王彦.燃气加热炉燃烧控制方法的研究[J].热能动力工程,2010,25(5):543--546
    [41].邵裕森,戴先中编著.过程控制工程[M].北京:机械工业出版社,2000:178--188
    [42].邵裕森编著.过程控制及仪表[M].上海:上海交通大学出版社,1995 :213--219
    [43].唐乐平.步进式加热炉的双交叉限幅燃烧控制系统[J].钢铁,1996,31(9): 57--59
    [44].王锦标,方崇智编著.过程计算机控制[M].北京:清华大学出版社,1991:263--271
    [45].周桂锋.交叉限幅控制在加热炉中的应用[J].自动化与仪器仪表,2008,(5): 24--29
    [46].陈友文,柴天佑.基于双交叉限幅PID-RBR的加热炉温度控制[J].东北大学学报(自然科学版),2010,31(9):1217--1219
    [47].李来春,邓彩霞,杨明极.变偏置双交叉限幅燃烧控制系统设计及应用研究[J].热能动力工程,2003,3(18):183--186
    [48].朱齐丹,张妤,周宏威等.变偏置双交叉燃烧控制在船用增压锅炉装置的应用[J].船舶工程,2009,31(1):15--18
    [49].赵渭国.连续加热炉炉压控制方法研究[J].冶金能源,2001,20(1):48--50
    [50].李立强,谷硕.加热炉炉膛压力前馈控制优化技术[J].冶金自动化,2010,S2:185--186
    [51].中国金属学会热轧板带学术委员会编著.中国热轧宽带铜及生产技术.北京:冶金工业出版社.2002:325--330
    [52].李义科,王贤.加热炉计算机控制系统的研究与开发—铜坯加热控制[J].工业加热,2001,(4):1--4
    [53].王中杰,柴天佑,邵诚.加热炉多模式动态优化控制策略[J].控制与决策,1999,14(5):465--468
    [54]. Ishii T.Wada S.Miyokawa M.et al..Recent technology in hot strip mill[C] Proceedings of the 7th International Conference on Steel Rolling. Tokyo:The iron and steel institute of Japan,1998:711--716
    [55]. Zou Tao, Liu Hongbo, Li Shaoyuan.A practical predictive control algorithm for integral processes and a case study in boiler level system[C].High Technology Letter,2005,11(3):263--267
    [56]. Han-Xiong Li and Shouping Guan, Supervising a DCS- Controlled Batch Process, Hybrid Intelligent Control Strategy[J].IEEE Control Systems Magazine,June 2001,67--75
    [57]. Carpenter, D.G., Proctor, C.W. Temperature Control and Optimization of a Reheat Furnace Using a Distributed Control System[J]. Iron &Steel Engineer,1987,64(8):44--49
    [58]. Hofscher, R.A., Harding, J. M.. Distributed Process Control System for Bloom Reheating Furnaces[J]. Iron &steel Engineer,1987,64(3):23--24
    [59].康国仁.加热炉计算机控制数学模型[D]: [东北大学硕士学位论文] .沈阳:东北大学,1989:32--35
    [60].巢海,王伟,李小平.步进梁加热炉钢温预报的数学模型[J].东北大学学报,1998,19(5):499--501
    [61].张翠英,田建艳.基于智能控制的钢坯加热炉炉温综合控制策略[J].中北大学学报(自然科学版),2007,28(2):125--127
    [62].王耀南编著.智能控制系统-----模糊逻辑?专家系统?神经网络控制.长沙[M].湖南:湖南大学出版社,1996,54 --56
    [63].蔡自兴,徐光佑.人工智能及其应用[J].北京:清华大学出版社,1996,344--348
    [64]. Wang Z. J., Wu Q. D., Chai T. Y. Optimal-setting control for complicated industrial processes and its application study[C].Control Engineering Practice,2004,12:65--74
    [65].乌江津.加热炉优化控制方法与仿真系统研究[D]:[大连理工大学硕士学位论文] .大连:大连理工大学,2006,24
    [66].杨永耀,吕永哉.加热炉动态优化控制策略的开发[J].信息与控制,1987,16(5):15--19
    [67].李柠,王锡淮,李少远等.步进加热炉炉温建模与优化仿真系统设计[J].系统仿真学报,2001,13(3):361--363
    [68].张凯举.钢铁冶金加热过程建模与综合优化控制方法的研究[D]:[大连理工大学博士学位论文] .大连:大连理工大学,2004,67--69
    [69].刘新忠,韩静涛,余万华.步进式加热炉炉内钢坯温度动态测试[J].冶金能源,2006,25(5):54--57
    [70].王敏,周继良,闫智平等.厚规格板坯加热温度均匀性测试研究[J].工业炉,2011,33(3):4--7
    [71].于峰,乔馨,张建.船板在线温度测试与分析[J].鞍钢技术,2011,3:45--48
    [72].刘占增,蒋扬虎,曾汉生等.加热炉内钢坯的在线温度测试与结果分析[J].钢铁研究,2006,34(6):21--24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700