铅超积累花卉的筛选与螯合强化及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,土壤重金属污染的植物修复得到世界各国的重视,将花卉植物应用于污染土壤修复方面的研究应该说是刚刚兴起,但具有巨大的修复潜力。我国的铅污染形势十分严峻,大量的铅污染土壤亟待修复。铅在土壤中生物有效态的含量很低,因此必须采用一些有效的强化手段(如施用螯合剂)来提高植物的修复效率。
     本研究以草本花卉为研究对象,通过室外盆栽筛选实验,分析了30种花卉植物对Pb的耐性特征和积累特性,并与螯合诱导技术相结合,强化花卉植物的修复效果,同时尽量减少可能造成的环境风险和健康危害。
     根据超积累植物应具备的4个基本特征,对参试的30种花卉植物进行盆栽初步筛选分析。实验结果表明,对Pb污染耐性较强且积累能力较强的花卉有9种;对Pb污染耐性较强但积累能力较弱的花卉共12种,这些植物在植物稳定修复方面可能有一定价值;其它9种花卉对Pb污染耐性较弱且积累能力较弱,是Pb的非超积累植物。
     盆栽浓度梯度筛选实验表明,满天星和火炬鸡冠是具有铅超积累植物特征的花卉。满天星转移系数大于1,地上部铅含量超过了铅超积累植物需要达到的临界含量标准,但对高浓度铅污染耐性较差且富集系数小于1;火炬鸡冠耐性较强且地上部铅含量超过了铅超积累植物需要达到的临界含量标准,但转移系数和富集系数均小于1。
     水培实验表明:EDTA、NTA强化效果较好;矮牵牛幼苗土培强化实验确定先加EDTA,一周后加入NTA,且二者的比例为2:1时修复效率最高;在7种铅积累能力较强的花卉植物成熟后,收获前按上述方法分两次施加混合螯合剂,实验结果证实此修复方法具有有效性、经济性、安全性和公众可接受性。
Phytoremediation is a cost effective and environmentally friendly alternative, and applying flowers to phytoremediation is promising. Lead (Pb) contamination in different ecosystems has run to serious degree due to industrial processes,therefore, it is an urgent and challenging task to remediate Pb-contaminated sites with appropriate remediation methods. However, the bioavailability of Pb in soils is low and the plant capacity to absorb this contaminant is weak. Chelator-enhanced phytoremediation is considered as a suitable method for the extraction of Pb by plants.
     In order to promote the effective and economic remediation of soils contaminated with Pb, a field-screening hyperaccumulators study from 30 varieties of flower was carried out to determine characteristics of flowers enduring and accumulating Pb by field pot-culture experiments. Chelate-induced phytoextraction with high Pb-accumulative flower species provide theory and practice for the clean-up of heavy metal from polluted soils.
     The results showed that 9 varieties had strong Pb-endurance and high Pb-accumulative ability, 12 varieties possessed strong Pb-endurance and weak Pb-accumulative ability, and others were weak Pb-tolerance plants with weak Pb-accumulative ability.
     According to the concentration gradient experiment, Gypsophlia elegans and Celosia cristata pyramidalis generally prossessed basic characteristics of hyperaccumulators. The translocation factor and concentration of Pb in Gypsophlia elegans’s shoot were satisfied the characteristics of hyperaccumulators, however, it had weak endurance to severe Pb pollution and the enrichment coefficient was less than 1. Celosia cristata pyramidalis possessed strong tolerant ability and concentration of Pb in its shoot was higher than 1000 mg kg-1, while the translocation factor and enrichment coefficient were less than 1.
     The chelate-induced phytoextraction experiment suggested the application of two different chelating agents, i.e. EDTA and NTA, is effective. Among the tested application ratios of 1:1, 1:2 and 2:1 (EDTA: NTA), 2:1 of EDTA: NTA was the most efficient ratio for remediation, and NTA was applied one week after EDTA. The combined application of EDTA and NTA before harvest was effective, economical, safe and public acceptable.
引文
[1] Abou-Shanab R.A.I., Angle J.S., Chaney R.L. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry 2006, 38: 2882–2889.
    [2] Adriano D.C., Wenzel W.W., Vangronsveld J., et al. Role of assisted natural remediation in environmental cleanup. Geoderma, 2004, 122: 121–142.
    [3] Alloway B.J. and Ayres D.C. Chemical Principles of Environmental Pollution. Blackie Academic & Professional. 1997.
    [4] Anderson T.A., Guthrie E.A., Walton B.T. Bioremediation. Environmental Science and Technology, 1993, 27: 2630–2636.
    [5] Anderson C., Moreno F., Meech J. A field demonstration of gold phytoextraction technology. Minerals Engineering, 2005, 18: 385–392.
    [6] Aravind P.,Prasad M.N.V. Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free oating aquatic macrophyte) together with exogenous supplements of amino- and organic acids. Chemosphere, 2005, 61: 1720–1733.
    [7] Assun??o A., Martins P., De Folter S., et al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment, 2001, 24: 217–226.
    [8] Baker A.J.M., Brooks R.R. Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery, 1989, 1: 81–126.
    [9] Baker A.J.M., Whiting S.N. In search of the Holy Grail- a further step in understanding metal hyperaccumulation? New Phytologist, 2002, 155: 1–4.
    [10] Banelos G.S. Use of crop rotation in phytoremediation to remediation of Se. Proceeding of the 16th world congress of soil science.Montepellier, France. 1998.
    [11] Barekzai A., Mengel K. Effect of microbial decomposition of mature leaves on soil-pH. Journal of Plant Nutrition and Soil Science, 1993, 156: 93–94.
    [12] Basta N.T., Tabatabai M.A. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science, 1992, 153: 195–204.
    [13] Bavor H.J., Andel E.F., et al. Nutrient removal and disinfection performance in the Byron Bay constructed wetland system. Water Science and Technology, 1994, 29: 201–208.
    [14] Belimov A.A., Dietz K.J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiological Research, 2000, 155: 113–121.
    [15] Begonia G.B., Davis M.F.T. Growth responses of Indian Mustard (Brassica juncea (L.) Czern.) and its phytoextraction of lead from a contaminated soil. Bulletin of Environmental Contamination and Toxicology, 1998, 61: 38–43.
    [16] Bennett L.E., Burkhead J.L., Hale K.L., et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality, 2003, 32: 432–440.
    [17] Bert V., Meerts P., Saumitou-Laprade P., et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 2003, 249: 9–18.
    [18] Berti W.R., Cunningham S.D. Phytostabilization of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York, 2000.
    [19] Bizily S.P., Rugh C.L., Meagher R.B. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnology, 2000, 18: 213– 217.
    [20] Blaylock M., Salt D., Dushenkov S., et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 1997, 31: 860–865.
    [21] Bolton Jr. H., Girvin, D.C., Plymale, A.E., et al. 1996. Degradation of metal–nitrilotriacetate complexes by Chelatobacter heintzii. Environmental Science & Technology, 30: 931–938.
    [22] Broadhurst C.L., Chaney R.L., Angle J.S., et al. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science & Technology, 2004, 38: 5797–5802.
    [23] Brooks R.R., Lee J., Reeves R.D., JaffréT. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 1977, 7: 49–77.
    [24] Brundrett M.C. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 2002, 154: 275–304.
    [25] Bolan N.S., Naidu R., Syers J.K., et al. Surface charge and solute interactions in soils. Advances in Agronomy, 1999, 67: 88–141.
    [26] Bolan N.S., Thiyagarajan S. Retention and plant availability of chromium in soils as affected by lime and organic amendments. Australian Journal of Soil Research, 2001, 39: 1091–1103.
    [27] Bolan N.S., Adriano D.C., Naidu R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil–plant system. Reviews of Environmental Contamination and Toxicology, 2003a, 177: 1–44.
    [28] Bolan N.S., Adriano D.C., Mani S., et al. Adsorption, complexation and phytoavailability of copper as influenced by organic manure. Environmental Toxicology and Chemistry, 2003b, 22: 450– 456.
    [29] Brooks R.R., Chambers M.F., Nicks L.J., et al. Phytoming. Trends in Plant Science. 1998, 3: 359-362.
    [30] Bucheli-Witscheli M., Egli T. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews, 2001, 25: 69–106.
    [31] Cannon H. Botanical prospecting for ore deposits. Science, 1960, 132: 591–598.
    [32] Carey J.H., Langford C.H. Photodecomposition of Fe(III) aminocarboxylates. Canadian Journal of Chemistry, 1973, 51: 3665–3670.
    [33] Chen H., Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 2001, 45: 21–28.
    [34] Chen Y.X., Lin Q., Luo Y.M., et al. The role of citric acid on the phytorem ediation of heavy metal contaminated soil. Chemosphere, 2001, 50: 807–808.
    [35] Chiu K.K., Ye Z.H., Wong M.H. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanoides and Zea mays using chelating agents. Chemosphere, 2005, 60: 1365–1375.
    [36] Clemente R., Walker D.J., Bernal M.P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environmental Pollution, 2005, 1381: 46–58.
    [37] Comis D. Green remediation: using plants to clean the soil. Journal of Soil and Water Conservation, 1996, 51: 184–187.
    [38] Cooper E.M., Sims J.T., Cunningham S.D., et al. Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality, 1999, 28: 179–198.
    [39] Cui S.,Zhou Q.X.,Chao L. Accumulation of Pb, Zn, Cu and Cd in endurant weed plants distributed in an old smeltery, northeast China.Environmental Geology, 2006, 51: 1043-1048.
    [40] Cunha F. R. and Sobral Y. D. Characterization of the physical parameters in a process of magnetic separation and pressure-driven flow of a magnetic fluid Physica A: Statistical Mechanics and its Applications, 2004, 343: 36-64.
    [41] Cunningham S.D., Berti W.R., Huang J.W. Phytoremediation of contaminated soils. Trends in Biotechnology, 1995, 13: 393–397.
    [42] Davis L.C., Vanderhoof S., Dana J., et al. Movement of chlorinated solvents and other volatile organics through plants monitored by Fourier transform infrared (FT-IR) spectrometry. Journal of Hazardous Substances Research, 1998, 1: 4-1, 4-26
    [43] Delhaize E., Ryan P.R., Randall P.J. Aluminium tolerance in wheat (Triticum aestivum L.) (II. Aluminium-stimulated excretion of malic acid from root apices). Plant Physiology, 1993, 103: 695–702.
    [44] Dinkelaker B., Romheld V., Marschner H. Citric acid excretion and precipitation of calcium in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell and Environment, 1989, 12: 285–292.
    [45] Dodge C.J., Francis A.J. Photodegradation of uranium-citrate complex withuranium recovery. Environmental Science and Technology, 1994, 28: 1300–1306.
    [46] Eapen S., Suseelan K., Tivarekar S., et al. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research, 2003, 91: 127–133.
    [47] Ebbs S.D., Lasat M.M., Brady D.J., et al. Phytoextraction of cadmium and zinc from a contaminated site. Journal of Environmental Quality, 1997, 26: 1424–1430.
    [48] EPA (United Stated Environmental Protection Agancy). Using coal ash in highway construction: a guide to benefits and impacts. InfoNational Service Center for Environmental Publications Cincinnati, OH, 2005.
    [49] Epstein A.L., Gussman C.D., Blaylock M.J., et al. EDTA and Pb–EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil, 1999, 208: 87–94.
    [50] Evangelou M.W.H., Daghan H., Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 2004, 57: 207–213.
    [51] Evangelou M.W.H., Ebel M., Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 2006, 63: 996–1004.
    [52] Evangelou M.W.H., Ebel M., Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 2007, doi:10.1016/j.chemosphere.2007.01.062
    [53] Ford R.G., Sparks D.L. The nature of Zn precipitates formed in the presence of pyrophyllite. Environmental Science & Technology, 2000, 34: 2479–2483.
    [54] Geebelen W., Adriano D.C., Van der Lelie N., et al. Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant and Soil, 2003, 249: 217– 228.
    [55] Glass D.J. U.S. and International Markets for Phytoremediation 1999–2000. Glass Associates, Needham, MA., 1999.
    [56] Glass D.J. The 2000 Phytoremediation Industry. Glass Associates, Needham,MA., 2000.
    [57] Glick B.R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 2001, 21: 383–393.
    [58] Goodfellow M., Brown A.B., Cai J.P., et al. Amycolatopsis japonicum sp. nov, an actinomycete producing (S,S)-N,N-ethylenediaminedisuccinic acid. Systematic and Applied Microbiology, 1997, 20: 78–84.
    [59] Gramss G., Voigt K.D., Bergmann H. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil. Journal of Plant Nutrition and Soil Science, 2004, 167: 427–471.
    [60] Gray E.J., Smith D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 2005, 37: 395–412.
    [61] Grcˇman H., Velikonja-Bolta S., Vodnik D., et al. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching, and toxicity. Plant and Soil, 2001, 235: 105–114.
    [62] Grcˇman H., Vodnik D., Velikonja-Bolta S., et al. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of. Environmental Quality, 2003, 32: 500–506.
    [63] Halim M., Conte P., Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 2003, 52: 265–275.
    [64] Hamby D. M. Site remediation techniques supporting environmental restoration activities—a review. Science of The Total Environment, 1996, 191: 203-224.
    [65] Hamon R.E., McLaughlin J.M., Naidu R., et al. Long-term changes in cadmium bioavailability in soil. Environmental Science & Technology, 1998, 32: 3699–3703.
    [66] Hamon R.E., McLaughlin J.M., Cozens G. Mechanisms of attenuation of metal availability in in-situ remediation treatments. Environmental Science & Technology, 2002, 36: 3991–3996.
    [67] Hansen D., Duda P.J., Zayed A., et al. Selenium removal by constructed wetlands: role of biological volatilization. Environmental Science & Technology, 1998, 32: 591–597.
    [68] Hatano K., Frederick D.J., Moore J.A., et al. Microbial ecology of constructed wetlands used for treating pulp mill wastewater. Water Science and Technology, 1994, 29: 233–239.
    [69] Helfield J.M., Diamond M.L. Use of constructed wetlands for urban stream estoration: a critical analysis. Environmental Management, 1997, 21: 329–341.
    [70] Henrot J., Wieder P.K. Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. Journal of Environmental Quality, 1990, 19: 312–320.
    [71] Hinsinger P. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Gobran, G.R., Wenzel, W.W., Lombi, E. (Eds.), Trace Elements in the Rhizosphere. CRC Press, Boca Raton, FL, 2001.
    [72] Huang J., Chen J., Berti W., Cunningham S. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 1997, 31: 800–805.
    [73] Huang J.W., Blaylock M.J., Kapulnik Y., et al. Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology, 1998a, 32: 2004–2008.
    [74] Huang F.C., Brady P.V., Lindgren E.R., et al. Biodegradation of uranium-citrate complexes: implications for extraction of uranium from soils. Environmental Science & Technology, 1998b, 32: 379–382.
    [75] Isoyama M. and Wada S. I. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. Journal of Hazardous Materials, 2007, 143: 636-642.
    [76] Jarvis M.D., Leung D.W.M. Chelated lead transport in Pinus radiata: an ultrastructural study. Environmental and Experimental Botany, 2002, 48: 21–32.
    [77] Jiang X.J., Luo Y.M., Zhao Q.G., et al. Soil Cd availability to indian mustard andenvironmental risk following EDTA addition to Cd-contaminated soil. Chemosphere, 2003, 50: 813–818.
    [78] Jiang L.Y., Yang X.E., He Z.L. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 2004, 55: 1179–1187.
    [79] Jones D.L., Darrah P.R. Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant and Soil, 1995, 173: 103–109.
    [80] Jones D.L., Darrah P.R., Kochian V.L. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 1996, 180: 57–66.
    [81] Jones R., Sun W., Tang C.S., et al. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Environmental Science and Pollution Research, 2004, 11: 340–346.
    [82] Karenlampi S., Schat H., Vangronsveld J., et al. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution, 2000, 107: 225–231.
    [83] Kaszuba M., Hunt G.R.A. Protection against membrane damage: a HNMR investigation of the effect of Zn2+ and Ca2+ on the permeability of phospholipids vesicles. Journal of Inorganic Biochemistry, 1990, 40: 217–225.
    [84] Kayser A., Wenger K., Keller A., et al. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science & Technology, 2000, 34: 1778–1783.
    [85] Kirk J., Klironomos J., Lee H., et al. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 2005, 133: 455–465.
    [86] Kos B., Lesˇtan D. Chelator induced phytoextraction and in situ soil washing of Cu. Environmental Pollution, 2004, 134: 333–339.
    [87] Kos B., Grcˇman H., Lestan D. Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant, Soil and Environment, 2003, 49: 548–553.
    [88] Kpomblekou-A K.,Tabatabai M.A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agriculture Ecosystems & Environment, 2003, 100: 275–284.
    [89] Krishnamurti G.S.R., Cielinski G., Huang P.M., et al. Kinetics of cadmium release from soils as influenced by organic acids: implementation in cadmium availability. Journal of Environmental Quality, 1998, 26: 271–277.
    [90] Kulli B., Balmer M., Krebs R., et al. The influence of nitriloacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality, 1999, 28: 1699–1705.
    [91] Lagier T., Feuillade G., Matejka G. Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie, 2000, 20: 537–546.
    [92] Lai H.Y., Chen Z.S. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere, 2005, 80: 1062–1071.
    [93] Lalor G., Vutchkov M. and Bryan S. Blood lead levels of Jamaican children island-wide. Science of The Total Environment, 2007, 374: 235-241.
    [94] Lasat M.M., Pence N.S., Garvin D.F., et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2000, 51: 71–79.
    [95] Lear G., Harbottle M.J., Sills G., et al. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environmental Pollution, 2007, 146: 139-146.
    [96] Lee J., Reeves R.D., Brooks R.R., et al. Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry, 1977, 16: 1502–1505.
    [97] Liphadzi M.S., Kirkham M.B., Mankin K.R., et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil, 2003, 257: 171–182.
    [98] Liu X.M., Wu Q.T., Banks M.K. Effect of Simultaneous Establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants. International Journal of Phytoremediation, 2005, 7: 41–53.
    [99] Lombi E., Zhao F., McGrath S., et al. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist, 2001a, 149: 53–60.
    [100] Lombi E., Zhao F.J., Dunham S.J., et al. Phytoremediation of heavy metalcontaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 2001b, 30: 1919–1926.
    [101] Long X.X., Yang X.E., Ye Z.Q., et al. Differences of uptake and accumulation of Zinc in four species of Sedum. Acta Botanica Sinica, 2002, 44: 152–157.
    [102] López M.L., Peralta-Videa J.R., Benitez T., et al. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter, Chemosphere, 2005, 61: 595–598.
    [103] Luo C., Shen Z., Li X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 2005, 59: 1–11.
    [104] Ma L.Q., Komar K.M., Tu C., et al. A fern that hyperaccumulates arsenic. Nature, 2001, 409: 579.
    [105] Ma J.F. Role of organic acids in detoxification of aluminium in higher plants. Plant and Cell Physiology, 2000, 41: 383–390.
    [106] Mac Carthy P. The principles of humic substances. Soil Science, 2001, 166: 738–751.
    [107] Macnair M., Bert V., Huitson S.B., et al. Zinc tolerance and hyperaccumulation are genetically independent characters. Proceedings of the Royal Society of London Series B-Biological Sciences, 1999, 266: 2175–2179.
    [108] Madrid F., Liphadzi M.S., Kirkham M.B. Heavy metal displacement in chelate-irrigated soil during phytoremediation. Journal of Hydrology, 2003, 272: 107–119.
    [109] Maier R. Phytostabilization of mine tailings in the southwestern United States:plant-soil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program, University of Arizona, 2004.
    [110] Marschner B., Henke U., Wessolek G. Effects of ameliorative additives on the adsorption and binding forms of heavy-metals in contaminated topsoil from a former sewage farm. Journal of Plant Deceases and Protection, 1995, 158: 9–14.
    [111] McGrath S.P., Zhao F.J. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 2003, 14: 277–282.
    [112] McGowen S.L., Basta N.T., Brown G.O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 2001, 30: 493–500.
    [113] Meers E., Ruttens A., Hopgood M.J., et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 2005, 58: 1011–1022.
    [114] Mench M., Martin E. Mobilization of cadmium and other heavy metals from 2 soils by root exudates of Zea-Mays L, Nicotiana-Tabacum-L and Nicotiana-Rustica L. Plant and Soil, 1991, 132: 187–196.
    [115] Morel J.L. Assessment of phytoavailability of trace elements in soils. Analusis, 1997, 25: 70–72.
    [116] Moreno F.N., Anderson C.W.N., Stewart R.B., et al. Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental Pollution, 2005, 136: 341–352.
    [117] Mulligan C.N., Yong R.N., Gibbs B.F. An Evaluation of Technologies for the Heavy metal remediation of dredged sediments. Journal of hazardous materials, 2001, 85: 145–163.
    [118] Narayanan M.T., Tracy J.C., Davis L.C., et al. Modeling the fate of toluene in a chamber with alfalfa plants 2. Numerical results and comparison study. Journal of Hazardous Substance Research, 1998, 1: http:/ /www.enpg.ksu.edu/HSRC.
    [119] NATO. Advanced Study Institute Phytoremediation of Metal Contaminated Soils Trest Castle, Czech Republic, August 18–30, 2002.
    [120] Nedelkoska T.V., Doran P.M. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering, 2000, 13: 549–561.
    [121] Negri C., Hinchman R. Plants that remove contaminants from the environment. Laboratory Medicine, 1996, 27: 36–40.
    [122] Neumann P.M., De Souza M.P., Pickering I.J., et al. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell and Environment, 2003, 26: 897–905.
    [123] Newman L., Strand S., Choe N., et al. Uptake and biotransformation of trichloroethylene by hybrid poplars. Environmental Science & Technology, 1997, 31: 1062–1067.
    [124] Nigam R., Srivastava S., Prakash S., et al. Cadmium mobilisation and plant availability– the impact of organic acids commonly exuded from roots. Plant and Soil, 2001, 230: 107–113.
    [125] Nishikiori T., Okuyama A., Naganawa H., et al. Production by actinomycetes of (S, S)-N, N-Ethylenediamine–disuccinic acid, an inhibitor of phospholipase. C. Journal of Antibiotics, 1984, 37: 426–427.
    [126] NRC. Alternatives for ground water cleanup. National Research Council, National Academy Press, Washington, D.C., 1994.
    [127] Patterson W.J. Industrial Wastewater Treatment Technology, 2nd ed. Butterworth, Boston, 1985.
    [128] Pasternak C.A. A novel form of host defense: membrane protection by Ca2+ and Zn2+. Bioscience Reports, 1987, 7: 81–91.
    [129] Peer W.A., Baxter I.R., Richards E.L., et al. Phytoremediation and hyperaccumulator plants. In Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, 2005, 14: 299–340.
    [130] Pieper D.H., Martins dos Santos V.A.P., Golyshin P.N. Genomic and mechanistic insights into the biodegredation of organic pollutants. Current Opinions in Biotechnology, 2004, 15: 215–224.
    [131] Polettini A., Pomi R., Rolle E. The effect of operating variables onchelant-assisted remediation of contaminated dredged sediment. Chemosphere, 2007, 66: 866–877.
    [132] Quartacci M.F., Baker A.J.M., Navari-Izzo F. Nitriloacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere, 2005, 59: 1249–1255.
    [133] Reeves R.D., Brooks R.R. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environmental Pollution, 1983, 31: 277–285.
    [134] Reeves R.D. The Hyperaccumulation of Ni by serpentine plants. In: Baker AJM et al. (eds) The Vegetation of Ultramafic (Serpentine) Soils. Intercept Ltd, Andover, Hampshire, UK, 1992.
    [135] Reeves R.D., Baker A.J.M. Metal-accumulating plants. In: Raskin I., Ensley, B.D. (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley & Sons, Inc, New York, 2000.
    [136] Rieuwerts J, Farago M. 1996. Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Applied Geochemistry, 11: 17-23.
    [137] Robinson B.H., Millis T.M., Petit D., et al. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant and Soil, 2000, 227: 301–306.
    [138] Robinson B., Ferna′ndez J.E., Madejo′n P., et al. Phytoextraction: an assesment of biogeochemical and economic viability. Plant and Soil, 2003, 249: 117–125.
    [139] Ro¨mkens P., Bouwman L., Japenga J., et al. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 2002, 116: 109–121.
    [140] Rubin E., Ramaswami A. The potential for phytoremediation of MTBE. Water Research, 2001, 35: 1348–1353.
    [141] Ruley A.T., Sharma N.C., Sahi S.V., et al. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grownin soil. Environmental Pollution, 2006, 144: 11–18.
    [142] Rugh C.L., Wilde H.D., Stack N.M., et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing, 1996.
    [143] Rugh C.L., Senecoff J.F., Meagher R.B., et al. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology, 1998, 16: 925–928.
    [144] Russel M., Colgazier E.W., English M.R. Hazardous Waster Remediation: The Task Ahead. Waste Management Research and Education Institute, University of Tennesse, Knoxville, T.N., 1991.
    [145] Seaman J.C., Arey J.S., Bertsch P.M. Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 2001, 30: 460–469.
    [146] Sachs J. Handbuch der Experimental-Physiologie der Pflanzen. In: Hofmeister W. (ed) Handbuch der Physiologischen Botanik. Engelmann, Leipzig, 1865.
    [147] Sagner S., Kneer R., Wagner G, et al. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry, 1998, 47: 339–347.
    [148] Salt D.E., Prince R.C., Pickering I.J. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109: 1427–1433.
    [149] Salt D.E., Smith R.D., Raskin I. Phytoremediation. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49: 643–668.
    [150] Sarret G., Vangronsveld J., Manceau A., et al. Accumulation forms of Zn and Pb in Phaseous vulgaris in the presence and absence of EDTA. Environmental Science & Technology, 2001, 35: 2854–2859.
    [151] Schnitzer M. Soil Organic Matter. Elsevier, Amsterdam. Schnitzer, M., Kahn, S.U., 1972. Humic Substances in the Environment. Marcel Dekker, New York, 1978.
    [152] Schnoor J., Licht L., Mccutcheon S., et al. Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 1995, 29: 318–323.
    [153] Schnoor J. Phytoremediation: ground water remediation technologies analysis center evaluation report TE-98-01, 1997.
    [154] Schowanek D., Feijtel T.C.J., Perkins C.M., et al. Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelators. Chemosphere, 1997, 34: 2375–2391.
    [155] Schroder P., Harvey P.J., Schwitzguebel J.P. Prospects for the phytoremediation of organic pollutants in Europe. Environmental Science and Pollution Research, 2002, 9: 1–3.
    [156] Schwartz C., Echevarria G., Morel J.L. Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 2003, 249: 27–35.
    [157] Shen Z.G., Li X.D., Wang C.C., et al. Lead phytoextraction from contaminated soils with high biomass plant species. Journal of Environmental Quality, 2002, 31: 1893–1900.
    [158] Smith L.A., Means J.L., Chen A., et al. Remediation options for metals-contaminated sites, Lewis Publishers, 1995.
    [159] Song W.Y., Sohn E.J., Martinoia E., Lee Y.J., Yang Y.Y., Jasinski M., et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology, 2003, 21: 914– 919.
    [160] Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed. John Wiley and Sons, New York, 1994.
    [161] Stoltz E., Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 2002, 47: 271–280.
    [162] Suresh B., Ravishankar G. Phytoremediation–A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 2004, 24: 97–124.
    [163] Thompson P., Ramer L., Guffey A.P., et al. Decreased transpiration in poplar trees exposed to 2, 4, 6-trinitrotoluene. Environmental Toxicology and Chemistry, 1998, 17: 902–906.
    [164] Tollsten L., Muller P. Volatile organic compounds emitted from beech leaves.Phytochemistry, 1996, 43: 759–762.
    [165] Turgut C., Pepe K.M., Cutright T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 2004, 131: 147–154.
    [166] Uren N.C., Reisenauer H.M. The role of root exudates in nutrient acquisition. Advance in Plant Nutrient, 1988, 3: 79–114.
    [167] Vandevivere P.C., Saveyn H., Verstraete W., et al. Biodegradation of metal-[S,S]-EDDS complexes. Environmental Science & Technology, 2001, 35: 1765–1770.
    [168] Vassil A.D., Kapulnik Y., Raskin I., et al. The role of EDTA in lead transport and accumulation in Indian mustard. Plant and cell Physiology, 1998, 117: 447–453.
    [169] Wang M.E.,Zhou Q.X. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum. Ecotoxicology and Environmental Safety, 2005, 60: 169–175.
    [170] Wasay S.A., Barringto S.F., Tokunaga S. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 1998, 19: 369–380.
    [171] Wenger K., Kayser A., Gupta S.K., et al. The comparison of NTA and elemental sulfur as potential soil amendments. Soil & Sediment Contamination, 2002, 1: 655–672.
    [172] Wenzel W.W., Jockwer F. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental Pollution, 1999, 104: 145–155.
    [173] Wenzel W.W., Unterbrunner R., Sommer P., et al. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil, 2003, 249: 83–96.
    [174] Whiting S.N., Leake J.R., Mcgrath S.P., et al. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi caerulescens. Environmental Science& Technology, 2001,35: 3237–3241.
    [175] Wu J., Hsu F., Cunningham S. Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environmental Science & Technology, 1999, 33: 1898–1904.
    [176] Wu L.H., Luo Y.M., Xing X.R., et al. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems & Environment, 2004, 102: 307–318.
    [177] Wu Q.T., Samake M., Mo C.H., et al. Simultaneous sludge stabilization and metal removal by metal hyperaccumulator plants. Transactions of 17th World Congress of Soil Science, Bangkok. 2002.
    [178] Yan F., Schubert S., Mengel K. Soil pH increase due to biological decarboxylation of organic anions. Soil Biology & Biochemistry, 1996, 28: 617–624.
    [179] Yoon J.M., Oh B-T, Just C.L., et al. Uptake and leaching of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine by hybrid poplar trees. Environmental Science & Technology, 2002, 36: 4649–4655.
    [180] Zhu Y.M., Berry D.F., Martens D.C. Copper availability in two soils amended with 11 annual applications of copper-enriched hog manure. Communications in Soil Science and Plant Analysis, 1991, 22: 769–783.
    [181] Zhuang P., Ye Z.H., Lan C.Y., et al. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant and Soil, 2005, 276: 153–162.
    [182] Zu Y.Q., Li Y., Christian S., et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International, 2004, 30: 567–576.
    [183]邴旭文,陈家长.浮床无土栽培植物控制池塘富营养化水质.湛江海洋大学学报, 2001, 21: 29–33.
    [184]陈同斌,韦朝阳,黄泽春.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报, 2002, 47: 207–210.
    [185]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报, 2004, 35: 366–370.
    [186]董姗燕.表面活性剂与螯合剂强化植物修复镉污染土壤的研究.硕士论文,西南农业大学,2003.
    [187]高尚士.花卉——生活环境的“检测器”.健康生活, 2006, 8: 36.
    [188]洪春来.菜园土壤铅污染的物理化学行为及生物学表征.硕士论文,浙江大学,2004.
    [189]黄庆,柯玉诗,姚建武等.药用植物紫花茉莉对农用污泥锌污染的修复研究.广东农业科学, 2005, 4: 56–58.
    [190]蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治, 2006, 28: 210–214.
    [191]孔令韶.植物对重金属元素的吸收积累及忍耐、变异.环境科学, 1982, 1: 65–69.
    [192]匡少平,徐仲,张书圣.玉米对土壤中重金属铅的吸收特性及污染防治.安全与环境学报, 2002, 1: 28–31.
    [193]李莉.花卉的抗性及其监测作用.花木盆景?花卉园艺, 2005, 12: 26.
    [194]李芳柏,吴启堂.无土栽培美人蕉等植物处理生活废水的研究.应用生态学报, 1997, 8: 88–92.
    [195]刘俊锋,李书文,贾喜棉等.草本花卉对SO2抗性能力的试验研究.河北林业科技, 2005, 8: 69-70.
    [196]刘世忠,薛克娜,孔国辉等.大气污染对35种园林植物生长的影响.热带亚热带植物学报, 2003, 11: 329-335.
    [197]刘秀梅. 6种植物对Pb的吸收与耐性研究.植物生态学报, 2002, 26: 533–537.
    [198]刘威,束文圣,兰崇钰.宝山堇菜(Viola baoshanensis)——种新的镉超富集植物.科学通报, 2003, 48: 2046–2049.
    [199]芦建国等.花卉学.南京:东南大学出版社, 2004.
    [200]鲁敏,王仁卿.绿化植物受大气SO2、铅复合污染伤害特征及抗性表现.山东大学学报(理学版), 2004, 39: 116-121.
    [201]鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社, 2000.
    [202]马利民,陈玲,马娜等.几种花卉植物对污泥中铅的富集特征.生态学杂志, 2005, 24: 644–647
    [203]倪才英,田光明,骆永明等.有机化合物和硝酸溶液对复合污染土壤中Cu, Zn, Pb释放的影响.土壤学报, 2004, 41: 237–244.
    [204]束文圣,杨开颜,张志权等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报, 2001, 7: 7–12.
    [205]宋静.土壤重金属植物有效性评价及铜污染土壤植物修复研究.中科院南京土壤所博士学位论文, 2002.
    [206]孙铁珩,李培军,周启星等.土壤污染形成机理与修复技术,北京:科学出版社, 2005.
    [207]孙铁珩,周启星,李培军.污染生态学.北京:科学出版社, 2001.
    [208]王晓飞.花卉植物在污染土壤修复中的资源潜力分析.硕士论文,中国科学院沈阳应用生态研究所, 2005.
    [209]王新,吴燕玉,梁仁禄等.各种改性剂对重金属迁移、积累影响的研究.应用生态学报, 1994, 5: 89–94.
    [210]韦朝阳,陈同斌,黄泽春等.大叶井口边草——一种新发现的富集砷的植物.生态学报, 2002, 22: 777–778.
    [211]魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析.应用生态学报, 2003, 14: 143–147.
    [212]魏树和.超积累植物筛选及污染土壤植物修复过程研究.中国科学院研究生院博士论文, 2004a.
    [213]魏树和,周启星,王新等.某铅锌矿坑口周围具有重金属超积累特征植物的研究.环境污染治理技术与设备, 2004b, 5: 33–39.
    [214]魏树和,周启星,王新等.一种新发现的镉超积累植物龙葵(Solanum nigrum L.).科学通报, 2004c, 49: 2568–2573.
    [215]魏树和,周启星.一种利用茄科植物修复镉污染土壤的方法.发明专利, 200410021546.1, 2004.7.23
    [216]魏树和,周启星.一种利用菊科植物修复镉污染土壤的方法.发明专利, 200610047846.6, 2006.9.22
    [217]吴龙华.铜污染土壤的植物修复及其有机调控研究.博士后论文,中国科学院南京土壤研究所, 2000.
    [218]夏家淇主编.土壤环境质量标准详解.北京:中国环境科学出版社. 1996.
    [219]夏立江,王宏康.土壤污染及其防治.上海:华东理工大学出版社, 2001.7.
    [220]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学, 1997, 18: 72–76.
    [221]熊礼明.施肥与植物的重金属吸收.农业环境保护, 1993, 12: 212–217.
    [222]肖鹏飞.沈阳市铁西工业区典型土壤的重金属污染及其植物修复研究.硕士论文,辽宁大学, 2005.
    [223]许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社, 1995.
    [224]薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物——商陆.生态学报, 2003, 5: 935–937.
    [225]杨桂娟.我国花卉业发展历程分析、现状解读及前景预测.硕士论文,中国林业科学研究院, 2005.
    [226]杨肖娥,龙新宪,倪吾钟等.东南景天(Sedum alfredii H.)——一种新的锌超积累植物.科学通报, 2002, 47: 1003–1006.
    [227]张维碟,林琦,陈英旭.不同铜形态在土壤—植物系统中的可利用性及其活性诱导.环境科学学报, 2003, 23: 376–381.
    [228]张学洪,罗亚平,黄海涛等.一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra S.),生态学报, 2006, 3: 950–953.
    [229]周国宁,应求是,董耿等.水面无土漂浮栽培花卉试验.浙江农业大学学报, 1993, 5: 104–110.
    [230]周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社, 2001.
    [231]周启星,宋玉芳.植物修复的技术内涵及展望.安全与环境学报, 2001, 1: 48-53.
    [232]周启星.污染土壤修复的技术再造与展望.环境污染治理技术与设备, 2002, 3: 36–40.
    [233]周启星,宋玉芳等.污染土壤修复原理与方法.北京:科学出版社, 2004.
    [234]周启星,魏树和.一种利用十字花科植物修复镉污染土壤的方法.发明专利, 200410020981.2, 2004.7.16
    [235]周启星,刘家女.一种利用紫茉莉花卉植物修复重金属污染土壤的方法.发明专利, 200610046244.9, 2006.4.5
    [236]周泽义.中国蔬菜重金属污染及控制.资源生态环境网络研究动态, 1999, 10: 21–27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700