熔融沉积成型有限元模拟与工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔融沉积成型(Fused Deposition Modeling,FDM)是一种近几十年发展起来的快速成型制造技术。随着现代工业的发展,熔融沉积成型被大量用在新产品研发、快速模具制作、医疗器械的设计开发和人体器官的原型制作等方面。熔融沉积成型成为快速成型制造技术的一个重要发展方向,然而,这种发展由于FDM成型零件的精度和强度较低而受到了限制。因此,本文研究熔融沉积成型数值模拟和工艺优化,以期提高FDM产品的精度,这不仅具有重要的理论意义,同时还具有重要的工程实用价值。
     分析了熔融沉积成型产品精度的影响因素,它们分别是成型加工的机器误差、CAD模型误差、切片引起的误差、喷丝宽度引起的误差和材料的收缩引起的误差等,提出了提高熔融沉积成型产品零件精度的措施。
     研究了熔融沉积成型温度场有限元数值模拟技术。在考虑了熔融沉积成型本身特点的基础上,作了合理的假设,建立了熔融沉积成型过程温度场的分析模型;在考虑了相变潜热和随温度变化的材料的热物性参数条件下,对熔融沉积成型的温场进行了模拟分析,得出了FDM温度场分布并作了具体分析,对于熔融沉积成型热过程理论分析和后续的研究有一定的参考价值。
     研究了熔融沉积成型应力场有限元数值模拟技术。在基于FDM温度场的模拟结果的基础上,采用间接热力耦合的方法,建立了熔融沉积成型过程应力场的分析模型;应用APDL(ANSYS Parametric Design Language)语言编制了模拟程序,实现了对熔融沉积成型应力场的模拟,得出了一些有益的结论。
     研究了基于小波神经网络的熔融沉积成型产品精度预测技术。分析了人工神经网络的原理和具体算法,在此基础上建立了基于BP神经网络的熔融沉积成型产品精度预测模型;在考虑到BP网络缺点的基础上,提出把小波分析理论和人工神经网络结合起来,克服了BP神经网络难以收敛和训练速度比较慢的一些缺点,建立了基于小波神经网络的熔融沉积成型产品精度预测模型,运用M语言编程,在MATLAB环境下编译,开发了基于小波神经网络的熔融沉积成型产品精度预测子系统,并进行了实际应用。
     研究了熔融沉积成型工艺参数优化技术。分析了遗传算法及其基本操作,在基于小波神经网络的熔融沉积成型产品精度预测子系统的基础上,开发了基于遗传算法优化子系统,并针对熔融沉积成型进行了具体的工艺参数优化。
     开发和完善了熔融沉积成型软件系统。在研究FDM快速成型的分层处理算法和智能化支撑添加算法的基础上,应用面向对象的语言VC++2005.net进行编程,在课题组成员前期研究的基础上,完善了熔融沉积成型软件系统,本软件可以对任意三维零件的STL模型进行切片处理和自动添加支撑,选择了数个零件模型,在转化为STL模型之后输入本软件系统,进行分层处理和添加支撑,最后输出CLI文件在快速成型机上进行了加工,结果证明本软件运行可靠,有投入实际生产的应用价值。
Fused deposition modeling (FDM) is one of the technologys on rapid prototyping and manufacturing (RPM) that develops in recent years. With the development of modern industry, fused deposition modeling is widely used in developing new product, rapid mold manufacting, design and development of medical devices, making prototype of human organs and so on. Fused deposition modeling becomes a important direction of development. However, the development is limited by the lower accuracy and intersity parts on FDM. Therefore, this paper studies the numerical simulation and process optimization in fused deposition modeling to improve the accuracy on FDM parts. It not only has important theoretical significance, but also has important practical value on engineering.
     The influencing factors of the accuracy on FDM parts are analysed. They are the machine error on modeling and manufadting, the error on CAD model, the error on slicing, the error on spinneret width, the error on materials shrink and so on. This paper puts forward some methods which can improve the precision and surface quality of parts.
     The finite element simulation technology of temperature field on FDM is studied. Based on the process characters of FDM, suitable hypothesis are introduced. The model of finite element simulation of temperature field on FDM is founded. Considering the latent heat of phase change and the theremal physical property parameters varied with the temperature's changing, the temperature field on FDM is analysed and simulated. The distribution of temperature field is obtained and the concrete analysis ars discussed. The conclusions have some referenced value on theoretical analysis of thermal process on FDM and following research.
     The finite element simulation technology of stress field on FDM is studied. Based on the simulation of temperature field on FDM, the model of finite element simulation of stress field on FDM is founded through thermodynamic couple method indirectly. The simulation program is compiled by language APDL (ANSYS Parametric Design Language). The simulation analysis of stress field on FDM is completed and some profitable conclusion is given.
     The parts'precision predidtion technology based on wavelet neural network (WNN) of stress field on FDM is studied. Based on analyzing the principle of artificial neural network and its concrete algorithm, the pretiction model of FDM parts is founded by BP neural network. Concidering the defect of BP neural network, the paper presents a new method that combines the wavelet with ANN in order to overcome some defect on ANN which convergence is difficult and its training speed is slow. Then, the prediction model of FDM parts based on wavelet neural network (WNN) is founded. The subsystem of FDM parts'prediction based on wavelet neural network (WNN) is developed by M language and compiled on MATLAB. It is practically applied on FDM.
     The process parameter optimization technology based on genetic algorithm (GA) on FDM is studied. Based on analyzing the genetic algorithm (GA) and its basic operation and the subsystem of wavelet neural network (WNN) for FDM parts' prediction, the subsystem of genetic algorithm (GA) is developed. It is practically applied on FDM to optimize the concrete process parameters.
     The software system of FDM is developed and perfected. Based on studying the algorithm of slicing and intelligent support on FDM, the software system of FDM is perfected by object oriented language VC++2005.net based on the earlier research work of our work team. The software can slice and add support automatic on any three-dimensional parts with STL format. Some parts are selected to test the software and the products were manufactured which were qualified. The results demonstrate that the software can run reliabilitily.
引文
[1]李生杰,颜永年,秦海燕等.聚氨酯耳廓软骨支架的快速成形工艺[J].机械工程学报,2010,46(5):139-144
    [2]张人佶,刘利,熊卓等.高孔隙率聚(乳酸—羟基乙酸)共聚物组织工程支架快速成形新工艺[J].机械工程学报,2010,46(5):105-109
    [3]梁培,徐志锋.快速成形技术在铸造模具制造中的应用[J].模具工业,2010,36(10):72-76
    [4]叶嘉楠,姚山,叶昌科等.SolidWorks环境下快速成型工艺的虚拟评价方法[J].计算机集成制造系统,2008,14(2):412-416
    [5]牛爱军,党新安,杨立军.快速成型技术的发展现状及其研究动向[J].热加工工艺,2008,37(5):116-118
    [6]刘利.光固化快速成型制件的精度研究[D].大连理工大学硕士学位论文,2005
    [7]赵萍,蒋华,周芝庭.熔融沉积快速成型工艺的原理及过程[J].机械制造与自动化,2003,5:17-18
    [8]莫健华.快速成形及快速制模[M].北京:电子工业出版社,2006
    [9]Samar Jyoti Kalita, Susmita Bose, Howard L.Hosick, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling[J]. Materials Science and Engineering C,2003,23:611~620
    [10]Zhongzhong Chen, Dichen Li, Bingheng Lu, et al. Fabrication of osteo-structure analogous scaffolds via fused deposition modeling[J]. Scripta Materialia,2005,52:157-161
    [11]Peter Teka, Terry C.Chiganosa, Javeed Shaikh Mohammed, et al. Rapid prototyping for neuroscience and neural engineering[J]. Journal of Neuroscience Methods,2008,172: 263~269
    [12]Guohua Wua, Noshir A.Langranaa, Rajendra Sadanji, et al. Solid freeform fabrication of metal components using fused deposition of metals[J]. Materials and Design,2002,23:97~ 105
    [13]Suwat Jirathearanat, Victor Vazquez, Ciro A.Rodriguez, et al. Virtual processing-application of rapid prototyping for visualization of metal forming processes[J]. Journal of Materials Processing Technology,2000,98:116~124
    [14]宋敏.快速成型技术及应用[J].光机电信息,2008,9:42-46
    [15]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [16]Rainer Kimmich, Andreas Klemm, Markus Weber. Flow, diffusion, and thermal convection in percolation clusters:NMR experiments and numerical FEM/FVM simulations[J]. Magnetic Resonance Imaging,2001,19:353~361
    [17]Suzanne T.Witt, Angela R.Laird, M. Elizabeth Meyerand. Functional neuroimaging correlates of finger-tapping task variations:An ALE meta-analysis[J]. Neurolmage,2008,42:343~ 356
    [18]Carla Antoci, Mario Gallati, Stefano Sibilla. Numerical simulation of fluid-structure interaction by SPH[J]. Computers and Structures,2007,85:879~890
    [19]K.Shintatea, H.Sekine. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method[J]. Composites:Part A 2004,35:683~692
    [20]Ha H.Bui, K.Sako, R.Fukagawa. Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method[J]. Journal of Terramechanics,2007,44: 339~346
    [21]Martin Jutzi, WillyBenz, Patrick Michel. Numerical simulations of impacts involving porous bodies I. Implementing sub-resolution porosity in a 3D SPH hydrocode[J]. Icarus,2008,198: 242-255
    [22]S.Etienne, A.Garon, D.Pelletier. Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow[J]. Journal of Computational Physics,2009,228:2313~2333
    [23]Y.Tadi Beni, M.R.Movahhedy, G.H.Farrahi. Rate-dependent dynamic ALE analysis of finite deformation of elasto-viscoplastic solids[J]. Materials and Design,2009,1:1~10
    [24]Ramon Codina, Guillaume Houzeaux, Herbert Coppola-Owen, et al. The fixed-mesh ALE approach for the numerical approximation of flows in moving domains[J]. Journal of Computational Physics,2009,228:1591~1611
    [25]张旭,周杰,何光春等.车后灯座成形工艺分析及有限元数值模拟优化[J].锻压技术,2003,4:82-85
    [26]纪良波,周天瑞.汽车油杯拉深成形数值模拟及工艺优化[J].热加工工艺,2009,38(5):93-95
    [27]马琳,原津萍,张平等.多道激光熔覆温度场的有限元数值模拟[J].焊接学报,2007,28(7):109-112
    [28]张纪奎,郦正能,关志东等.复合材料层合板固化压实过程有限元数值模拟及影响因素分析[J].复合材料学报,2007,24(2):125-129
    [29]熊毅,傅万堂,孙淑华等.高碳钢棒件温楔横轧成形过程的有限元数值模拟[J].塑性工程学报,2006,13(5):125-129
    [30]朱均华,周建忠,肖莉等.滑动轴承冲压成形的有限元数值模拟[J].锻压技术,2008,33(6):148-152
    [31]宋文娟,王智民,杨璀珍等.基于ANSYS的低压铸造铸件有限元数值模拟[J].铸造技术,2008,29(7):922-926
    [32]李宇,于盛睿,王文超等.基于板料冲压的有限元数值模拟[J].热加工工艺,2008,37(23):60-64
    [33]刘磊超,董湘怀,李从心.基于耦合无网格-有限元法的金属成形过程数值模拟[J].塑性工程学报,2008,15(5):32-36
    [34]刘明月,宋宝韫,运新兵等.基于有限元法的铜母线连续挤压扩展成形过程的数值模拟 [J].热加工工艺,2008,37(17):71-74
    [35]吕成,张立文,张国梁等.减振钢板拉深变形的有限元数值模拟[J].锻压技术,2004,4:39-42
    [36]王海平,张耀宗,李林刚等.轿车半轴齿轮冷摆辗成形及三维有限元数值模拟[J].锻压技术,2007,32(3):34-37
    [37]董洁,袁守谦,刘晓燕等.铝粉末模压成型的三维有限元数值模拟[J].铸造技术,2008,29(8):1103-1105
    [38]孙丽丽,聂爱琴,胡小建等.汽车轮毂旋压成形过程的有限元数值模拟[J].合肥工业大学学报(自然科学版),2008,31(4):552-555
    [39]胡志勇,刘雪峰,苏顺等.熔融纺丝微熔池磁热耦合有限元数值模拟[J].中国有色金属学报,2006,16(1):41-46
    [40]谢玲玲,宋宝韫.铜母线连续挤压扩展成形过程的三维有限元数值模拟[J].锻压技术,2005,3:72-75
    [41]赵腾伦,黄建峰,张清泉等.筒形件反旋成形有限元数值模拟[J].锻压技术,2008,33(1):60-65
    [42]王鹏,王强,蔡冬梅等.Belt型两面顶模具温度场和应力场有限元分析及钢带缠绕数值模拟初探[J].人工晶体学报,2008,37(2):493-499
    [43]S.Natarajana, S.Venkataswamy, P.Bagavathiperumal. A note on deep drawing process: numerical simulation andexperimental validation[J]. Journal of Materials Processing Technology,2002,127:64~67
    [44]Zhihao Zhang, Jianxin Xie. A numerical simulation of super-plastic die forging process for Zr-based bulk metallic glass spur gear[J]. Materials Science and Engineering A,2006,433: 323~328
    [45]Laurent Duchene, Anne Marie Habraken. Analysis of the sensitivity of FEM predictions to numerical parameters in deep drawing simulations[J]. European Journal of Mechanics A/Solids,2005, (24):614~629
    [46]R.S.Lee, J.L.Jou. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology,2003,140:43~48
    [47]C.Dorum, H.I.Laukli, O.S.Hopperstad, et al. Structural behaviour of Al-Si die-castings: Experiments and numerical simulations[J]. European Journal of Mechanics A/Solids,2009, 28:1-13
    [48]R.Bahloul, A.Mkaddem, Ph.Dal Santo, et al. Sheet metal bending optimisation using response surface method, numerical simulation and design of experiments[J]. International Journal of Mechanical Sciences,2006,48:991~1003
    [49]M.Skunca, P.Skakun, Z.Keran, et al. Relations between numerical simulation and experiment in closed die forging of a gear[J]. Journal of Materials Processing Technology,2006,177: 256~260
    [50]H.W.Zhang, W.L.Xu, S.L.Di, et al. Quadratic programming method in numerical simulation of metal forming process[J]. Comput. Methods Appl. Mech. Engrg,2002,191:5555~5578
    [51]Gasper Gantar, Tomaz, Pepelnjak, et al. Optimization of sheet metal forming processes by the use of numerical simulations[J]. Journal of Materials Processing Technology,2002, 130-131:54~59
    [52]B.I.Tomov, V.I.Gagov, R.H.Radev. Numerical simulations of hot die forging processes using finite element method[J]. Journal of Materials Processing Technology,2004,153-154: 352~358
    [53]L.M.Rena, S.H.Zhang, G.Palumbob, et al. Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets[J]. Materials Science and Engineering A,2009,499:40~44
    [54]Erkan Onder, A.Erman Tekkaya. Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies[J]. International Journal of Machine Tools & Manufacture,2008,48:532~542
    [55]LONG Ri-sheng, LIU Wei-jun, XING Fei, et al. Numerical simulation of thermal behavior during laser metal deposition shaping[J]. Trans.Nonferrous Met.Soc.China,2008,18:691~ 699
    [56]S.M.Weygand, H.Riedel, B.Eberhard, et al. Numerical simulation of the drawing process of tungsten wires[J]. International Journal of Refractory Metals & Hard Materials,2006,24: 338-342
    [57]D.Y.Li, Y.H.Peng, S.R.Zhang, et al. Numerical simulation of sheet metal stamping by using ODF data[J]. International Journal of Mechanical Sciences,2009,51:41-51
    [58]M.Yamashita, T.Hattori, N.Nishimura. Numerical simulation of sheet metal drawing by Maslennikov's technique[J]. Journal of Materials Processing Technology,2007,187-188: 192~196
    [59]Minoru Yamashita, Manabu Gotoh, Shin-Ya Atsumi. Numerical simulation of incremental forming of sheet metal[J]. Journal of materials processing technology,2008,199:163~172
    [60]Hong Yan, Wenwei Zhuang, Yong Hu, et al. Numerical simulation of AZ91D alloy automobile plug in pressure die casting process[J]. Journal of Materials Processing Technology,2007,187-188:349~353
    [61]Zhong-Yi Cai, Shao-Hui Wanga, Xu-Dong Xub, et al. Numerical simulation for the multi-point stretch forming process of sheet metal[J]. journal of materials processing technology,2009,209:396~407
    [62]Wu Xianghong, Zhao Guoqun, Luan Yiguo, et al. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process[J]. Materials Science and Engineering A,2006,435-436:266~274
    [63]R.Padmanabhana, M.C.Oliveiraa, J.L.Alvesb, et al. Menezes. Numerical simulation and analysis on the deep drawing of LPG bottles[J]. journal of materials processing technology, 2008,200:416~423
    [64]M.Tisza. Numerical modelling and simulation in sheet metal forming[J]. Journal of Materials Processing Technology,2004,151:58~62
    [65]L.Tabourot, P.Vacher, T.Coudert, et al. Numerical determination of strain localisation during finite element simulation of deep-drawing operations[J]. Journal of Materials Processing Technology,2005,159:152~158
    [66]Mingqi Li, Zhichao Sunb, Minghui Li, et al. FEM numerical simulation of tube axial drawing process[J]. Journal of Materials Processing Technology,2005,160:396-400
    [67]V. Lemialea, J.Chamberta, P.Picart. Description of numerical techniques with the aim of predicting the sheet metal blanking process by FEM simulation[J]. Journal of materials processing technology,2009,209:2723~2734
    [68]李增民,李立新,谭建波.快速原型制造技术的发展及应用前景[J].河北科技大学学报2003,65(1):43-47
    [69]郭磊,薛艳敏,王伟.FDM快速成型技术对产品模型表面质量的影响[J].机电产品开发与创新,2005(9):12-16
    [70]杨峰,沈晓红.FDM快速成型技术及与反求工程的结合应用[J].北京工商大学学报(自然科学版),2006,124(11):14-17
    [71]宋丽莉,曹志清,孙建平.扫描方式对熔融挤压快速成型影响的数值模拟[J].机械与电子,2005,6:68-71
    [72]裴琳,吴任东,张人估等.扫描速度对熔融堆积成形影响的有限元分析[J].中国机械工程,2003,14(8):687-690
    [73]张晓萍,颜永年,袁晓蒙.熔融堆积成形过程温度场的模拟研究[J].中国机械工程,2003,11(10):1101-1104
    [74]徐红玉,张元冲,卢秉恒等.光固化快速成形过程中树脂固化零件变形的数值模拟[J].机械工程学报,2004,40(6):107-112
    [75]史玉升,黄树槐,潘传友.选择性激光烧结工艺参数智能优化方法研究[J].机械科学与技术,2003,22(2):259-264
    [76]李守卫,沈以赴,顾冬冬等.多组元金属粉末激光选区烧结热力耦合有限元应力场分析[J].中国机械工程,2007,18(6):751-755
    [76]沈以赴,顾冬冬,李守卫等.多组元金属粉末选区激光烧结三维瞬态温度场模拟[J].南京航空航天大学学报,2008,40(5):611-616
    [77]沈显峰,姚进,王洋等.基于材料性质转换的金属粉末直接选区激光烧结温度场数值模拟[J].机械工程学报,2006,42(8):78-83
    [78]师文庆,杨永强,黄延禄等.选区激光熔化快速成型过程温度场数值模拟[J].激光技术,2008,32(4):410-412
    [79]武殿梁,丁玉成,洪军.光固化快速成型过程中零件变形的数值模拟[J].西安交通大学学报,2001,35(3):307-311
    [80]程军,蔡道生,史玉升.选择性激光烧结预热温度场的数值模拟[J].新技术新工艺,2006,5:75-77
    [81]徐红玉,张元冲,卢秉恒等.光固化快速成形过程中树脂固化零件变形的数值模拟[J].机械工程学报,2004,40(6):107-111
    [82]BAI Pei-kang, CHENG Jun, LIU Bin, et al. Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder[J]. Trans. Nonferrous Met. SOC. China,2006,16:603~607
    [83]F.Xu, Y.S.Wong, H.T.Loh. Toward Generic Models for Comparative Evaluation and Process Selection in Rapid Prototyping and Manufacturing[J]. Journal of Manufacturing Systems,2000,19(5):283~296
    [84]K.Thrimurthulu, Pulak M.Pandey, N.Venkata Reddy. Loh. Optimum part deposition orientation in fused deposition modeling[J], International Journal of Machine Tools & Manufacture,2004, (44):585~594
    [85]Celine Bellehumeur, Longmei Li, Qian Sun.Loh. Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process[J]. Journal of Manufacturing Processes,2004,6(2):170~178
    [86]Samar Jyoti Kalita, Susmita Bose, Howard L. Hosickb, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling[J]. Materials Science and Engineering C,2003,23:611~620
    [87]M.Wua, J.Tinschert, M.Augthun, et al. Application of laser measuring, numerical simulation and rapid prototyping to titanium dental castings[J]. Dental Materials,2001,17:102~108
    [88]BAI Pei-kang, CHENG Jun, LIU Bin, et al. Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder[J]. Trans.Nonferrous Met.SOC. China,2006,16:603~607
    [89]Jehnming Lin. Numerical simulation of the focused powder streams in coaxial laser cladding[J]. Journal of Materials Processing Technology,2000,105:17~23
    [90]A.M.Rubenchik, M.D.Feit, M.D. Perry, et al. Numerical simulation of ultra-short laser pulse energy deposition and bulk transport for material processing[J]. Applied Surface Science, 1998,127(129):193 ~ 198
    [91]M.Oudjenea, L.Penazzi, J.L.Batoz. Towards the three-dimensional FE analysis of rapid prototyping tools for sheetmetal stamping process[J]. Finite Elements in Analysis and Design,2007,43:611~619
    [92]Emanuel Sachsa, Enrico Vezzetti. Numerical simulation of deposition process for a new 3DP printhead design[J]. Journal of Materials Processing Technology,2005,161:509~515
    [93]M.Oudjene, J.L.Batoz, L.Penazzi. A methodology for the 3D stress analysis and the design of layered sheet metal forming tools joined by screws[J]. Journal of Materials Processing Technology,2007,189:334~343
    [94]G.N.Labeas. Development of a local three-dimensional numerical simulation model for the laser forming process of aluminium components[J]. Journal of materials processing technology,2008,207:248~257
    [95]Liangbo JI, Tianrui ZHOU. Finite element simulation of temperature field in fused deposition modeling s[J]. Advanced Materials Research,2010,97-101:2585~2588.
    [96]王荣吉,王玲玲,赵立华.基于神经网络的快速成型工艺[J].中国有色金属学报,2005,15(3):452-457
    [97]叶献方,陈绪兵,黄树槐.基于神经网络的快速成型系统速度控制[J].华中科技大学学 报,2001,29(10):72-75
    [98]张立强,向道辉,陈明,王斌修.基于遗传算法的快速成型分层方向优化设计[J].南京航空航天大学学报,2005,37(Suppl):134~136
    [99]彭安华,张加林.FDM快速成型技术中原理性误差分析[J].机械设计与制造,2008,4:83-85
    [100]邹国林.熔融沉积制造精度及快速模具制造技术的研究[D].大连理工大学博士学位论文,2002
    [101]翁荣周.传热学的有限元方法[M].广州:暨南大学出版社,2000
    [102]李守卫.多组元金属粉末选择性激光烧结数值模拟及试验研究[D].南京航空航天大学硕士学位论文,2006
    [103]沈显峰.多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测[D].南京航空四川大学博士学位论文,2005
    [104]张朝晖ANSYS热分析教程与实例解析[M].北京:机械工业出版社,1999
    [105]俞汉清,陈金德.金属塑性成形原理[M].北京:中国铁道出版社,2007
    [106]谢水生,李雷.金属塑性成形的有限元模拟技术及应用[M].北京:科学出版社,2008
    [107]何新英,陶明元,叶春生.FDM工艺成形过程中影响成形件精度的因素分析[J].机械与电子,2004,9:77-78
    [108]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,1998
    [109]阎平凡,张长水.人工神经元网络与模拟进化计算(第2版)[M].北京:清华大学出版社,2005
    [110]郑荣.三维铝型材挤压模多参数CAO系统研究[D].南昌大学硕十学位论文,2005
    [111]刘雪峰,马胜军,刘锦平等.Cu-12 %Al合金高温压缩变形过程本构关系的BP神经网络模型[J].材料工程,2009,1:10-14
    [112]姜淑娟,刘伟军,南亮亮.基于神经网络的激光熔覆高度预测[J].机械工程学报,2009,45(3):269-274
    [113]姜银方,王飞,李新城等.基于正交试验和神经网络的激光拼焊板回弹预测[J].塑性工程学报,2009,16(3):40-44
    [114]徐玲,杨丹,王时龙等.基于进化神经网络的刀具寿命预测[J].计算机集成制造系统,2008,14(1):167-171
    [115]谢红梅,廖小平,卢煜海.遗传神经网络及其在制品质量预测中的应用[J].中国机械工程,2008,19(22):2711-2713
    [116]黄松林,崔建忠.基于人工神经网络的铝合金铸锭裂纹倾向预测[J].中国有色金属学报,2008,18(9):1699-1705
    [117]Rajeev Reddy Madadi, C. Balaji. Optimization of the location of multiple discrete heat sources in a ventilated cavity using artificial neural networks and micro genetic algorithm[J]. International Journal of Heat and Mass Transfer,2008,51:2299~2312
    [118]王万良.人工智能及其应用[M].北京:高等教育出版社,2008
    [119]程正兴,杨守志,冯晓霞.小被分析的理论、算法、进展和应用[M].北京:国防工业 出版社,2007
    [120]肖胜中.小波神经网络理论与应用[M].沈阳:东北大学出版社,2006
    [121]熊呈辉.皮江法炼镁还原工艺参数优化研究[D].南昌大学硕士学位论文,2006
    [122]飞思科技产品研发中心.MATLAB 6.5辅助优化计算与设计[M].北京:电子工业出版社,2003
    [123]唐传茵,李华,周炜等.基于遗传算法和神经网络的车辆主动悬架控制技术[J].农业机械学报,2009,40(2):6-11
    [124]张勇,李光耀,王建华.多目标遗传算法在整车轻量化优化设计中的应用研究[J].中国机械工程,2009,20(4):500-503
    [125]申长雨,王利霞,张勤星.神经网络与混合遗传算法结合的注塑成型工艺优化[J].高分子材料科学与工程,2005,21(5):23-27
    [126]李建广,姚英学,刘长清等.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2008,12(10):1651-1656
    [127]纪良波,周天瑞.基于神经网络和遗传算法的拉深成形工艺优化[J].机床与液压,2010,38(5):20-23
    [128]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [129]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997
    [130]李军红.冷轧带肋钢筋工艺的现代优化方法及质量控制[D].南昌大学博士学位论文,2006
    [131]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工业出版社,2004
    [132]王天明,金烨.快速成形技术概述及当前研究热点[J].航空制造技术,2005,6:61-64
    [133]潘海鹏,周天瑞,朱根松等.STL模型切片轮廓数据的生成算法研究[J].中国机械工程,2007,18(17):2076-2078
    [134]Haipeng Pan, Tianrui Zhou. Generation and optimization of slice profile data in rapid prototyping and manufacturing[J]. Journal of Materials Processing Technology,2007, 187-188:623~626
    [135]Nicolai M.Josuttis著,候捷,孟岩译.C++标准程序库[M].华中科技大学出版社,2002
    [136]刘光富,李爱平,王东立.三维实体零件分层处理软件的研究与开发[J].制造业自动化,2004,26(11):21-23
    [137]潘海鹏.快速成型制造中分层处理技术的研究[D].南昌大学博士学位论文,2007
    [138]张永.FDM快速成型中工艺支撑的智能化设计[D].南昌大学硕士学位论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700