氩氮保护紫铜TIG焊接熔池动态过程的数值模拟及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接过程是一个迅速而又极不均匀的物理化学冶金过程,焊接熔池一直是焊接模拟的一个重要领域。本文根据能量守恒的基本原理和钨极氩弧焊(TIG)工艺的特点,建立了运动电弧作用下T3紫铜非稳态TIG焊接熔池形态的数值分析模型,并采用有限元的方法对模型进行了离散化处理。该模型综合考虑了使熔池金属产生运动的浮力、电磁力、表面张力等驱动力,同时考虑了材料的热物理性能参数随温度的变化、焊接过程中熔池与外界的能量的交换,以及熔化/凝固相变对熔池流场及温度场的影响。文中采用的表面分布双椭圆热源模型,较好地符合了TIG焊接热流分布的形态。
     作者在不预热的情况下采用氩氮混合保护气体对厚壁紫铜进行了TIG焊接工艺的研究,并研究了不同比例下氩氮混合气体对焊接接头微观组织和力学性能的影响。
     根据TIG焊接熔池温度场和流场的特点,本文利用通用有限元软件ANSYS,采用非均匀网格对单元进行了划分,使用热源叠加的方式对TIG焊接熔池热量的吸收进行了处理,对所建立的数学模型进行了求解。模拟结果展示了T_3紫铜TIG焊接瞬态熔池的建立过程。初步计算了焊接电流和焊接速度对焊接温度场分布的影响。通过焊接工艺实验,比较了焊缝熔宽和熔深的测量结果和计算结果,结果表明本文所建模型的计算值和实际测量值较为吻合,验证了所建立的模型和采用的软件方法的正确性和可靠性。
The welding is a rapid and extremely physicochmemical metallurgical process. Welding pool is an important domain of welding simulation all along. In this paper, according to conservation of energy principle and technology characteristics of tungsten inert gas(TIG), a model of non-steady three-dimensional temperature field for T_3 red copper's TIG welding with a locomotive arc was established. Discretization treating has been carried out on model with the method of finite element. The driving force of buoyancy、 electromagnetic force and surface tension have been synthetically considered in the model. At the same time, the variation of temperature-dependent material thermophysics performance ,the energy change between welding pool and environment and the influence of melting/solidifying of phase changes for flow field and temperature field have also been considered.
    Indrafted the surface distribution dual-ellipsoid model, and the demands of welding numerical simulation was primely satisfied.
    The author studied the TIG welding of thick-wall red copper adopting Ar+N_2 without preheating. Microstructure and mechanical properties of welding splice were also studied under different proportion of Ar+N_2.
    According with characteristics of TIG welding pool temperature felid and flow felid, elements were divided by using non-uniform grid in the finite element software ANSYS. In this study, heat absorbing of TIG welding pool was treated by splicing heat source. And the math model was solved. Simulation results showed the creation of TIG transient welding pool. The effect of welding current and welding speed to temperature field distribution was calculated. Comparing the experiment value and the calculation value under different technological parameter, the results indicated that the model and practical course were well matched, proved that the model was reliable and correct.
引文
[1] 曹振宁.TIG/MIG焊接熔透熔池流场与热场的数值分析:[博士学位论文].哈尔滨:哈尔滨工业大学,1992.
    [2] 陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [3] 雷卡林.焊接热过程计算[M].北京:中国工业出版社,1962.
    [4] 武传松.焊接熔池流体流动及传热过程的计算机数值模拟:[博士学位论文].哈尔滨:哈尔滨工业大学博士论文,1987.
    [5] S. Kou. Proceedings of a Symposium on Modeling of casting and Welding Processes, August, 1980, 129-138.
    [6] S. Kou. Weld pool convection and its effect[J]. Welding Journal, 1986, 65(3), 63-70.
    [7] 陈楚等.数值分析在焊接中的应用[M],上海:上海交通大学出版社,1985
    [8] G. M. Oreper. et al. Convection in arc weld pool[J]. Welding Journal, 1983, 62(11), 307-312.
    [9] R. T. C. ChOO. Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool [J]. Welding Journal, 1990, 69(9), 346-361.
    [10] A. Matsunawa et al. Convection in Weld Pool and Its Effect on Penetration Shape in Stationary Arc Welds. Trans. JWRI, 1987, 16(2): 229-236
    [11] S. KOU. Computer mutation of convection in moving arc welds pool.Metall.Trans. 1986, 17A(12), 2271—2277.
    [12] V. Dilthey and S. Roosen. Computer Simulation of Thin Sheet Gas-Metal-Arc-Welding [J]. Proc. Theoretical Prediction in Joining and Welding [J], Osaka, Japan, Nov, 1996: 133-154.
    [13] 武传松,曹振宁,吴林,熔透情况下三维TIG焊接熔池流场与热场的数值分析[J],金属学报,1992,28(10),427-432
    [14] 武传松,曹振宁,吴林,TIG焊接熔池熔池表面变形对流场与热场的影响[J],金属科学与工艺,1992,11(3&4),108-113
    [15] 武传松,郑炜,吴林.脉冲电流作用下TIG焊接熔池行为的数值模拟[J],金属学报,1998,34(4),18—22
    [16] 武传松等.第六届全国焊接学术会议论文集,第五集,1992,218-222.
    [17] 武传松等.MIG定点焊射流过渡时的熔池传热模型[J].焊接学报,1991,12(3),189-194.
    [18] Wu Chuan song. Numerical Analysis of Three-Dimensional Fluid Flow and Heat Transfer in TIG Weld Pool with Full-Penetration[J]. ACTA METALLURGICA, 1992, 28(10), 427-432
    [19] E, Paldo. Prediction of weld pool and reinforcement dimensions of MIG/MAG welds using a Finite-Element Model[J]. Metal. Trans. B, 1989, 20B(12), 937-947.
    [20] P. Tekriwal. Finite element analysis of three-dimensional transient heat transfer in GMA welding[J]. Welding Journal, 1988, 67(7), 150-156.
    [21] 鄂利国.焊接熔滴过渡行为的动态图象分析及数值模拟的研究[博士学位论文].哈尔滨:哈尔滨工业大学,1992
    [22] T. Yabe. Three-Dimensional Simulation of Melting and Evaporation Dynamics by the Unified Solver CIP for Solid, Liquid and Gas. Proc. Theoretical Prediction in Joining and Welding[J], Osaka, Japan, Nov, 1996: 27-37.
    [23] A. Goidak, et al.. A new finite element model for welding heat source. Trans. ASME, Metallurgical Transaction, 1984, 15B (6): 299-305
    [24] 鹿安理,吴爱萍,赵海燕,史清宇.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程,1999,22(4),32-37.
    [25] S. H. Ko, S. H. CHoi and C. D. Yoo. Effect of surface depression on pool convection and geometry in stationary GTAW[J]. Weld Journal, 2001, February, 39s-45s.
    [26] Goldak J. A new finite element model for welding heat sources[J]. Metal Trans. B, 1984, 15B(6), 299-305.
    [27] 季杰,马学智.铜及铜合金的焊接.焊接技术.1999,(2):13-15.
    [28] 中国机械工程学会焊接学会编.焊接手册(第2卷).材料的焊接,北京:机械工业出版社,1992.
    [29] 邹增大,李亚江,孙俊生,曲仕尧.焊接材料、工艺及设备手册.北京:化学工业出版社,2001.
    [30] 温可端.紫铜管的煨弯和焊接探讨.江苏煤炭.1994,(1):44-45.
    [31] 于霖清.高压电机转子紫铜短路环的气焊.焊接技术.1995,(6):43.
    [32] 杨凌川,赵献金.紫铜玻纤焊接修复工艺.焊接技术.1997,(6):17-18.
    [33] 杨凌川,杨文柱.导电紫铜排手工电弧焊.安装.1997,10:22-23.
    [34] J. Wegrzyn. Welding with coated electrodes of thick copper and steel-copper parts. Welding International. 1993, 7(3): 2-5.
    [35] 申有才.大截面紫铜母线钨极氩弧焊焊接工艺.化工建设工程.2001,23(4):25-26,34.
    [36] 胡永旺,刘学明.接插母线铜排的TIG焊工艺.焊接技术.1996,(6):13-14.
    [37] 彭振铎.紫铜电缆接头TIG焊工艺.焊接技术.1995,(4):43.
    [38] 范金友,刘靖涛,韩廷忠,孟庆树.紫铜板的焊接.机械工程师.2001,(12):60-61
    [39] 张文珺,焦馥杰,袁智康.超薄紫铜带低频脉冲氩弧焊工艺.焊接技术.1991,(3):18-21.
    [40] 石高佩.异质紫铜的TIG焊.焊接.2001,(6):38-39.
    [41] 邓子刚.紫铜管的氩弧焊焊接工艺.河北电力技术.1994,(1):51-53.
    [42] Takeshi Kuwana, Hiroyuki Kokawa and Akira Honda. Effects of Nitrogen and Titanium on Mechanical Properties and Annealed Structure of Copper Weld Metal by Ar-N2 Gas Metal Arc Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society 1986, 4(4): 753-758.
    [43] Takeshi Kuwana, Hiroyuki Kokawa and Akira Honda. Effects of Nitrogen and Titanium on Blow Hole Formation and Microstructure in Copper Weld Metal by Ar-N2 Gas Metal Arc Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society. 1986, 4(4): 759-758.
    [44] 张鹏,马金萍.氩氮混合保护TIG焊在紫铜厚大件上的应用.焊接.2001,(7):38.
    [45] 梅福欣,Y.P.Le.混合气体保护电弧焊接紫铜.华南工学院学报.1987,15(1):101-105.
    [46] R. J. Dawson. Selection of shielding gases for the gas shielded are welding of copper and its alloys. Welding in the World. 1973, 11(3-4): 50-55.
    [47] J. Littliton, J. Lammas and M. F. Jordan. Nitrogen Porosity in Gas Shielded Arc Welding of Copper. Welding Journal, 1974, 53(12): 561-s-565-s.
    [48] J. Littliton, M. F. Jordan. Steam Porosity Formation in Tungsten Inert Gas Arc Welding of Copper. Metals Technology. 1975, 2(6): 268-278.
    [49] 白津生,林嘉明.铜的TIG钎焊工艺探讨.焊接技术.1994,(2):24-25.
    [50] 陈婵英,方启文.小管径紫铜管钎焊工艺.安装.1997,(4):12-13.
    [51] 刘欢龙,崔全合.紫铜管钎焊工艺.山西机械.2000,(4):20-21.
    [52] 郑日水.紫铜与黄铜插套接头钎焊及裂纹防治措施.焊接技术.2002,31(3):25-26.
    [53] 钱红,李西恭,王增宏.高温钎焊紫铜管脆断原因分析.北京工业大学学报.1994,20(3):85-90.
    [54] Siewart T A, Vigliotti. Mechanical Properties of Electron Beam Welds in Thick Copper. Advances in Cryogenic Engineering. 1990, 36(pt B): 1185-1192.
    [55] Johnson LD. Some Observations on the Electron Beam Welding of Copper. Welding Journal. 1970, 49(2): 55-s-60-s.
    [56] 刘方军,王世卿.大厚度紫铜电子束焊接的研究.中国机械工程.1997,7(3):101-102.
    [57] 许士贵.紫铜母线与紫铜薄带碳弧焊单面焊双面成形.焊接技术.1994,(1):44-45
    [58] 张日恒.厚壁铜制容器纵缝裂纹的控制.焊接.2003,(2):43—47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700