大宽厚比铜排连续挤压物理模拟与生产实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种规格的铜导电排在工业电力传输中扮演着重大作用,具有巨大需求,铜排的传统生产方法为挤压、轧制或是挤压与轧制相配合,但传统的生产方法工艺流程长,设备资金投入巨大。连续挤压技术由于其节能、高效、短流程、近终形、设备资金投入小、铜排组织性能优越等优势,已经基本取代铜排的传统生产工艺。但是在采用连续挤压技术开发大宽厚比大截面铜排的过程中,由于需要进行大扩展比的变形,导致铜排在成形过程中金属流动不均匀,产生裂边、色差、产品横向组织不均匀以及存在厚度尺寸差等问题。
     目前,TJ550型连续挤压机生产的铜排,其最大生产尺寸为204.5mm×15mm,其扩展比为9.30,宽厚比为13.6。为了实现204.5mm×7.5mm尺寸铜排的产品研发,本文采用物理模拟技术和现场试验相结合的方法,对连续挤压大截面大宽厚比铜排的模具结构设计进行研究。物理模拟采用橡胶泥作为模拟材料,将有机玻璃加工成1:1的工装模具,根据橡胶泥在模具中的流动规律,初步确定模具结构,进行生产用模具的设计与制造,在TJ550型连续挤压机上进行现场试验,再根据试验结果进行适当的模具修正。
     通过研究获得了连续挤压大扩展比及大宽厚比铜排的模具设计规律,包括大扩展比所需的“哑铃状”导流槽结构参数、定径带宽度、阻流面宽度及阻流角度沿产品宽度方向的变化规律。据此设计了三种具有大扩展比及大宽厚比的产品模具,经现场试验,在TJ550型连续挤压机上对204.5mm×7.5mm规格铜排(扩展比为9.30,宽厚比为27.27)进行试生产时,消除了产品裂边,减小了产品色差及横向厚度不均匀。
     论文最后对采用连续挤压技术生产铜铝合金的大型整体壁板型材的前景进行了展望。
The copper conductive bus bar be playing an important role in the industrial power transmission. The traditional production processes of copper bus bar were the extrusion, rolling or extrusion-rollingusion. However, the traditional processes were multi-process, with expensive equipment. The traditional production processes almost be replaced by Continuous Extrusion technology, because of these technical advantages of Continuous Extrusion as energy saving, high efficiency, short process and near net shape, equipment inexpensive, good performance of production, etc. But the productions made by Continuous Extrusion were defect as cleft edge, color, uneven lateral grain size, and thickness of the size difference because the uneven metal flow in the process of large expansion, for the copper bus bar were produced by large width-to-thickness and large cross-section by Continuous Extrusion.
     Currently, the maximum size of the copper bus bar produced by TJ550type CONFORM equipment was204.5mm X15mm,and the expansion ratio was9.30,the width-thickness ratio was13.6. In this thesis, for204.5mmX7.5mm copper bus bar research, the die structure was studied by the Physical Model and field trial combining for the copper bus bar with large width to thickness ratio and large cross-section by CONFORM. The plasticine was used be model material in the physical modeling, the plexiglasses was be made to the tooling die by the ratio1:1.The die structure initially identified according to the law of plasticine flow in the plexiglasses, the actually die was designed and manufacturing for the field experiment by TJ550type CONFORM equipment. The die was be made appropriate correction according to the field trial.
     The law of die designed was got by these research for the copper bus bar with large width-to-thickness ratio and large cross-section by CONFORM equipment, include the structural parameters of dumbbell-shaped, the changes of bearing lengths width、baffles height and baffles angle along the width direction of the product. Three kinds of extrusion die with high expansion ratio and width-to-thickness ratio have been designed according the rules proposed above. Field trial was carried out by using a TJ550type CONFORM equipment producing copper bus bar with a specification of204.5mm×7.5mm, of which the expansion ratio reaches9.30, and width-to-thickness ratio reaches27.27Results of trial production shows the defect of edge crack has been eliminated, and the inhomogeneity of surface color and transverse thickness of product has been decreased.
     Finally, there is a forecast about the use of conform technology in the production of large overall for copper\aluminum siding profiles in this thesis.
引文
[1]C. Etherington. CONFORM—A new concept for continuous extrusion forming of metal. J. of Eng[J]. For ind.,1974.893-900
    [2]J. Tirosh. Theoretical and Experimental Study of the CONFORM Metal Forming Process[J]. J. Eng. Indust,1979.101(3):116-120
    [3]平松忠彦,杉村义夫.塑性加工[M].1977.18(203):1006-1011
    [4]H. K. Slater. Experience with the conform continuous extrusion process on copper [C]. The wire association international 48th annual convention, St. Louis,1978
    [5]S. Happer. Conform continuous extrusion scientific and technical developments [M]. Edited by G. Long, Germany,1982.271-275
    [6]M. Bridgewater. Manufacture of extruded profiles by the conform process [C]. Proc. of the copper'90 conference, Vasteras, Sweden,1990.229-237
    [7]D. J. Hawkes. Production of aluminium-clad steel wire[J]. Wire industry,1991. 58:323-326
    [8]Tatsuxa Tonogi. Precise extrusion technology by conform process for irregular sec-tional copper[J]. Hitachi cable review,2002.21:77-82
    [9]许光明等.复合导线生产工艺综述[J].轻合金加工技术,1997.(8):5-8
    [10]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999
    [11]王凤琴CONFORM连续挤压D97多孔扁管开裂原因分析[J].轻合金加工技术,2000.28(2):18-19
    [12]张胜华,聂春祥.连续挤压D97多孔扁管组织性能的研究[J].中南矿业学院学报,1994.25(1):60-65
    [13]运新兵,宋宝韫等.连续挤压技术在铜管技术生产上的应用[J].成形工艺及模具设计,2002.20(3):66-67
    [14]柳瑞清,蔡薇CONFORM连续挤压内螺纹翅片管模具研究[J].轻合金加工技术,1996.12(1):36-37
    [15]牛玉英,宋宝韫.银铜合金接触线新工艺的研究[J].中国铁道科学,2005.26(3):99-103
    [16]LI Ming-dian, SONG Bao-yun. Study of the velocity field and the stress field in the conform[C]. Proceeding of the 4th int. conf. on the technology of plasticity, Beijing,1993:668-673
    [17]张新宇,宋宝韫.连续挤压塑变区速度场分析及功率计算[J].中国机械工程,1999.10(1):60-63
    [18]樊志新,宋宝韫,刘文元,运新兵.连续挤压变形力学模型与接触应力分布规律[J].中国有色金属学报,2007.17(2):283-289
    [19]陈丽,宋宝韫.铜扁线挤压模腔内材料成形的数值模拟[J].上海交通大学学报,2001.35(7):993-997
    [20]谢玲玲,宋宝韫.铜母线连续挤压扩展成形过程的三维有限元数值模拟[J].锻压技术,2005.(3):72-75
    [21]钟毅.多层金属复合线连续挤压工艺及机理研究[D].北京科技大学博士学位论文,1999
    [22]闫琳.多金属连续挤压复合机理研究[D].昆明理工大学硕士学位论文,2001
    [23]钟毅.多金属一次连续挤压复合管棒线[P].中国专利,国家发明专利,ZL97100912
    [24]钟毅,孙家林等.新型多金属成形方法—双轮CONFORM连续挤压复合技术[J].昆明理工大学学报,1997.(1):63-65
    [25]钟毅等.多层金属复合管棒线连续生产法[P].中国专利,国家发明专利,ZL97100912.0,2002.01.09
    [26]闫林,钟毅.铜包钢线连续挤压包覆模拟实验及机理研究[J].昆明理工大学学报,2001.26(3):101-105
    [27]李玉章.连续挤压铜包钢线材工程化关键问题实验研究[D].昆明理工大学硕士学位论文,2010
    [28]张志豪.高强度轻型导线成形工艺及机理研究[D].昆明理工大学硕士学位论文,2001
    [29]宋宝韫.连续挤压和连续包覆技术的理论研究和工程实践[J].中国机械工程,1998.9(8):69-72
    [30]刘静安.国内外铝挤压技术与装备现状及趋势[J].技术与装备,2009.(4)26-29
    [31]张士宏,M.Arentoft,尚彦凌.金属塑性加工的物理模拟[J].塑性工程学报,2000.7(1):45-50
    [32]T. Altan, H. J. Henning, A. M.Sabroff. The use of model materials in predicting forming loads in metalworking[J]. ASME,1970:444-451
    [33]V. K, Jain, H. L. Gegel, R. Srinivasan. Physical Modeling of Metalworking Pro-cess—Ⅰ:Determination of Large Plastic Strains[J]. Materials Shaping Technology, 1988. (5):243-248
    [34]Hasan. Sofuoglu. Physical Modeling of Exteusion Process[D]. Texas Tech Univ-ersity in partial Fulfillment,1990
    [35]H. Sofuoglu, J. Rasty. Three-Dimensional Analysis of Extrusion Process Utilizing the Physical Modeling Technique[J]. Journal of Energy Resources Technology,1993. 32(115):32-40
    [36]W. Z. Misiolek. Material physical response in the extrusion process[J]. Journal of Materials Processing Technology,1996.60:117-124
    [37]S. F. Wong, P. D. Hodgson, C. J. Chong,P.F.Tomson.Physical modeling with app-lication to metal working, especially to hot rolling[J]. Journal of Materials Process-ing Technology,1996.62:260-274
    [38]M. J. Adams, I. Aydin, B. J. Briscoe, S. K. Sinha. A finite element analysis of the squeeze flow of an elasto-viscoplastic paste material [J]. J. Non-Newtonian Fluid Mech,1997.71:41-57
    [39]I. Aydin, F. R. Biglari, B. J. Briscoe, C. J. Lawrence, M. J. Adams. Physical and numerical modeling of ram extrusion of paste materials:conical die entry case[J]. Co-mputational Materials Science,2000.18:141-155
    [40]Hasan. Sofuoglu, Jahan. Rasty. Flow behavior of plasticine used in physical modeling of metal forming processes[J]. Tribology International,2000.33:523-529
    [41]A. Assempour, S. Razi. Physical modeling of extrusion process [J]. Mechanical Engineering,2003.4 (1):61-68
    [42]H. Sofuoglu, Hasan. Gedikli. Physical and numerical analysis of three dimensi-onal extrusion process[J]. Computational Materials Science,2004.31:113-124
    [43]H. Sofuoglu. A technical note on the role of process parameters in predicting flow behavior of plasticine using design of experiment [J]. Journal of Materials Processing Technology,2006.178:148-153
    [44]彭大暑,姚必全,左铁镛CONFORM连续挤压金属变形行为的模拟实验研 究[J].中国矿业学院学报,1990.21(5):492-498
    [45]彭颖红,阮雪榆,左铁镛.CONFORM连续挤压变形过程的实验研究与树脂模拟[J].上海交通大学学报,1994.28(6):45-51
    [46]张士宏,尚彦凌.金属塑性加工的物理模拟[J].塑性工程学报,2000.7 (1)45-49
    [47]储灿东,彭颖红,阮雪榆,洪晓耕,王岩林.光塑性在连续挤压成形研究中的若干关键技术[J].金属成形工艺,2000.18(9)
    [48]张彦敏,孙爱学.深微孔复合挤压成形工艺的物理模拟[J].塑性工程学报,2002.9(1):56-58
    [49]李冰,张伟红,张士宏等.物理模拟实验研究在金属材料加工中的实际应用及其数据处理方法[Z].第五届全国材料与热加工物理模拟及数值模拟学术会议,2006
    [50]王少纯,张国峰,李强,唐健,陈永军.镁合金丝静液挤压物理模拟实验与数值模拟分析[J].轻合金加工技术,2007.35(12):28-30
    [51]郭俊卿,陈拂晓.智齿轮超塑挤压过程仿真与实验研究[J].金属铸锻焊技术,2008.37(15):76-79
    [52]张士宏,尚彦凌,许沂.体积成形工艺的物理模拟与计算机模拟[D].全国锻压技术和工艺交流会,北京,2000
    [53]张士宏,郎利辉,康达昌等.金属塑性成形的数值模拟与物理模拟[D].全国锻压学术年会,1999
    [54]冯杨,宋春华,任运来.一种新型锻造物理模拟材料[J].锻压技术,2010.35(5):130-133
    [55]赵瑞龙等.纯铜的高温变形行为[J].金属热处理,2011.36(8):17-20
    [56]刘静安.挤压模具的理论与实践[M].重庆:科学技术文献出版社重庆分社,1989:78-79
    [57]曹雪.铜母线连续挤压扩展变形过程的理论研究[D].大连:大连交通大学材料加工工程,2009
    [58]王鹏,张杰江,胡亚民.H13钢的应用现状[J].模具制造,2007.12:1-7
    [59]郑荣,周天瑞,包忠诩,黄克坚.铝型材挤压导流模设计[J].2004.26(3):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700