铜铝复合母线排的电学性能及界面稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用轧制复合技术生产的铜—铝复合板,不仅具有结合面过渡电阻和热阻抗低,还具有耐蚀、延展性和成形性好等综合性能,是母线排的材料制备的重要发展方向。但是,铜铝双金属冷轧复合技术的实际生产还存在轧制复合工艺和后续热处理工艺参数的确定,以及工艺参数对复合板界面状态,界面稳定性,导电性等方面性能的影响研究不够等问题。为此,本文利用ANSYS软件模拟分析了铜铝复合板的导电性能及加载电压频率、铜铝复合板厚度、铜铝复合板宽度、铜层厚度以及复合板型对铜铝复合板导电性的影响;并研究了热处理温度及保温时间对铜铝复合板界面形貌、扩散层以及界面撕裂的影响,分析了复合板界面热疲劳性能。
     结果表明:相同条件的铜铝复合板加载电压频率由50Hz增加到1000Hz时,其总电流密度大幅下降,复合板的阻抗显著增加;随着铜层厚度、复合板厚度和复合板宽度的增加,铜铝复合板上总的电流密度均逐渐增加,复合板的阻抗逐渐减小,通过模拟获得的铜与铝的最佳厚度比为0.2;铜铝复合板的外形对铜铝复合板的导电性有很大影响,四面覆铜的直角边铜铝复合板相对于圆边复合板加载相同电压时,电流密度分布较规则,但电流集中程度要低;相同规格的铜铝复合板的导电性略低于纯铜母线,但明显优于纯铝母线排,可实现相同规格母线排的替代。
     在热处理过程中,由于Cu、Al原子逐渐穿越界面发生远程扩散,Cu/Al界面的界线越来越模糊,在界面附近形成一定深度的扩散过渡区域,扩散层厚度也随着热处理温度和时间的增加而增加;随着热处理温度的增加,复合板撕裂界面由类韧窝状逐渐转变为类河流状最后转变为花芯状,界面撕裂也由韧性撕裂逐渐转变为脆性撕裂;轧制铜铝复合板在有应力和无应力状态下进行热疲劳实验后,复合界面保持良好的结合状态,表明复合板界面层具有良好的热稳定性。
Cu/Al clad plate that is produced by clad rolling technique has been the research focus in the field of bus-bar materials for its advantages of not only low bonding resistance of both heat and electricity, but also good ductibility and forming property. However, there are many deficiencies in its research such as the control of process parameter during clad rolling and the subsequent heat treatment, and its effects on the interfacial characteristics and electric conductivity. So the electric conductivity of Cu/Al clad plate and its influencing factors, including thickness, width and contour of the clad plate, the applied voltage frequency, the thickness of copper layer were analyzed using ANSYS software. Also the effects of the temperature and time of heat treatment on the interfacial morphologies, diffusion transitional layer, as well as interfacial peeling and thermal fatigue behavior of the Cu/Al clad plate, were investigated.
     The results show that with the applied voltage frequency increases from 50 to 1000 Hz, the total electric current density decreases greatly, and the resistance of the Cu/Al clad plate increases obviously. With the increase of copper layer thickness, clad plate thickness and width respectively, the total electric current density increases and the resistance of the Cu/Al clad plate decreases gradually, and the optimal thickness ratio of copper and aluminum is obtained as 0.2 by simulation analysis. Also the contour of clad plate affects its electric conductivity greatly, as for the square edge clad plate, the electric current distributes more regular and concentration level is lighter than that of the round corner one with the same applied current. The electric conductivity of the Cu/Al clad plate is lower slightly than that of pure copper bus-bar, while much more excellent that of pure aluminum one with the same specification, so the clad plate can be used to substitute for the conventional pure copper or aluminum bus-bar.
     During the heat treatment, the boundary becomes vague and the diffusion transition zone with a certain thickness is formed at the interfacial zone between copper layer and aluminum one for the diffusion of copper and aluminum atoms occurring across the interface, and the thickness of diffusion layer increases with the increases of the heat treatment temperature and time. As the heat treatment temperature increases, the morphology of peeling interface changes from dimple-like to stream-like, and then to pistil-like, and the interfacial peeling behavior changes from ductile peering to brittle one. The composite interface is still of good bonding state after thermal fatigue testing with and without stress, which indicates that the interfacial layer of the Cu/Al clad plate is of good thermal stability.
引文
[1]孙德勤,吴春京,谢建新.铜包铝复合线材制作技术的发展现状与前景.电线电缆,2003(3):3-6.
    [2]高文浩.铜包铝线标准化.光纤与电缆及其应用技术,1999(3):23-27.
    [3]刘芳.金属的电化学腐蚀与铜铝导体的连接,农村电气化,2001(3):35-36.
    [4]张正南.迭层母线排,电源技术应用,2001(3):44-46.
    [5]周邦新,蒋有荣。Cu-Al爆炸焊接结合层的透射电镜研究。金属学报,1994(3):B104-108.
    [6]戴雅康.以铜包铝线为内导体的CATV同轴电缆的特性.广播与电视技术,2001(3):140-142.
    [7]戴雅康,杨喜山,王朔.包覆焊接法生产的铜包铝线的质量和性能.电线电缆,1997,(5):25-28.
    [8]吴春京,于治民,谢建新,吴渊。充芯连铸法制备铜包铝双金属复合材料的研究。铸造,2004(5):43-45.
    [9]胡捷.铜包铝复台线材静态挤压加工工艺研究.新技术新工艺,2001 (9):27-28.
    [10]郑雁军,姚军鑫,李国俊.高强高导铜合金研究现状及展望。材料导报,1997,11(6):52.
    [11]盛立远.铜铝轧制复合板导电特性及复合技术的研究硕士学位论文。沈阳:沈阳工业大学,2005.
    [12]张胜华,郭祖军.铜-铝复合材料的研究.中国有色金属学报,1995(4):128-132.
    [13]陈瑞娟,杨俊友,袁晓光.铜—铝—铜三层复合板内部涡流场分布研究.沈阳工业大学学报,2006(4):388-392.
    [14]马志新,胡捷,李德富,李彦利.层状金属复合板的研究和生产现状.稀有金属.2003(6):799-803.
    [15]孙德勤,吴春京,谢建新.金属复合线材成形工艺的研究开发概况.材料导报,2003,17(5):65-68.
    [16]刘晓涛,张廷安,崔建忠.层状金属复合材料生产工艺及其新进展.材料导报,2002(7):41-44.
    [17]角川清夫.复合金属材料的制造方法.国外金属材料,1976(3):56-60.
    [18]沙才智.复合钢板,冶金丛刊,1998(3):38-39.
    [19]王廷傅.不锈复合钢板生产技术发展现状,钢铁,1986,21(1):47-51.
    [20]李正华.生产复合板的主要方法及其基本特点[J].稀有金属2000,(3):8-11.
    [21]Bevk J, Harbison J P, Bell J L. Anomalous increase in strength of in formed Cu-Nb multifilamentary composite. Applied Physics, 1978, 49: 6031-6036.
    [22]陈克巧 张曙红,张代明 李世芸 李建云。金属复合材料研究进展及新技术述评。四川有色金属,2000(2)28-30.
    [23]田雅琴,秦建平,李小红。金属复合板的工艺研究现状与发展。材料开发与应用,2006(2):40-43.
    [24]Hong S I, Hill M A. Microstructural stability of Cu-Nb microcompitre fabricate wires fabricated by the bundling and drawing process[J]. Mater. Sci. Eng., 2000. A281: 189.
    [25]Hong S, Hill MA, Kin H S. Strength and ductility of heavily drawn bundled Cu-Nb filam entary m icrocom posite wires with various Nb contents[J].Metall. Mater. Trans, 2000, 31A: 2457.
    [26]Jhe SC, Delagi R G, Forster J A, et al. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple rolL bondinO J1. Metall. Trans 1993, 24A: 15.
    [27]Steppan J J, Roth J A. A review of corrosion failure mechanisms during accelerated tests[J]J. Electrochem. Soc, 1987,134(1):175.
    [28]Gao B J, Jiang H M. A study on the mechanism of micrometer copper powder plated silver using argenta mine solution[J]. Chin. J. Inorganic Chemisity, 2000,16(4):669.
    [29]Tan F B, Cai Y Z, et al. Chemically silvering copper powder and it stary microcom posites[J]. J Mater Res, 2000,15(9):1889.
    [30]Rohatgi P K, Liu Y, Ray S. Friction and wear of metal matrix composites[A]. Friction Lubrication and Wear Technology, ASM Hand-book. Ivetals Park, OH:ASM International, 1992. 801-811.
    [31]Liu Y B, Lira S C, Lu L, et al. Recent development in thefabrication of metal matrix particulate composites using powder metallurgy techniques. Journal of lVHterials Science, 1994, 29(8):1999-2007.
    [32]Alpas A, Zhang J. Effect of SiC particulate reinforcement on the dry sliding wear of aluminum7silicon alloys(A356)[J]Wear, 1992, 155:83-104.
    [33]M. Abbasi, A. Karimi Taheri, M. T. Salehi. Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process. Journal of Alloys and Compounds 319 (2001) 233-241.
    [34]雀部博之编,曹墉等译.导电高分子材料,北京:科学出版社,1989.Ahrensburg B W. Kunststoffe, 1990, 80(3): 21.
    [35]Lee R E, Harris S J. Effect of fiber diameter and inter fiber spacing on the tensile properties of copper tungsten composite [J]. Journal of Physics D:Applie physics 1974, 7(17): 2313-2328.
    [36]Ahmad I, Barranco JM. Strengthening of copper with tantalum (continuous) filaments. Metallurgical Transactions, 1970, B 14:989-995.
    [37]Kuniya K, Arakawa H, Kanai T. Development of copper-carbon fiber composite for electrodes of power semiconductor devices IEEE Transactions on Compnents[C], Hybrids and Manufacturing Technology, 1983, b(4):467-472.
    [38]韩绍昌,徐仲榆.碳/铜复合材料研究进展「J」.机械工程材料,1999,23(6):6-8.
    [39]邓华,姚若浩,杨建武.铜铝轧制复合工艺研究.江西冶金,1997,17(1):26-30.
    [40]W.E. Verkamp, Copper-to-aluminum transition in high direct-current bus systems, IEEE Trans. 1995 (20): 187-194.
    [41]M. Braunovic, N. Aleksandrov, Effect of electrical current inbimetallic aluminum-copper joint, IEEE Trans. 1993 (10): 261-268.
    [42]V.L.A. Silveria, A.G. Mury, Analysis of the behavior of bimetallic joints (Al/Cu), J. Microstruct. Sci. 1987 (14)277-287.
    [43]H. Kreye, K. Thomas, Electron microscopically test and the bonding mechanism of cold pressure welding, J. Weld. Cutting. 1977 (29) 249-252.
    [44]李生智.金属压力加工概论.北京:冶金工业出版社,1984:31-32林大超.精密复合带材异步轧制工艺中的变形关系.昆明理工大学学报,1997,22(1):78-83.
    [45]段振华,张代明,孙勇等.双金属复合轧制变形特点及前滑过程研究.冶金设备,1998,110(4):1-4.
    [46]李世俊,王璞其,贺秀芳.轧制技术国内外情况.北京:中国金属学会,1990:120-125.
    [47]郑远谋,黄荣光.爆炸焊接和金属复合材料,上海有色金属,1998.19(3):121-126.
    [48]于田春.金属基复合材料。北京:冶金工业出版社,1995:9-11.
    [49]王素霞。赵胜国.爆炸焊接一热轧法生产复合板界面研究,钢铁研究学报,1995,7(3):51-54.
    [50]孙德勤,吴春京,谢建新.铜包铝复合线材制作技术的发展现状与前景.电线电缆,2003(3):3-6.
    [51]胡文军.异种金属复合材料电力金具及电气性能.机械,2000,27(2):44-45.
    [52]张胜华,郭祖军.铜—铝轧制复合材料的研究.中国有色金属学报,1995,5(4):128-132.
    [53]李立新。铝铜双金属复合材料生产新工艺。上海有色金属,1999,20(2):62-65.
    Rollson E. C. Pressure Welding of Metals. British Welding Journal, 1959, 6 (1): 1-4
    [54]Vaidyanath L.R. Nicholas M. G. and Milner D.R. Pressure welding by Rolling. British Welding Journal, 1959, 6 (1): 13-28.
    [55]王铭宗,郑红专,姚利仁.铝—钢双金属复合轧制层厚比与轧制力的研究.轧钢,1994(6):14-17.
    [56]M K Ghosh, R K Pandey and P Singh. Thermal effect on the film thickness inhigh-speed lubricated cold rolling of a strip~an inlet zone analysis. Proc.Instn Mech. Engrs, 2003 (217): 155-165.
    [57]魏伟,史庆南.铜/钢双金属异步轧制复合机理研究.稀有金属,2001,25(4):307-311.
    [58]Ciupik. L.F. Mechanism of Cold Deformation Bonding of Metals DuringTheir Simultaneous Plastic Flow. Advanced Technology of Plasticity, Tokyo, 1984: 133-138.
    [59]Cave J.A. and Williams J.D. The Mechanism of Cold Pressure Welding by Roiling. Journal of Inst Metals, 1973, lO1 (2): 203-207.
    [60]杨扬.爆炸复合研究现状及发展趋势.材料导报,1995(1):72-76.
    [61]郑远谋.爆炸焊与异种金属的焊接.焊接技术(工艺与新技术),2001,30(5):25-26.
    [62]Yeong-Maw Hwang, Hung-Bsiou Hsu, Yuh-Lin Hwang. Analytical and experimental study on bonding behavior at the roll gap during complex rolling of sandwich sheets. International Journal of Mechanical Sciences, 2000 (42): 2417-2437.
    [63]张胜华,郭祖军.铝/铜轧制复合板的界面结合机制.中南工业大学学报,1995,26(4):509-513.
    [64]于宝义,齐克敏,安振之.铜—钢—铜三层复合板室温轧制成形工艺及结合机制的研究.热加工工艺,2001(3):34-36.
    [65]李兴刚,齐克敏,朱泉.锌/铝轧制复合研究.中国有色金属学报,1999,9(2):300-304.
    [66]Y.Sutou, T.Omori, J.J. Wang, R. Kainuma, K. Ishida. Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. MATERIALS SCIENCE& ENGINEERING, A 2004: 278-282.
    [67]H. Dyja, S. Mróz, A. Milenin. Theoretical and experimental analysis of the rolling process of bimetallic rods Cu—steel and Cu—Al. Materials Processing Technology, 2004: 1-8.
    [68]O. engler, x. w. kong and k. lacke. Recrystallisation textures of paticle-containing al-cu and al-mn single crystals. Acts mster, 2001 (49): 1701-1715.
    [69]J. Rayen, M. Sherer, C. Bauer, Investigation of interfacial reaction in thin couples of aluminum and copper by measurement of contact resistance, J. Thin Solid Film 65 (1980) 381-391.
    [70]耿相英,何艳玲,李世春.固相扩散Cu/Al界面研究.中国石油大学学报(自然科学版),2006(2):78-82.
    [71]冯端,金属物理学(第一卷).北京:科学出版社,1998.
    [72]潘金生,仝建民,田民波.材料科学基础.北京:清华出版社,1998.
    [73]李亚江,吴会强,陈茂爱,杨敏,冯涛.Cu/Al扩散焊工艺及结合界面的组织性能.焊接,2001(10):7-10.
    [74]寿伟春,李向丽.铜包铝线在射频电缆中的应用.光纤与电缆及其应用技术,2000(2):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700