水稻土(黄泥土)微团聚体表面性质及对铜离子吸附与解吸特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微团聚体是土壤最基本的物质和功能单元,其结构和组成特点对土壤环境的物理和化学过程起关键的控制作用。土壤中微团聚体与有机质和矿物质的结合方式不同,它们对植物养分的吸收和分布、对重金属和有机毒物的束缚能力以及生物有效性等方面存在一定的差异。因为微团聚体由较小的粘土矿物通过植物的细根和丛状菌根的菌丝进一步胶结形成的,因此部分强亲和力的位点被屏蔽或减弱。相反,实验室传统的风干磨细方法(即全土)使有机质和氧化铁等暴露在土壤表面而具有更多的吸附位点,对重金属的结合能力大大提高。所以过去以风干磨细的整体土壤作为对象,研究重金属吸附的结果,与田间实际情况下土壤对重金属的保持能力有一定的差异。本文以分离的微团聚体颗粒组为材料,研究其铜离子的吸附和解吸行为,讨论微团聚体颗粒组的铜吸附特性与本体土壤过程的联系与差别,以从微观尺度揭示田间微团聚体的物理化学过程,为认识野外土壤的微观过程和环境功能提供科学依据。
     本文选择太湖地区典型水稻土-黄泥土,采用低能量超声波分散和冷冻机干燥法提取不同粒径的微团聚体颗粒组样品,测定全土和微团聚体与重金属吸附有关的基本性质。采用平衡液吸附法和CaCl_2与HCl溶液连续解吸法,研究全土和微团聚体颗粒组对Cu~(2+)的吸附与解吸特征以及铝的溶出和土壤溶液pH下降的特点;并研究土壤溶液pH和磷处理以及在磷共存条件下对铜吸附与解吸的影响;同时采用磁力搅拌法研究全土和微团聚体颗粒组对Cu~(2+)吸附与解吸以及Cu~(2+)吸附过程土壤溶液pH变化动力学。以平衡吸附法结合吸附动力学探讨土壤对重金属Cu~(2+)的吸附与解吸的机理。主要结果和认识如下:
     一、黄泥土中有机质和铁、铝氧化物在微团聚体中的含量具有相同的趋势,即在粘粒级粒组中含量最高,而在粗粉砂级粒组中含量最低。有机质与游离氧化铁、铝在微团聚体中的分布显著相关,说明游离氧化铁、铝有利于有机质的固存。微团聚体中阳离子交换量和表面负电荷(包括可变负电荷、永久负电荷)的数量与其有机质和氧化铁、铝含量有正相关。而阴离子交换量与有机质含量负相关。
     二、全土对Cu~(2+)的吸附更符合Langmuir吸附等温式,而微团聚体颗粒组对Cu~(2+)的吸附更符合Freundlich吸附等温式。说明Cu~(2+)在全土表面上主要可从单层吸附理解,而在微团聚体颗粒组表面上更多以多层吸附。全土和微团聚体颗粒组吸附量大小顺序为粘粒级>砂粒级>全土>粉砂级>粗粉砂级,这与其游离氧化铁、铝和有机质含量正相关。不同粒径微团聚体颗粒组的加和吸附总量小于全土,且各个粒径微团聚体颗粒组Cu~(2+)吸附与解吸速率均较全土慢。Cu~(2+)吸附分为快吸附与慢吸附两个阶段。快吸附阶段Cu~(2+)以高亲和力专性吸附于高选择性的吸附位点,即专性吸附,该过程释放H~+,土壤悬液pH迅速下降;慢吸附阶段Cu~(2+)吸附于无选择性的吸附位点,即非专性吸附,该过程不释放H~+,土壤悬液pH缓慢下降,然后略有缓慢上升,Al的溶出也发生在此阶段。温度升高增加快吸附速率,慢吸附速率随温度升高而降低。
     三、在外加Cu~(2+)溶液浓度大于40 mg·L~(-1)条件下,全土和微团聚体颗粒组吸附Cu~(2+)的过程发生Al的溶出,同时溶液pH显著下降。pH下降值与Cu~(2+)吸附量和Al溶出量呈显著正相关,并且Al交换量与非专性吸附量呈极显著正相关。外加Cu~(2+)溶液在pH2.0~6.5条件下,pH升高,Cu~(2+)吸附量随之增加,Al溶出量随之减少。低pH条件下有利于非专性吸附,高pH条件下有利于专性吸附。
     四、全土和微团聚体颗粒组吸附P后,Cu~(2+)吸附量显著增加,并且Cu~(2+)吸附量与P的吸附量呈显著正相关,而Cu~(2+)解吸率随P的吸附量增加逐渐减小。在P共存的土壤溶液中,在低P浓度时,P对Cu~(2+)的吸附发生抑制作用,高P浓度时,发生促进作用,Cu~(2+)吸附量随P浓度的变化呈波谷形变化。对于Cu~(2+)的解吸,低P浓度时,P促进Cu~(2+)的解吸,高P浓度时,P抑制Cu~(2+)的解吸,Cu~(2+)解吸率随P浓度的变化呈波蜂形变化。
     综上所述,平衡吸附法和动力学方法均证明了微团聚体的吸附特征不同于全土。在实验条件下,微团聚体颗粒组吸附总量小于全土,pH升高和P处理这种差异更为显著。微团聚体颗粒组中无机矿物表面被有机物质包被,而风干磨细的处理方法使有机质和氧化铁等暴露在土壤表面而具有更多的吸附位点,所以处理后的全土不仅增加了Cu~(2+)吸附量,而且也增加了Cu~(2+)吸附与解吸的速率。
The micro-aggregated particles of soils are the fundamental materials and functional cell of the soils, and its structure and combination plays a key role in control the physical and chemical process of soil environment. The different combination mode exist between the soil micro-aggregates of different sizes and organic matter and minerals, which resulted in the diversity on the adsorption and distribution of plant nutrient, the constraint capability of the heavy metals and toxic organic pollutants, and biological effectiveness. The micro-aggregated particles are cemented by clay mineral through radicel and mycelium, some of the sites strong affinity are shielded or weakened. On the contrary, air-dried and milled soil(whole soil)in laboratory traditionarily, which made organic matter and ferric oxide exposing on the edaphic surface, are more adsorption sites, and the ability of combining with heavy metal enhances. So there is different heavy metal adsorption result between whole soil method and field soil. We study the adsorption and desorption of the copper ion in the micro-aggregated particles of soils, and find the relations between the adsorption and the properties of soils. From micro scales, we reveal the physical and chemical processes of micro-aggregate particles in soil environment. Our studies provide science evidences to recognize the microscopic process of field soil and environmental functions.
     In this paper, size fractions of micro-aggregates were separated from undisturbed paddy soil samples in Tai Lake region by using low energy ultrasonic dispersion and freeze-dry method. The adsorption and desorption of Cu~(2+) in the micro-aggregates and the original soils, the dissolution aluminum, and pH decrease in the soil solution were studied by using equilibrium adsorption method and continue desorption method of CaCl_2 and HC1 solution. The effects of soil solution pH, phosphorus treatment, and phosphorus coexistence on the adsorption and desorption of copper were investigated. The effects of the bulk soil and the micro-aggregate particles on the adsorption and desorption of Cu~(2+) and soil solution pH changes in Cu~(2+) adsorption process were also investigated by using magnetic stirring method. At the same time, the mechanism of effects of soil on the adsorption and desorption were investigated by the equilibrium adsorption method and adsorption kinetics.
     Our main results are :
     1. The organic matter, ferric oxide and alumina of micro-aggegates in yellow soil are all highest content in clay and low in sand. Organic matter is correlative evidently with ferric oxide and alumina in micro-aggegates, which means that ferric oxide and alumina are propitious to fix organic matter. The quantity of cation exchange capacity and superficial anion (including alterable anion and permanent anion) in micro-aggregates are correlative with organic matter, ferric oxide and alumina, while the anion exchange capacity is negative correlated with organic matter.
     2. The adsorption of Cu~(2+) by the bulk soil samples fits well to the Langmuir Isothermmodel and the adsorption of Cu~(2+) by micro-aggegates fits well to the Freundlich Isothermmodel. Its indicated that the Cu~(2+) in the surface of bulk soil belonged to the monolayeradsorption, while on the surface of micro-aggregate particles could be multilayer adsorption.The Cu~(2+) adsorption capacity was in the order: clay fraction > sand fraction > bulk soil >siltfraction >coarse silt fraction, which correlated well to the contents of free Fe/Al oxide andorganic matter within them. The total adsorption capacity of different size particles was lessthan the bulk soil, while the sequence of desorption rate was reversed. The adsorption ofCu~(2+) was divided into fast adsorption and slow adsorption. The Cu~(2+) adsorbed at highlyselective adsorption sites by high affinity at fast adsorption stage, which process belongedto rapid adsorption stage and releases H~+ result in the decrease of pH in soil suspensions.Then, a slow adsorption stage followed, Cu~(2+) was adsorbed on the non-selective sites by theweak affinity adsorption, which process belonged to non-specific adsorption, and Cu~(2+)exchange Al process also occurred in the course of this stage. The pH of soil suspensionsfirst slowly declined, then slightly increased to balance. The fast adsorption rate increasedas the temperature, while the slow adsorption rate decreased as the temperature increase.
     3. The Al exchanged and pH dropped significantly when the bulk soil and micro-aggregates particles adsorbed Cu~(2+) under the conditions of plus copper concentrations more than 40 mg-L~(-1) . The amounts of adsorbed Cu~(2+) and the dissolution of aluminum were significantly correlated with the decrease of the pH. Al exchange capacities were significantly correlated and non-specific adsorption capacity. Cu~(2+) adsorption amounts increased and dissolution of aluminum decreased as the increase of pH when pH is at the range of 2.0~6.5. Low pH helped to non-specific adsorption and high pH helped to specific adsorption.
     4. Adsorption amount of Cu~(2+) increased significantly when bulk soil and micro-aggregates were previously treated with phosphate, and it correlated well to the adsorption contents phosphate, while the desorption rate of Cu~(2+) decreased as the increase of phosphate adsorption amount. At the P coexistence soil solution, Cu~(2+) adsorption was restrained by P at the low P concentration, while adsorption was accelerated at high P concentration. Hence fore, the adsorption amount of Cu~(2+) was generally characterized as valley-like curves with the change of P concentration. The desorption of Cu~(2+) was promoted by P at a low P concentration, while the desorption of Cu~(2+) was inhibited by P at a high P concentration. The desorption rate of Cu~(2+) was generally characterized as mountain-like curves with the change of P concentration.
     According to the above results, we can conclude that the characteristic of micro-aggregates is different to bulk soil, which can be obtained from both equilibrium adsorption and kinetic results. In experimental condition, adsorption amount of Cu~(2+) in micro-aggregates is less than bulk soil, which is more observable as pH increases and is treated with phosphate. Inorganic minerals wrapped with organic matter, and the air-dried and. milled soil made organic matter and ferric oxide exposing on the edaphic surface, are more adsorption sites, bulk soil can adsorb more Cu~(2+) and the velocity of adsorption and desorption of Cu~(2+) are more rapid.
引文
1. Amelung W., KaisSer K., Kammerer G. et al. Organic carbon at soil particle surface-evidence from X-ray photoelectron spectroscopy and surface abrasion. Soil Sci. Soc. Am. J. 2002, 66:1526-1531.
    2. Angers D.A.,Recous S., Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of ~(13)C. ~(15)N-labelled wheat straw in situ.. Eur. J. Soil Sci. 1997, 48: 295-300.
    3. Aoyama M, Itaya S, Otowa M.. Effects of copper on the decomposition of plant residues, microbial biomass and β-glucosidase activity on soils [J]. Soil Sci. Plant Nutri. 1993, 39: 557-566.
    4. Basta N.T., Tabatabai M.A. Effect of cropping systems on adsorption of metals by soils. II. Effect of pH. Soil Sci.,1992, 153:195-204
    5. Blanco-Canqui H. Lal R. Mechanism of C sequestration in soil aggregates. Critical Review in Plant Science. 2004, 23(6):481-504.
    6. Boekhold A E, Meeussen J C L. Relevance of soil-pH in view of risk assessment of soil pollution [J] soil & Environment, 1993, 20: 31-39.
    7. Boht D G. Chemistry: Physical-Chemistry Models [M]. Elevier Scientific Publishing Company. New York. 1979.
    8. Bruemmer. G.W., Gerth J, Tiller K.G , Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science 1988,39 :37-52.
    9. Cheshire M V. Nature and origin of carbohydrates in soil [M ]. London:Academic Press Inc,1979.
    10. Christensen B T, Physical fractionation of soil and organic matter in primary particle size and density separates, Adv. Soil Sci., 1992, 20: 1-90.
    11. Christensen T H. Cadmium soil sorption at low concentrations. Effect of time cadmium load pH and calcium [J]. Water, Air and Soil Pollution, 1984,21:105 -114.
    12. Coleman D C, Rcid C P P. Biological strategies of nutrient cycling in soil systems. Adrances in Ecological Research . 1983, 13:1-55.
    13. Curtin D. Possible role of aluminum in stabilizing organic matter in particle size fractions of Chemozemic and Solonetzic soils . Canadian Journal of Soil Science. 2002, 82:265-268.
    14. Davis J.A. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochimica et Cosmochimica Acta 1982, 46: 2 381-2 393
    15. Ducarouir J, Lamy. I Evidence of trace metal association with soil organic matter using particle-size fractionation after physical dispersion treatment [J]. Analyst, 1995, 120: 741-745.
    16. Emerson, W. W. A classification of soil aggregates based on their coherence in water [J]. Aust. J. Soil Res. 1967, (5): 47-57.
    17. Edwards AP, Bremner J M Microaggregates in soils. Journal of Soil Science. 1967,18: 65-73.
    18. EI-Swaify B A.., Emerson W. W. Changes in the physical properties of soil clays due to precipitated aluminium and iron hydroxide I Swelling and aggregate stability after drying SSSAP. 1975, 1056-1063.
    19. El-Swaify B A. Physical and mechanical properties of Oxisols. In Soil With Variable Change.edited by New Zealand. Society of Soil Sci. 1980,40: 303-322.
    20. Elliott E T Aggregate structure and carbon. nitrogen and phosphorus in native and cultivated soils Soil. Sci. Soc. Am. J.1986, 50:627-633.
    21. Elzinga E J., Peak D., Sparks D. L., Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface. Geochim. Cosmochim. Acta, 2001,.65:2-19
    22. Gale W.J.,Cambardella C. A.and Bailey T.B. Root-derived carbon and the formation and stabilization of aggregates. Soil Sci. Soc. Am. J. 2000, 64: 201-207.
    23. Greenland D. J. Mechanism of interact ion between clays and defined organic compounds[J ]. Soil Fert: 1961,28:415-425.
    24. Gu B., Schmitt J., Chen Z., Liang L.et al., Adsorption and desorption of natural organic matter on iron oxide. Environmental Science & Technology 1994, 28: 38-46.
    25. Hargrove W L, Thomas G W. Extraction of aluminum from aluminum-organic matter complexes [J]. Soil. Sci. Soc. Am. J. 1981,45: 151-153.
    26. Harter R D, Naidu R. Role of metal organic complexation in metal sorptionby soils [J]. Adv Agron, 1995,55:219-263.
    27. He Jizheng,Liu Dongbi, Liu Fan and Li Xueyuan. Determination and Characteristic s of Surface Charge of Soils in Central and Southern China. 华中农业大学学报 2000. 19 (3): 240-248.
    28. Jardine P M, Sparks D L. Potssium-calcium exchange in a multi-reactive soil system: I . Kinetics. Soil Science Society of America Journal, 1984, 47:39-45.
    29. Jarvis S C. Copper sorption by soils at low concentration and relation to uptake by plant [J]. Soil Science, 1981,32:257-269.
    30. Jastrow J.D., Miller R.M. and Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 1998, 30. 905-916.
    31. Jones R C and Uehara G. Amorphous coatings on mineral surfaces. SSSAP. 1973, 37:792-798.
    32. Jones R C, Uehara G. Amorphous coatings on mineral surfaces. SSSAP. 1973, 37:792-798.
    33. Kahle M., Kleber M. and Jahn R. Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite-extractable iron. European Journal of Soil Science. 2002,53:639-644
    34. Kahle M., Kleber M., Jahn R. Predicting carbon content in illitic clay fractions from surface area. cation exchange capacity and dithionite-extractable iron [J]. European Journal of Soil Science. 2002, 53:639-644
    35. Kiem R., Kogel-Knabner I. Refractory organic carbon in particle-size fraction of arable soil II: organic carbon on relation to mineral surface and iron oxides in fraction <6mm. Organic Geochemistry. 2002, 33:1 699-1 613
    36. .Kuo S, Moneal B. L, Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide [J].Soil Sci Soc Amer J, 1984, 48: 1 040-1 044.
    37. Lal R., J. Kimble. and R. Follett. Soil quality management for carbon sequestration. 1997:1-8.
    38. Lal R., J.Soil carbon sequestration in China through agricultural intensification and restoration of degraded and desertified ecosystems [J]. Land Degradation & Development, 2002, 13:45-59.
    39. Lehmann R G, Harter R D. Assessment of copper soil bond strength by desorp tion kinetics [J]. Soil Science Society of America Journal, 1984, 48 (4): 769 - 772.
    40. Leinweber P, .Paetsch C , Schulten H R, New evidence for the molecular composition of organic matter in vertisols [J]. Soil Sci. 1998, 164: 857-870.
    41. Leinweber P, .Paetsch C , Schulten H R. Heavy metal retentionby organo.mineral particle-size fraction from soils in long2term agricultural experiments [J]. Archives of Agronomy Soil Sciences, 1995,39:271-285.
    42. Leleyter L, Probst J L. A new sequential extraction procedure for the speciation of particulate trace elements in river sediments[J]. International Journal of Environmental Analytical Chemistry, 1999, 73:109-128
    43. Lindsay W L. Chemical equilibria in soils. New York: John Wiley &Sons, 1979. 222-236.
    44. Materechera S A.,J Mkirby.A.M.Alston,and A.R.Dexter .Modification of Soil aggregation by watering regime and roots growing through beds of large aggregates .Plant Soil 1994,160;57-66
    45. Mbagwu J S C. Effects of inculation with organic substrates on the stability of soil aggregate to water[J]. Pedlogie, 1989,39:159-163.
    46. Monreal. C M, Schulten H R. and Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of aGleysol. .Can. J. Soil Sci. 1997, 77: 379-388.
    47. Morra, M J., Blank, R.R., Freeborn, L.L., Shafii, B.Size fractionation of soil organo-mineral complexes using ultrasonic dispersion. Soil Science. 1991,152: 294-303.
    48. Neergaadhe B, Petersen L. Influence of arbuscular mycorrhizal fungionsoil structure and aggregate stability of vertisol [J].Plant and Soil 2000,218: 173-183.
    49. Nordstrom D K, Howard M M. Aqueous equilibrium data for mononuclear aluminum species, in The Environmental Chemistry of Aluminum (edited by Sposito, G.). CRC Press Inc,1989.
    50. Nordstrom, D. K., May, H. M. Aqueous equilibrium. data for mononuclear aluminum species. In. The Environ-mental Chemistry of Aluminum.Environraent Chemistry of Aluminum. Florida.CRC Press 1979, 39-80
    51. Oades R D, Morris S R, Moyes R B. Alumina-Supported Tungsten Catalysts for the Hydrogenation of Carbon Monoxide [J]. Catalysis Today, 1991, 10(3): 379-385.
    52. Ostergren J.D., Trainor T.P.,. Bargar J.R, et al., Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH) I. Carbonate, J Coll. Interf. Sci. 2000, 225 : 466-482.
    53. Puget P., Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51. 595-605.
    54. Puget P., Chenu C, Balesdent J. Total and young organic matterdistributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 1995, 46: 449-459.
    55. Qian J, Shan X Q, Wang Z J, Distribution and plant availability of heavy meatals in different particle-size fractions of soil [J]. The Science of Total Environment. 1996, 187: 131-141.
    56. Qin F, Shan X Q,Weib. Effects of low molecular weight organic acids and residence time on desorption of Cu, Cd and Pb from soils [J]. Chemosphere, 2004, 57 (4): 253 - 263.
    57. Sauve S. Soild solution portioning of metals in contaminated soils dependence on pH total Metal burden and organic matter [J]. Environmental Science and Technollgy, 2000, 34(7): 1125-1131.
    58. Schnitzer M, Kodama H. Interactions between organic and inorganic components in particle.-size fractions separated from for soils [J] Soil Science Society of American Journal, 1992, 56: 1099-1105.
    59. Schulten, H.R, Leinweber P, Schnitzer M, et al. Analytical pyrolysis and computer modeling of humic and soil particle [A]. In:Huang P M , Senesi N, Buffle J, eds. Environmental Particles: Structure and Surface Reactions of Soil Particles [C]. Chichester: Wiley, 1998. 281-324.
    60. Schulten, H.R, Leinweber P. New insights into organic-mineral particles: composition, properties and models of molecular structure [J]. Biology Fertilizer Soils, 2000, 30: 399-432.
    61. Schulten, H.R. Achemical structure for humic acid Pyrolysis. gaschromatography mass Spectrometry and pyrolysis soft ionizationmass Spectrometry evidence[A]. In: Senesi N, Miano T M, Eds.humic substances in the global environment and implications on human health [C].Amsterdam: Elsevie, 1994,43-56.
    62. Schulten, H.R. The three dimensional structure of humic sub. stances and soil organic matter studied by computational analyticalchemistry [J ]. Fresenius Journal of Analysis Chemistry, 1995,351:62-73.
    63. Six J., Elliott E T., Paustian K. Soil macro aggregate turnover and micro aggregate formation: a mechanism for C sequestration under no2tillage agricul2ture .Soil Biology and Biochemistry. 2000, 32:2 099-2 103.
    64. Six J., Elliott E.T., PaustianK.,Doran J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62. 1367-1377
    65. Sparks D L. Potassium dynamics in soils [A] In: Steward B A, Advances in Soil Science [C]. New York: Springer Verlage New York. 1987,1-62.
    66. Sparks, D.L, Jardine. P.M. Comparison of kinetic equations to describe potassiumcalcium exchange in pure and in mixed systems. Soil Sci. 1984,138:115-122.
    67. Speir T W, Kettels H A, Percival H J, Parshotam A. Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts [J]? Soil Biology and Biochemstry. 1999, 31:1953-1961.
    68. Sposito, G .The Sur face Chemistry of Soils. Oxford University Press, New York, 1984, 234: 29-37.
    69. Stemme R M, Gerzabcki M H, Kandeler E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication [J]. Soil Biology Biochemistry, 1998, 30: 9-17.
    70. Stone M. Gdroppo I., Distribution of lead, copper and zinc in size-fractionated river bed sediment in tow agricultural catchments of southern Ontario Canada. Environmental Pollution 1996,93(3):353-362
    71. Theng.B.K. Thehumus and extradited bynvarious reagents from soil[J].soil sci,1967,8(12):349-3631
    72. Tisdall J M. Possible role of soil micro-organisms in aggregation in soils. Plant and Soil, 1994, 159: 115-121.
    73. Tisdall J.M. Formation of soil aggregates and accumulation of soil organic matter. In: Carter M.R. and Stewart B.A. (eds), Structure and Organic Matter Storage Agricultural Soils.Advances in Soil Science. CRC Press/Lewis Publishers, New York, 1996, 57-96.
    74. Tisdall. J M, Oades J M. Organic matter and water2stable aggregates in soils [J]. Journal of Soil Sciences, 1982, 33: 1412-163.
    75. Turunen J. and Moore T R. Controls on carbon accumulation and storage in the mineral subsoil beneath peat in Lakkasuo mire. central Finland. European Journal of Soil Science. 2003, 54:279-286.
    76.Wilck W,Kretaschmar S.Bundt metal concentration in aggregate interiors exteriors whole aggregates and bulk of Costa Rican soils[J].Soil Science Society of America Journal,1999,63:1244-1249.
    77.Wilum Z.,Starzewski K.Soil Mechanics in Foundation Engineering.Surrey Univ.Press.1975.
    78.Wiseman C L S.,Puttmann W.Soil organic carbon and its sorptive preservation in central Germany.European Journal of Soil Science.2005,56:65-75.
    79.Wiseman C L S.,Puttmann W.Soil organic carbon and its sorptive preservation in central Germany.European Journal of Soil Science.2005,56:65-75.
    80.Xie R J,Mackenxie A F.Zinc sorption,desorption,and fraction in three autoclaved soils treated with pyrophosphate[J].Soil Science Society America Journal,1990,54:71-77.
    81.Yu S,He Z L,Huang C Y,et al.Effect of anions on the capacity and affinity of copper adsorption in two variable charge soils[J].Biogeochemistry,2005,75:1-18.
    82.Yu S.,.Huang CY.Adsorption-desorption behavior of copper at contaminated levels in red soils from China.J.Environ.Qual.2002,31:1 129-1 136.
    83.白庆中,宋燕光.有机物对重金属在粘土中吸附行为的影响[J].环境科学,2000,21(5):64-67.
    84.陈怀满著.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,79-144.
    85.陈铭,刘更另,孙富臣,等.溶液pH对红壤吸持磷机理的影响[J].环境化学,1995,14(4):306-310.
    86.陈铭.有机质和游离氧化铁对湖南红壤表面电荷性质的影响[J].热带亚热带土壤科学,1997,6(1):20-25
    87.陈世俭.铜污染土壤添加有机物质的生物效应Ⅰ.对黑麦草生物量的影响[J].土壤与环境2000,(3):183-185
    88.成杰民,潘根兴,郑金伟,等.模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J].土壤学报,2001,38(3):333-339.
    89.成杰民,潘根兴,郑金伟,等.太湖地区几种水稻土对重金属的缓冲能力的初探[J].农业环境保护,2000,19(1):21-24.
    90.邓时琴,徐梦熊.中国土壤颗粒研究Ⅲ.赣中丘陵旱地红壤及其各级颗粒的理化特性[J].土壤学报,1990,27(4):368-375
    91.董汉英,仇荣亮,吕越娜.模拟酸雨对南方土壤硅铝释放的影响[J].环境科学,2000,21(1):75-77.
    92.董元彦,李保华,路福绥.物理化学[M],北京:科学出版社,2000,157-160.
    93.董元彦,罗厚庭,李学垣.黄棕壤和红壤吸附磷酸根后对Zn~(2+)和Cd~(2+)次级吸附的动力学[J].环境化学,1995,14(4):300-305.
    94.董元彦,罗厚庭,张本俊.黄棕壤、红壤吸附磷酸根后对Cu~(2+)次级吸附的动力学[J].华中农业大学学报.1994,13(5):466-472.
    95.傅松柳,吴杰民.酸化土壤活性铝溶出及形态变化的初步研究[J]农村生态环境学报,1994,10(3):52-55.
    96.高彦征,贺纪正,凌婉婷,等.几种有机酸对污染土中Cu解吸的影响[J].中国环境科学,2003,22(3):244-248.
    97.郭朝晖,黄昌勇,廖柏寒.模拟酸雨对红壤中铝和水溶性有机质溶出及重金属活动性的影响[J].土壤学报,2003,40(3):380-385.
    98.郝余祥,程丽娟.不同粒径土壤团聚体的微生物组成[J].土壤学报,1964,2(8):192-195.
    99.何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M]北京:中国环境科学出版社,1998,35-45.
    100.胡红青,陈松,李妍,等.几种土壤的基本理化性质与Cu~(2+)吸附的关系[J].生态环境,2004,13(4):544-545.
    101.胡红青,刘华良,贺纪正,等.几种有机酸对恒电荷和可变电荷土壤吸Cu~(2+)的影响[J].土壤学报,2005,42(2):232-237.
    102.黄运湘,廖柏寒,王志坤.模拟酸雨对森林红壤中铝的溶出及不同土层酸度变化的影响[J].生态环境,2005,14(4):478-482.
    103.介晓磊,刘凡,李学垣,等.磷酸盐吸附对针铁矿表面电化学性质及锌次级吸附的影响[J].河南农业大学学报,2000,34(2):118-121.
    104.介晓磊,刘凡,徐凤琳,等.磷酸化针铁矿表面次级吸附态锌的化学分组[J].华中农业大学学报,1997,16(5):341-344.
    105.李保成,季国亮.恒电荷土壤和可变电荷土壤动电性质的研究[J].土壤学报,2000,37(1):62-68.
    106.李朝立,周立祥.我国几种典型土壤不同粒级组分对镉吸附行为影响的研究[J].农业环境科学学报2007,26(2):516-520
    107.李光林,魏世强.腐殖酸对铜的吸附与解吸特征[J].生态环境2003,12(1):4-7.
    108.李洪军,李瑛,张桂银,等.有机酸对潮褐土和红壤吸附Cu(Ⅱ)的影响及其机制[J].土壤与环境,2002,11(4):343-347.
    109.李九玉,徐仁扣.柠檬酸存在下酸性土壤中铝溶解动力学的初步研究[J].生态环境,2004,13(4):641-642.
    110.李九玉,徐仁扣.不同pH下低分子量有机酸对黄壤中铝活化的影响[J].环境化学,2005,24(3):275-278.
    111.李恋卿.几种农业土壤中微微团聚体颗粒间物质分异及其环境意义[D].南京农业大学博士论文,2001。
    112.李学垣主编.土壤化学及实验指导.北京:中国农业出版社.1997.
    113.李瑛,李洪军,张桂银,等.几种电解质对土壤吸附Cu的影响[J].生态环境,2003,12(1):8-11.
    114.李映强,曾觉廷.不同耕作制下水稻土有机质变化及其团聚作用.土壤学报,1991,28(4):404-409.
    115.李志辉,罗平.SPSS for Windows统计分析教程(第2版)[M].北京:电子工业出版社,2005.
    116.李忠佩,林心雄.田间条件下红壤水稻土有机碳的矿化量研究[J].土壤,2002,11(6):310-314.
    117.林琦,陈英旭,陈怀满,等.有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J].应用生态学报,2001,12(4):619-622.
    118.林玉锁,薛家骅.锌在石灰性土壤中的吸附动力学初步研究[J].环境科学学报,1989,9(2):144-148.
    119.凌婉婷,李学垣,贺纪正,等.土壤表面电荷特征与重金属吸附与解吸的相互关系[J].土壤通报,2002,33(6):456-460.
    120.刘冬碧,贺纪正,刘凡,等.中南地区几种土壤的表面电荷特性.Ⅳ氧化铁铝对土壤表面电荷性质的影响[J].土壤学报,2001,38(1):123-127.
    121.刘廷志,田胜艳,商平,等.蒙脱石吸附Cr~(3+)、Cd~(2+)、Cu~(2+)、pb~(2+)、Zn~(2+)的研究:pH值和有机酸的影响[J].生态环境,2005,14(3):353-356.
    122.刘永厚,张宁珍,姚益云,等.德兴铜矿附近铜污染农田的治理试验[J].江西农业大学学报,12(2):36-40.
    123.龙新宪,倪吾钟,杨肖娥.菜园土壤铜吸附—解吸特性的研究[J].农村生态环境,2000,16(3):39-41.卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    124.卢升高;竹蕾;郑晓萍。应用Le Bissonnais法测定富铁土中团聚体的稳定性及其意义[J].水土保持学报,2004,18(1):7-11.
    125.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999.
    126.律兆松;徐琪.中国白浆土研究Ⅱ.无定形铁、锰、铝氧化物特性及其元素地球化学分异[J].土壤学报,1995,32(1):32-39.
    127.罗洪亮,周剑,黄钊.机酸对几种土壤吸附铜的影响[J].中国岩溶,2002,22(3):160-164.
    128.罗厚庭,董元彦,李学垣.可变电荷土壤吸附磷酸根后对Cu、Zn、Cd次级吸附的影响[J].华中农业大学学报,1992,11(4):358-363
    129.罗厚庭,董元彦,李学垣.可变电荷土壤吸附磷酸根后对Cu、Zn、Cd次级吸附的影响[J].华中农业大学学报,1992,11(4):358-363.
    130.潘根兴,李恋卿,张旭辉等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618
    131.潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000,242-245.
    132.潘根兴.改进的酸碱滴定曲线法应用于研究土壤对酸雨的反应[J].南京农业大学学报,1991,14(2):128-132.
    133.潘根兴.土壤酸化过程的土壤化学分析[J].生态学杂志,1990,9(3):48-52.
    134.潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    135.秦瑞君,陈福兴.有机质对土壤高活性铝的影响[J].土壤通报,1998,29(3):111-112.
    136.戎秋涛,吴杰民,徐文彬,等.模拟酸雨对浙江东北部红壤盐基离子和铝的淋失影响研究[J].环境科学学报,1997,17(1):32-38.
    137.邵宗臣,何群,王维君.模拟酸雨对红壤铝形态的影响[J].热带亚热带土壤科学学报,1997,6(3):187-193.
    138.宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的微微团聚体分布与结合形态[D].南京农业大学博士论文,2006.
    139.孙卫玲,赵蓉,张岚,等.pH对铜在黄土中吸持及其形态的影晌[J].环境科学,2001,2(3):78-83.
    140.王代长,蒋新,卞永荣,等.模拟酸雨条件下Cd~(2+)在土壤及其矿物表面的解吸动力学特征[J].境科学,2004a,25(4):117-122.
    141.王代长,蒋新,贺纪正,等.模拟酸雨下H~+、Ca~(2+)在红壤表面的动力学特征[J].环境化学,2004b,23(4):403-408.
    142.王代长,蒋新,贺纪正,等.有机酸对可变电荷土壤铝释放的动力学研究[J].地球化学,2006,35(6):651-659.
    143.王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金,2003,24(1):47-49.
    144.王芳,李恋卿,董长勋,等.黄泥土和乌栅土不同粒径微团聚体对Cu~(2+)的吸附与解吸[J].环境化学 2007,26(2):135-240.
    145.王芳,李恋卿,潘根兴.黄泥土不同粒径微团聚体对Cd~(2+)的吸附与解吸研究[J1.环境科学,2006,27(3):590-593.
    146.王维君,邵宗臣.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-178.
    147.王维君,沉家坊,何群.模拟酸雨对主要酸性土壤中铝的溶出及形态的影响[J].生态学杂志,1992,4(2):127-129.
    148.王孝堂.土壤酸度对重金属形态分配的影响[J].土壤学报,1991,28(1):103-107.
    149.魏朝富,陈世正,谢德体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    150.魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,33(1):70-77.
    151.武玫玲。土壤对铜离子的专性吸附及其特征的研究[J].土壤学报,1989,26(1):31-40.
    152.武玫玲.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J].土壤通报,1985,26(3):138-141
    153.谢正苗.土壤中铜的化学平衡[J].环境科学进展,1996,4(2):1-23.
    154.熊毅,陈家坊.土壤胶体(第三册)土壤胶体的性质[M].北京:科学出版社,1990.
    155.徐建民,赛夫,袁可能.土壤有机矿质复合体研究.Ⅸ钙键复合体和铁率键复合体中腐殖质的性状特征[J].土壤学报,1999.36(2):168-169.
    156.徐建民,赛夫,袁可能.土壤有机矿质复合体研究Ⅸ:钙键复合体和铁铝键复合体中腐殖质的性状特征[J].土壤学报,1999,36(2):168-178.
    157.徐明岗,李菊梅,张青.pH对黄棕壤重金属解吸特征的影响[J].生态环境,2004,13(3): 312-315.
    158.徐琪,林章,董元华,等.中国稻田生态系统[M].中国农业出版社,1998:50-81.
    159.徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究.北京林业大学学报,2005,7(2):18-22.
    160.徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998a,35(2):162-170.
    161.徐仁扣,肖双成,季国亮.低分子量有机酸影响可变电荷土壤吸附铜的机制[J].中国环境科学,2005,25(3):334-338.
    162.徐仁扣,肖双成,李九玉.低分子量有机酸对两种可变电荷土壤吸附铜的影响[J].农业环境科学学报,2004,23(2):304-307.
    163.徐仁扣.pH、温度和水土比对酸性土壤溶液中铝离子形态分布的影响[J].热带亚热带土壤科学,1998b,7(1):26-30.
    164.徐仁扣.有机酸对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤,1998c,4:214-217.
    165.薛泉宏,尉庆丰,薛喜乐.黄土性土壤在连续流条件下吸附-解吸磷酸根的动力学研究[J].土壤学报,1995,32(2):142-150.
    166.杨金燕,杨肖娥,何振立,等.pH和Cu~(2+)、Zn~(2+)对两种可变电荷土壤中吸附态Pb解吸行为的影响[J].农业环境科学学报,2005,24(3):469-475.
    167.杨亚提,王旭东,张一平,等.小分子有机酸对恒电荷土壤胶体Pb~(2+)吸附-解吸的影响[J].应用生态学报,2003a,14(11):1921-1924.
    168.杨亚提,张一平.陪伴离子对土壤胶体吸附Cu~(2+)和Pb~(2+)的影响[J].土壤学报,2003b,40(2):218-223。
    169.杨亚提,张一平.土表面铜吸附-解吸的动力学特征及滞后效应[J].土壤通报,2000,31(6):248-250
    170.杨亚提,张一平.土壤胶体表面吸附态铜的解吸动力学特征[J].土壤与环境,2001,10(3):181-184.
    171.杨亚提,张一平,张卫华.铜在土壤-溶液界面吸附-解吸特性的研究[J].西北农业学报,1998,7(4):82-85.
    172.于天仁,季国亮,丁昌璞,等.可变土壤的电化学[M].北京:科学出版社,1996.
    173.余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响[J].环境化学,1997,16(1):30-36.
    174.俞慎.红壤铜污染的物理化学行为和生物学表征[D]..浙江大学博士论文,2002.
    175.张桂银,毕淑琴,董元彦,等.有机酸对针铁矿和三羟铝石吸附镉离子的影响[J].河北农业大学学报,2002,25(4):49-52.
    176.张桂银,董元彦,李学垣,等.有机酸对几种土壤胶体吸附-解吸镉离子的影响[J].土壤学报,2004,41(4):558-563.
    177.张敬锁.有机酸对活化土壤中镉和小麦吸收镉的影响[J].土壤学报,1999,36(1):61-66.
    178.张淼,李亚青,王敏新.黄土体对重金属(Cd、Pb、Zn、Cu)吸附试验研究[J].西北水资源与水工程,1996,7(2):35-40.
    179.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆士团聚体及其有机碳的积累和分布的影响[J].生态学杂志,2001,20(2):16-19.
    180.张杨珠;刘学军;肖永兰耕型红壤和红壤性水稻土铜的化学行为及施铜效应Ⅰ.土壤对铜的吸附和解吸特征[J].湖南农业大学学报,25(1):21-26.
    181.张增强.镉在土壤中吸持的动力学特征研究[J].环境科学学报,2000,30(3):370-375.
    182.章明奎,何振立,陈国潮,等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366.
    183.章明奎.各种形态的铁铝锰在浙西黄壤中的分布[J].土壤1995,3(3):135-137
    184.赵兰坡,杨学明,路立平等.长期连作玉米的黑钙土、风沙土中有机-无机复合体组成及有机碳分布的研究[J].土壤通报,1996,27(3):120-123.
    185.赵兰坡.土壤有机无机复合体研究的若干进展[J].吉林农业大学学报,1994,16(12):196-202.
    186.赵之重.青海省土壤阳离子交换量与有机质和机械组成关系的研究[J].青海农林科技,2004,6(4):4-6
    187.宗良纲,徐晓炎.土壤中镉的吸附解吸研究进展[J].生态环境,2003,12(3):331-335.
    188.邹献中,季国亮.可变电荷土壤吸附铜离子时氢离子的释放.土壤学报,2002,39:308-317.
    189.邹献中,徐建民,赵安珍,等.可变电荷土壤中铜离子的解吸[J].土壤学报,2004,41:68-73.
    190.邹献中.可变电荷土壤和恒电荷土壤对铜离子吸附特征的研究[D].南京:中国科学院土壤研究所1999:58-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700