Ti-15-3合金高温本构模型的建立及在模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-15-3(Ti-15V-3Cr-3Sn-3Al)合金是一种新型的亚稳定β型钛合金,具有较高的强度一重量比和良好的冷成形性,因而广泛地应用于航空航天工业中。为了更好地理解Ti-15-3合金在成形过程中的变形规律及其影响因素,本文通过在Gleeble-1500热模拟机上进行热模拟压缩试验,采用回归分析和人工神经网络方法,建立了Ti-15-3合金的流变应力模型。并结合数值模拟技术,系统地研究了Ti-15-3合金的热变形过程中的流动行为。主要内容如下:
     1.Ti-15-3合金的流变应力随应变速率的增大而增大,随变形温度的升高而降低,其高温流变应力曲线为动态回复型。
     2.Ti-15-3合金的高温塑性变形存在热激活过程。其高温塑性变形过程中的流变应力与应变速率之间可用双曲正弦函数ε=A[sinh(ασ)]~n exp(-Q/RT)来描述,高温变形流变应力可用温度补偿应变速率Zener-Hollomon参数Z值描述。
     3.可用流变应力方程lnσ=lnA_1+nlnε+mlnε-bT来描述Ti-15-3合金稳态变形阶段的流变应力、应变、应变速率和温度的相互关系。
     4.运用人工神经网络的方法建立了Ti-15-3合金的高温本构模型能更准确地预测该合金的流变应力值。
     5.根据刚塑性有限元法的基本原理考虑了变形过程中的热量传递和功能转化,将Ti-15-3合金高温变形时的流动应力模型耦合到有限元中,结合变形—传热耦合算法,并对Ti-15-3合金等温压缩过程进行了变形—传热耦合模拟。研究变形工艺参数,包括变形温度、上模速度及摩擦对成形过程中应力、应变和温升的影响,计算了各种变形条件下的位移—载荷曲线。研究结果表明,上模速度和变形温度对成形影响显著。为Ti-15-3合金热变形工艺的优化设计及质量控制提供了理论和技术上的支持。
Ti-15-3 alloy is a new metastableβ-type titanium characterized by improved high specific strength (strength-to-weight rate) and cold formability. It has been used extensively in aerospace industry. For understand the deformation behavior and the effect of process parameters on deformation of the Ti-15-3 alloy during hot deforming, The deformation behaviors of Ti-15-3 alloy during hot deformation have been studied systematically by the hot physics simulation experiment on Gleeble-1500 Thermal Simulator、regression analytic method、artificial neural network and the finite element numerical simulation technology. The main contents are as follows:
     1. The flow stress increases with decreasing deformation temperature and increasing of strain rate. The predominated intenerate mechanisms of Ti-15-3 alloy during hot deformation are dynamic recovery
     2. The deformation of Ti-15-3 alloy at high temperature is a thermally activated process. The interrelations of flow stress and strain rate can be described by a hyperbolic sine functionε= A[sinh(ασ)]~n exp(-Q/RT) for Ti-15-3 alloy during the process of high temperature deformation. The flow stress at high temperature can be described by Zener-Hollomon parameter Z value.
     3.The flow stress and strain rate、temperature at high temperature can be described by Inσ= In A_1 + n Inε+ m Inε- bT.
     4. The flow stress model of Ti-15-3 alloy at high temperature can be established by the artificial neural network which can predict the flow stress more precisely.
     5. According to the basic principle of rigid-plastic finite element method and considering to quantity of heat transfer and energy transfer during forming. Integrating the constitutive relationship into the FE code, a simulation of deformation with heat transfer has been carried out for the isothermal forging of Ti-15-3 alloy. The effect of process parameters, including the deformation temperature, the punch velocity and friction, strain and temperature raise during isothermal forging has been studied and load-journey curves with different thermal mechanical parameters has been calculated. The results investigated show that punch velocity and deformation temperature have significant effect on the forming. Moreover, the effect of different deformation ways on the deformation process of Ti-15-3 alloy has been given out. This work provides the theory and technique foundation for implementing process optimized design and quality control scheme of Ti-15-3 alloy isothermal forging process.
引文
[1] C.莱茵斯,M.皮特尔斯.钛与钛合金.北京:化学工业出版社.2005
    [2] 张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社.2005
    [3] 邓炬,赵用庆,于振涛.钛及钛合金新材料的研究与开发战略.钛工业进展.2002,(4):30~32
    [4] 曹春晓,闰渊林,黄旭.我国航空系统钛合金发展现状与展望.钛工业进展.2002,(4):26~29
    [5] D.eylon,S.R.Seagle. Titanium Technology in the USA-an Overview. J.Mater.Sci. Technol. 2000,17(1):14~19
    [6] Rodney.R.Boyer. Aerospace Applications of Beta Titanium Alloys. JOM. 1994, (6):20~23
    [7] 杨冠军.钛合金研究和加工技术的新发展.钛工业进展.2001,(3):1~5
    [8] 杨玉请.大型航空发动机零件用的新型高强钛合金.钛工业进展.2000,(4):41~43
    [9] 蒋骏,李有亲,张中元.钛合金零件制造技术.国防工业出版社.1995:127~129
    [10] 陈宪斌.国外航空钛合金的发展应用及其特点分析.材料工程.1997,(10):3~6
    [11] Paul.J.Bania. Beta Titanium Alloys and Their Role In the Titanium Industry. JOM. 1994, (6):16~18
    [12] 李萍.Ti-15-3合金热反挤压成形的数值模拟与组织预报.哈尔滨工业大学博士论文
    [13] 王祖唐.金属塑性成形理论.机械工业出版社.1989:31~35
    [14] 柳建韬.工模钢热变形行为研究.上海交通大学博士学位论文.1998:20~44
    [15] 熊尚武,王国栋,张强.新变形抗力数学模型的建立与应用.钢铁.1993,(5):20~26
    [16] 罗子健,杨旗,姬婉华.考虑热效应的本构关系建立方法.中国有色金属学报.2000,10(6):804~808
    [17] 舒莹,曾卫东,周军.BT20合金高温变形行为的研究.材料科学与工艺.2005,2(13):66~69
    [18] K.P.Rao,Y.K.D.VPrasad,E.B.Hawbolt. Hot Deformation Studies on a Low-Carbon Steel: Part1-Flow Curves and the Constitutive Relationship. J.Mater.Process.Technol. 1996,(56):897~907
    [19] K.P.Rao,Y.K.D.VPrasad,E.B.Hawbolt. Hot Deformation Studies on a Low-Carbon Steel: Part2-An Algorithm for the Flow Stress Deformation under Varying Process Conditions. J.Mater.Process.Technol. 1996,(56):908~917
    [20] 林高用,张辉等.7075铝合金热压缩变形流变应力.中国有色金属学报. 2001,3:412~415
    [21] Jiantao Liu,Hongbing Chang,T.Y.Hsu. Prediction of the Flow Stress of High_speed Steel during Hot Deformation using a BP Artificial Neural Network. Journal of Materials Processing Technology. 2000,103:200~205
    [22] Li Miaoquan,Chen Dunjun,Xiong Aiming. An Adaptive Prediction Model of Grain Size for the Forging of Ti-6Al-4V alloy Based on Fuzzy Neural Networks. Journal of Materials Processing Technology. 2002,123:377~381
    [23] А.И.加卢什金.神经网络理论.北京:清华大学出版社.2002
    [24] Nihat Tosun, Latif Ozler. A Study of Life in Hot Machining using Artificial Neural Networks and Regression Analysis Method. Journal of Materials Processing Technology. 2002,124:99~104
    [25] Issam S.Jalham. Modeling Capability of the Artificial Neural Network(ANN) to Predict the Effect of the Hot Deformation Parameters on the Strength of Al_base Metal Matrix Composites. Composites Science and Technology. 2003,63:63~64
    [26] 高国峰,许学军,刘庄.26Cr2Ni4MoV钢高温热变形的BP神经网络预测.塑性工程学报.2000,7(2),14~17
    [27] 林新波,张质良,阮雪榆.利用BP神经网络预测材料温锻流动应力.上海交通大学学报.2002,36(4):459~462
    [28] 井玉安,胡晓东,胡林.人工神经网络在热轧宽厚板力学性能预测中的应用.钢铁.2002,37(9):26~28
    [29] 韩丽琦,藏勇,雏家祥.基于人工神经网络的热轧碳钢变形抗力预报.北京科技大学学报.2001,23(2):131~132
    [30] 李立新,孙瑞峰,汪凌云.含硼微合金钢奥氏体晶粒尺寸神经网络模型.特殊钢.2002,23(2):28~29
    [31] 陈明和,谢兰生,周建华.基于BP神经网络的TC4钛合金超塑性变形后组织及性能预测研究.机械工程材料.2003,12(27):4~6
    [32] 余同希.塑性力学.北京:高等教育出版社.1989
    [33] R.W.Clough. The Finite Element Method in Plane Stress Analysis. J.Struct.Pic, ASCE, Proc.2nd Conf.Electronic Computation. 1960:345
    [34] C.H.Lee,S.Kobayashi. New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method. Trans.ASME.J.Engr.Ind. 1973,95:871~873
    [35] O.C.Z ienkiewicz,P.N.Godbole. A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformations. J.Strain.Analysis. 1975,10:180~196
    [36] K.Osakada, J.Nakano,K.Mori. Finite Element Method for Rigid-Plastic Analysis of Metal Forming-Formulation for Finite Deformations. Int.J.Mech.Sci. 1982,24(8):459
    [37] P.Perzyna. Fundamental Problems in Viscoplasticity. Adv.App.Meth. 1969,9:243
    [38] S.I.Oh,N.M.Rebelo,S.Kobayashi. Finite-Element Formulation for the Analysis of Plastic Deformation of Rate-Sensitive Materials in Metal Forming. IUTAM Symposium, Tutzing/Germany. 1978:273
    [39] K.Osakada,J.Nakano,K.Mori. Finite element method of rigid plastic analysis of metal forming-Formulation for finite deformation. Int.J.Mech.Sci. 1982,24(8):459~468
    [40] K.Mori,K.Osakada. Analysis of the forming process of sintered powder metals by a rigid plastic finite element method. Int.J.Meth.Sci. 1987,29(4):229~238
    [41] K.Mori. General purpose FEM simulation for 3-Drolling. Adv.Tech.of Plast. 1990,4:1773~1779
    [42] 周明智,薛克敏,李萍.粉末多孔材料等径角挤压热力耦合有限元数值分析.中国有色金属学报.2006,9(16):1510~1516
    [43] 谢玲玲,宋宝韫.铜母线连续挤压扩展成形过程的三维有限元数值模拟.锻压技术.2005,3:72~75
    [44] 刘华,席庆坡,霍艳军.圆柱齿轮冷精锻数值模拟及其轮齿修形规律.西安交通大学学报.2004,11(38):1186~1189
    [45] 汪大年.金属塑性成型原理.机械工业出版社.1983
    [46] 王祖唐,官廷栋.金属塑性成形理论.机械工业出版社.1989:143~147
    [47] 谢建新,刘静安.金属挤压理论与技术.冶金工业出版社.2001:16~76
    [48] K.PRao,S.M.Doraivelu,Gopinathan. Deformation behaviour of 18-4-1 alloy steel and A1-5Si alloy at very high strain rates. Transactions of the Indian Institute of Metals. 1984,37(5):477~484
    [49] 刘雪峰.1420铝锂合金高温力学行为的研究.重庆大学博士论文.2001
    [50] 赵选民.试验设计方法.北京:科学出版社.2006
    [51] 周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社.2005
    [52] 张兴全,彭颖红,阮雪榆.Ti-5Al-2Sn-2Zr-4Mo-4Cr合金本构关系的新模型.上海交通大学学报.1999(2)
    [53] 辛啟斌.材料成形计算机模拟.北京:冶金工业出版社
    [54] 日本钛协会.钛加工技术.西北有色金属研究院《钛工业进展》编辑部.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700