连续挤压扩展成形金属流动分析与模具设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续挤压扩展成形工艺具有扩展比大、生产率高、节能效果强、质量好、成材率高等优点,特别适于大尺寸、高强度和有特殊要求长度的产品的生产。采用此工艺研制铜母线与传统生产工艺相比极具优越性。
     连续挤压生产铜母线的过程非常复杂,材料性能、模具形状、工艺参数、温度等对成形过程都有影响。若工艺参数和模具结构尺寸选择不当,易造成产品的弯曲、裂纹、缺料等缺陷,模具也极易损坏。为此,本课题力图通过数值模拟分析金属的流动规律,由此预测挤压过程可能出现的缺陷,及时调整工艺参数,修改工艺设计,进一步提出改进方案。
     本文采用DEFORM软件作为模拟分析的工具,基于刚塑性/刚粘塑性有限元理论,建立了成形过程的有限元模型。论文共分为五大部分:
     1.结合连续挤压技术与扩展成形工艺特点,阐述了利用有限元模拟来分析铜母线连续挤压扩展成形过程的必要性、可行性及优越性。
     2.根据铜母线的塑性变形特点,对复杂成形过程的数值模拟选用刚塑性/刚粘塑性有限元法,为其建立合理的理论模型,选择适宜的求解方法,力求接近模拟真实。
     3.对连续挤压过程进行了力能综合分析,推导了连续挤压变形力的计算公式,确定了工作状态下主机系统所需的扭矩大小。
     4.为求得与实际过程相符的模拟结果,研究了有限元模拟的关键技术,有助于不断发展和完善模拟系统。
     5.对成形过程的数值模拟结果进行了详细的分析,得到了金属流动的速度场、温度场、等效应力场、等效应变场和扭矩一行程曲线等,揭示了金属的流动变形规律,并用模拟结果来指导和优化工模具设计,改善连续挤压扩展成形过程。
     总之,根据模拟结果分析,可合理选择工艺参数和模具结构尺寸,实现铜母线连续挤压扩展成形,力求把连续挤压的生产率和能量节省提高到更先进的水平。
Continuous extrusion extending forming technics has much excellence as big extending scale, high productivity, strong energy-saving, ascendant quality and good molding ratio and so on, especially adapts to the products with big dimension, high intensity and extra requirement of length. By comparision with using traditional technics, the copper generatrix produced by introducing this technics possesses enough advantage.The process of producing the copper generatrix by using continuous extrusion technics is very complicated, and the material capability, mould figure, technics parameters and temperature etc all affect the figuration process. If the technics parametrers and structure size of moulds are selected inadequately, a lot of disfigurement on curling, cracking and lacking material of the products will appear frequently, and the moulds will be spoiled easily. Therefore, this paper strives to analyze the moving rule of metal through numerical simulation, which can forecast the disfigurement existing in the extrusion process. So we can adjust technics parameters, amend the technics designment in time, and put forward to amelioration projects deeply.In this dissertation, we use DEFORM software as the tool to simulate and analyze, and establish the finite element analysis model of deformation process, which is based on rigid plastic/rigid viscoplastic FEM theory. This paper is made of five parts:1. Combining continuous extrusion technology with extending figuration technies characteristic, expatiate the necessity, feasibility and superiority of using FEM simulation to analyze and conpute the copper generatrix continuous extrusion extending efoumation process.2. According to plastic distortion characteristic of the copper generatrix, the rigid plastic/rigid viscoplastic FEM theory is used to simulate the complicated deformation process, and builds logical theory model, selects feasible evaluttion method, which tries hard to approach the simulation truth.
    3. Analyze the relation between strength and energy of continuous extrusion process. Deduce the calculate formula of deformation force, ascertain the value of machine torque when steady working.4. In order to get the simulation result matching with the real process, the key technique of the FEM simulation is researched to administer to constantly developand perfect the simulation system.5. The numerical simulation results of deformation process is analyzed detailedly, and velocity distribution, temperature distribution, effective stress and strain distribution and load-time of the metal deformation are received, which opended out the flowing distortion rule of metal. Furthermore, the mould designing was directed and optimized with the simulation results, while improving the figuration process of continuous extrusion.In conclusion, according to analyzing the simulation result, the technics parameters and die structure size should be selected reasonably, which can realize the copper generatrix continuous extrusion extending forming, and try our best to advance the productivity and save energy to a higher level.
引文
[1] 汪大年.金属塑性成形原理.第一版.高等教育出版社,1988:1~254
    [2] 刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用.冶金工业出版社,2003:1~145
    [3] 杨如柏,张胜华等编译.连续挤压译文集.第一版.中南工业大学出版社,1989:1~185
    [4] 周天国,温景林,李飞,王顺成.连续扩展挤压成形常见缺陷分析与预防.材料与冶金学报.2004,3(1):72~76
    [5] 谢建新,刘静安.金属挤压理论与技术.冶金工业出版社,2001:267~290
    [6] 胡福荣.前轴精辊成形过程的三维有限元数值模拟.中国优秀博硕士学位论文全文数据库.2003(7~9):1~12
    [7] 刘静安.金属挤压成形理论与技术发展现状与趋势(1).铝加工.2000:1~8
    [8] 彭颖红.CONFORM连续挤压形变过程的数值模拟.上海交通大学博士学位论文.1994:1~120
    [9] S. shamasunder, A. A. Tseng, W. Aung, S. K. Blswas. Numerical and Experimental Study of the Thermal Behavior of coining and Upsetting Processes. Journal of Materlals processing Technology. 1993, 36 (2): 199~221
    [10] 单德彬.闭塞式锻造过程三维数值模拟及筒形机匣成形规律研究.哈尔滨工业大学博士学位论文.1996:13~22
    [11] 孙菊芳.有限元法及其应用.第一版.北京航空航天大学出版社,1990:1~202
    [12] 乔端,钱仁根.非线性有限元法及其在塑性加工中的应用.冶金工业出版社,1990:1~363
    [13] 王猛,卢治森等.轻金属材料加工手册.第一版.冶金工业出版社,1980:381~416
    [14] 林新波.DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用[J].模具技术.2000,No.3:75~80
    [15] Scientific Forming Technologies Corporation. DEFORM Design Environment for forming, DEFORM-3D Version 3. 0 Users Manual. 1999(1): 1~165
    [16] 应富强,张更超,潘孝勇.金属塑性成形中的三维有限元模拟技术探讨[J].锻压技术.2004,第2期:1~5
    [17] 卫原平,彭颖红,阮雪榆.金属塑性成形过程的计算机模拟系统.上海交通大学学报.Vol.30,NO.3,1996
    [18] 彭颖红,周飞,阮雪榆.汽车联轴节壳体挤压成形过程三维有限元数值模拟.上海交通大学学报.Vol.32,No.5,1998
    [19] 左旭,卫原平,陈军,阮雪榆等.十字轴多工位模锻成形的三维有限元仿真.上海交通大学学报.Vol.33,NO.2,1999
    [20] 崔福宝,林新波,张质良等.有限元模拟在金属塑性成形中的应用[J].锻压机械.2000,No.3:46~48
    [21] 林颖,曾志新,孙延明编著.Pro/ENGINEE快速入门及应用.电子工业出版社
    [22] 陈莉.铜扁线连续挤压成形过程的三维数值模拟.大连铁道学院硕士学位论文.2004:44~60
    [23] 鹿守理,赵辉,张鹏.金属塑性加工的计算机模拟.轧钢,1997(4):54~57
    [24] Taylan Altan, Victor Vazquez. Status of process simulation using 2D and 3D finite element method[J]. Journal of Materials Process Technology, 1997, 71: 49~63
    [25] 谢配良,盛伟,游庆.金属塑性成形过程的计算机模拟.锻压机械.1997(4):45~47
    [26] 单德彬,吕炎,王真.金属体积成形过程三维刚塑性有限元模拟技术的研究.塑性工程学报.1997,4(3) 98~102
    [27] Lee N K, Yoon J H and Yang D Y. Finite Element Analysis of Large Deformation by Automatic Renoding as a Weak Remeshing Technique. Int. J. Mech. Sci, 1992, 34 (4): 255~273
    [28] Dyduch M. Habraken A M and Cescotto S. Automatic Adaptive Remeshing for Numerical Simulation of Metal Forming. Computer Methods in Applied Mechanics and Engineering. 1992, 101: 283~298
    [29] 方新.I-DEAS产品三维设计指南.第一版.机械工业出版社,200l:1~429
    [30] 田荣璋,王祝堂.铜合金及其加工手册.第一版中南大学出版社,2002:135~146
    [31] 储灿东,彭颖红,阮雪榆.连续挤压成形过程仿真中的摩擦模型[J].上海交通大学学报.2001,第7期:993~997
    [32] 彭颖红,阮雪榆,左铁镛,彭大暑.CONFORM连续挤压耦合热变形过程的刚粘塑性有限元分析.中国有色金属学报.1994,第3期:60~63
    [33] J. R. Cho, H. S. Jeong. Parametric investigation on the surface defect defect occurrence in CONFORM process by the finite element method. Journal of Materials Processing Technology. 2000 (10): 236~243
    [34] Y. H. Kim,J. R. Cho,H. S. Jeong,K. S. Kim, S. S. Yoon. A study on optimal design for CONFORM process. Journal of Materials Processing Technology. 1998(1): 671~675
    [35] J. Lu, N. Saluja, A. L. Riviere, Y. Zhou. Computer Modeling of the continuous forming extrusion process of AA6061 alloy. Canada Journal of Materials Processing Technology. 1998(5): 200~212
    [36] J. R. Cho, H. S. Jeong. Parametric investigation on the curling phenomenon in CONFORM process by three-dimensional finite element analysis. Journal of Materials Processing Technology. 2001(12): 53~56
    [37] Y. H. Kim,J. R. Cho,K. S. Kim,H. S. Jeong, S. S. Yoon. A study of the application of upper bound method to the CONFORM process. Journal of Materials Processing Technology. 2000(2): 153~157
    [38] T. Reinikainen,K. Andersson,S. Kivivuori and A. S. Korhoner. Finite-element analysis of copper extrusion process. Journal of Material processing Technology. 1992(2): 101~108
    [39] T. Reinikainen, A. S. Korhoner, K. Andersson,S. Kivivuori. Computer-Aided Modelling of a New Copper Extrusion Process. 1993(1): 265~268
    [40] 宁洪龙,张晓斌,曾萍.铝合金型材的宽展挤压.轻合金加工技术。1998,Vol.26,NO.9:25~28
    [41] 张新宇,宋宝韫,李明典,高飞.连续挤压塑变区速度场分析及功率计算.中国机械工程.1999(1):60~63
    [42] 陈维民,詹艳然.挤压过程的数值模拟及凹模锥角优化.中国机械工程.1994,第4期:12~14
    [43] 阎洪,包忠翔,江雄心,范美仁.型材挤压成型技术的研究.锻压机械.1999(6):50~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700