二维硅烯的电学性能以及金属纳米线的输运性质的第一原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,集成电路的发展遵守摩尔定律,即在保证性能提高以及平均每个晶体管成本降低的前提下,每12到18个月特征尺寸按比例减小。这些制备要求导致集成电路的复杂性日益增加,所以人们所要克服的技术挑战的数目以及困难程度也会显著增加。
     首先,本文讨论集成电路的一个主要元件—金属氧化物半导体场效应晶体管。在高速晶体管应用中,栅极需要对电场做出迅速反应,这就需要栅极的长度较短并且载流子迁移率较高。但是当栅极的长度较短时,通常晶体管中会出现短沟道效应,这会严重的阻碍晶体管性能的进一步提高。幸运的是,按比例缩小原理预测当栅极和沟道区域很薄时,晶体管能够避免出现短沟道效应。而沟道材料最薄的可能性是单层原子膜。
     硅烯是石墨烯的硅类似物,是硅的蜂窝状单层原子膜。由于硅烯和石墨烯的结构相类似,硅烯在费米能附近也具有线性色散关系,相应的理论结果预测硅烯也具有非常高的载流子迁移率并且其值接近于石墨烯的载流子迁移率。此外,硅烯具有能够与现有的硅基技术相兼容的额外优势。因此,本文研究硅烯材料作为沟道材料应用在高性能场效应晶体管的可能性。首先密度泛函理论杂化相关交换函数计算了表面卤族功能化硅烯的结构和电学性能。表面功能化硅烯的结构稳定性增加。并且随着表面功能化元素氟、氯、溴、碘的变化,其能隙是非线性变化的,这主要是由于硅硅成键和硅卤族原子成键对能隙贡献的相互竞争所导致的。此外,氟化硅烯(1.469eV)和碘化硅烯(1.194eV)的能隙值分别接近于传统沟道材料砷化镓和大块硅的能隙值,因此其有可能应用在场效应晶体管的沟道材料。
     然而,上述表面功能化的硅烯不再具有硅烯所固有的高速载流子迁移率,因此接下来采用硅烯和基底相互作用把硅烯的能隙打开的同时保持其非常高的载流子迁移率。我们选取了一些常用二维基底来研究控制硅烯/基底异质结构的能隙大小的因素。界面结合为范德华力的硅烯/基底异质结构的稳定性增加并且其载流子迁移率不会显著减小。此外,所有的异质结构都打开一个较小的能隙值(0.004~0.156eV),并且层间距更小的结构具有更大的能隙。硅烯/Si(111)异质结构具有较强的层间作用力,其能隙值能够满足场效应晶体管在室温下执行的要求。所以,硅烯/Si(111)异质结构是硅烯应用在高速场效应晶体管的一个潜在途径。最近一篇文献报道了硫化钼表面成功生长了硅单层膜并且其具有蜂窝状结构,接下来范德华力修正的密度泛函理论计算了这种硅烯/硫化钼异质结构的结构和电学性能。结果表明硅烯和硫化钼基底之间是范德华力结合,因此在费米能附近硅烯的线性能带基本上不发生变化,所以这种异质结构仍然具有非常高的载流子迁移率。同时本征的界面偶极破坏了硅烯的晶格对称性从而打开了异质结构的能隙。此外,异质结构的能隙在外电场作用下是线性变化的。因此,硫化钼是硅烯材应用在高速开关设备和声子设备中的潜在的基底材料。
     接着,本文研究了集成电路中连接各个元件之间的内连线。根据摩尔定律的发展,集成电路中芯片的持续减小不可避免的导致内连线尺寸的持续减小。目前集成电路中使用的是铜内连接,这是因为除了银以外铜的电导率最大,而电导率是内连线应用的一个最重要的因素。然而,随着内连线的尺寸逐渐接近电子平均自由程,逐渐显著的表面散射和晶界散射作用会导致内连线电导率的大幅降低。理论模型结果表明纳米结构的电导率随着尺寸的变化是各向异性的,由此可以推测随着尺寸减小可能会出现其他金属材料的电导率大于铜。因此,本文比较计算了小尺寸铝和铜纳米线的电导,探讨铝替换铜内连线的可能性。密度泛函理论结合兰道公式计算了最大直径为3.6纳米的铝和铜纳米线的输运性质。与经典理论相反,小尺寸铝纳米线的电导大于铜。这主要是由不同的电子结构所导致的,从而导致铝的3p电子数对电导的贡献更大。同时,铝纳米线较大的轴向收缩对电导的增加有少量贡献。因此,铝纳米线有可能作为下一代内连线应用在集成电路中。
According to the Moore’s law, the size scaling in digital logic has enabled thecomplexity of integrated circuits to double every12to18months, leading to significantimprovements in performance and diminutions in price per transistor, and also theincrements in the number of challenge.
     First, one of the most important parts in integrated circuits is investigated, themetal-oxide-semiconductor field effect transistor (FET). For high-speed applications, FETsshould respond quickly to variations in the voltage applied between the gate and source; thisrequires short gates and fast carriers in the channel. Unfortunately, the FETs with short gatesfrequently suffer from short channel effects. Scaling theory predicts that a FET with a thinbarrier and a thin channel region will be robust against short-channel effects down to veryshort gate lengths. The possibility of having channels that are just one atomic layer thick isperhaps the most attractive feature of silicene for use in transistors.
     Silicene, the Si analogue of graphene, is a promising material for electronic applicationswhile its linear band structures in Fermi energy suggest the high carrier mobility. Moreover,it supplies an ideal interface with the existing Si devices and takes advantage of tractablematerial technology. Thus, the possibility of silicene as the channel in FETs is studied. Theelectronic structures and band gaps of silicene adsorbed with halogen elements are studiedusing the density functional theory based screened exchange local density approximationmethod. It is found that the structural stability increases for silicene with surfacefunctionaliztion. Moreover, the band gaps of silicene adsorbed with F, Cl, Br and I have anonmonotonic change as the periodic number of the halogen elements increases. This isattributed to the transfer of contributions to band gaps from Si–Si bonding to Si–halogenbonding. In addition, the band gap values of silicene with F and I functionalization are closeto those of GaAs and bulk Si, thus those are potential to be used as the channels in FETs.
     However, the high carrier mobility of silicene is broken seriously by the surfacefunctionalization. Our calculations show that opening a sizeable band gap of silicene withoutdegrading its carrier mobility can be realized by silicene/substrate hybrid structures withnoncovalent interface interactions. Several possible two-dimensional semiconductingsubstrates are selected to find the factors those control the magnitude of band gap. It is found that the more notable charge redistribution in two sublattices of silicene and thus a largerband gap are characterized by a smaller interlayer distance. Thus, the opened band gap inhybrid structures with SiH/π interaction has reached the technique requirement ofroom-temperature operation in FETs. Recently, it was reported that the Si single layer withhoneycomb structure grew on the MoS2substrate. Thus, the geometric and electronicproperties of silicene paired on MoS2substrate are studied systematically by using densityfunctional theory with van der Waals correction. It is found that the nearly linear banddispersion can be preserved in the heterobilayers due to the weak interface interactions.Meanwhile, the band gap is opened because of the sublattice symmetry broken by theintrinsic interface dipole. Moreover, the band gap values could be effectively modulatedunder an external electric field. Therefore, a way is paved for the silicene/MoS2heterobilayers as the candidate materials for logic circuits and photonic devices.
     Finally, we investigate the interconnect that connects the parts in integrated circuits. Inkeeping with the Moore’s law, the miniaturization of chip dimensions also creates the needto downscale interconnects. The bulk conductivity of presently used Cu is superior to nearlyall conventional metals (except Ag), while the electrical conductivity is one of essentialrequirements for interconnects. However, as the size approaches the electron mean free path,the electrical conductivity deviates downward from their bulk value seriously induced bysurface and grain boundary scatterings. Thus, we study the structural and quantum transportproperties of Al and Cu nanowires with diameters up to3.6nm using density functionaltheory combined with the Landauer formalism. Contrary to the classical electronic behavior,the conductance of Al wires is larger than that of Cu. This is mainly attributed to the largercontribution of conductance channels from Al-3p, which is determined by the chemicalnature. Meanwhile, the stronger axial contraction of Al wires plays a minor role toconductance. This makes Al wires possible candidate of interconnects in integrated circuits.
引文
[1] MOORE G E. Gramming more components onto integrated circuits [J]. Electronics1965,38:114-116.
    [2] FISCHETTI M V, LAUX S E. Performance degradation of small silicon devices causedby long-range Coulomb interactions [J]. Applied Physcics Letters,2000,76:2277-2279.
    [3] DENNARD R H, GAENSSLEN F H, RIDEOUT V L, BASSOUS E, LEBLANC A R.Design of ion-implanted MOSFETs with very small physical dimensions [J]. IEEE Journalof Solid State Circuits,1974, SC-9:256-268.
    [4] LAUDAU L D, LIFSHITZ E M. Statistical physics, Part I [M]. Pergamon: Oxford,1980.
    [5] PEIERLS R E. Quelques properties typiques des corpses solids [J]. Ann I H Poincare,1935,5:177-222.
    [6] LANDAU L D, Zur theorie der phasenumwandlungen II [J]. Physical Z Sowjetunion,1937,11:26-35.
    [7] MERMIN N. Crystalline Order in Two Dimensions [J]. Physical Review1968,176:250-254.
    [8] VENABLES J A, SPILLER G D T and HANBUCKEN M. Nucleation and growth of thinfilms [J]. Reports on Progress in Physics1984,47:399.
    [9] EVANS J W, THIEL P A and BARTELT M C. Morphological evolution during epitaxialthin film growth: Formation of2D islands and3D mounds [J]. Surface Science Reports2006,61:1-128.
    [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, ZHANG Y, DUBONOS SV, GRIGORIEVA I V and FIRSOV A A. Electric field effect in atomically thin carbon films[J]. Science2004,306:666-669.
    [11] NOVOSELOV K S, JIANG D, SCHEDIN F, BOOTH T J, KHOTKEVICH V V,MOROZOV S V and GEIM A K. Two-dimensional atomic crystals [J]. Proceedings of theNational Academy of Sciences of the United States of America2005,102:10451-10453.
    [12] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I,GRIGORIEVA I V, DUBONOS S V and FIRSOV A A. Two-dimensional gas of masslessDirac fermions in graphene [J]. Nature2005,438:197-200.
    [13] STANKOVICH S, DIKIN D A, DOMMETT G H B, KOHLHAAS K M, ZIMNEY E J,STACH E A, PINER R D, NGUYEN S T and RUOFF R S. Graphene-based compositematerials [J]. Nature2006,442:282-286.
    [14] MEYER J C, GEIM A K, KATSNELSON M I, NOVOSELOV K S, BOOTH T J andROTH S. The structure of suspended graphene sheets [J]. Nature2007,446:60-63.
    [15] ZHANG Y, TAN Y-W, STORMER H L and KIM P. Experimental observation of thequantum Hall effect and Berry's phase in graphene [J]. Nature2005,438:201-204.
    [16] NELSON D R, PIRAN T, WEINBERG S. Statistical mechanics of membranes andsurfaces [M]. World Scientifac, Singapore,2004.
    [17] SEMENOFF G. Condensed-Matter Simulation of a Three-Dimensional Anomaly [J].Physical Review Letters1984,53:2449-2452.
    [18] FRADKIN E. Critical behavior of disordered degenerate semiconductors. II. Spectrumand transport properties in mean-field theory [J]. Physical Review B1986,33:3263-3268.
    [19] HALDANE F D M. Model for a quantum hall effect without Laudau levels:Condensed-matter realization of the 'parity anomaly'[J]. Physical Review Letters1988,61:2015-2018.
    [20] SCHAKEL A M. Relativistic quantum Hall effect [J]. Physical review D: Particles andfields1991,43:1428-1431.
    [21] GONZALEZ J G F, VOZMEDIANO M A H. Unconventional quasiparticle lifetime ingraphite [J]. Physical Review Letters1996,77:3589-3592.
    [22] TAKEDA K and SHIRAISHI K. Theoretical possibility of stage corrugation in Si andGe analogs of graphite [J]. Physical Review B1994,50:14916.
    [23] GUZM-VERRI G G and LEW YAN VOON L C. Electronic structure of silicon-basednanostructures [J]. Physical Review B2007,76:075131-075140.
    [24] MENG L, WANG Y, ZHANG L, DU S, WU R, LI L, ZHANG Y, LI G, ZHOU H,HOFER W A and GAO H-J. Buckled Silicene Formation on Ir(111)[J]. Nano Letters2013,13:685-690.
    [25] FENG B, DING Z, MENG S, YAO Y, HE X, CHENG P, CHEN L and WU K. Evidenceof Silicene in Honeycomb Structures of Silicon on Ag(111)[J]. Nano Letters2012,12:3507-3511.
    [26] FLEURENCE A, FRIEDLEIN R, OZAKI T, KAWAI H, WANG Y andYAMADA-TAKAMURA Y. Experimental Evidence for Epitaxial Silicene on Diboride ThinFilms [J]. Physical Review Letters2012,108:245501-245505.
    [27] CAHANGIROV S, TOPSAKAL M, AKTURK E, SAHIN H and CIRACI S. Two-andOne-Dimensional Honeycomb Structures of Silicon and Germanium [J]. Physical ReviewLetters2009,102:236804-236807.
    [28] JOSE D and DATTA A. Understanding of the Buckling Distortions in Silicene [J]. TheJournal of Physical Chemistry C2012,116:24639-24648.
    [29] KARA A, ENRIQUEZ H, SEITSONEN A P, LEW YAN VOON L C, VIZZINI S,AUFRAY B and OUGHADDOU H. A review on silicene—New candidate for electronics[J]. Surface Science Reports2012,67:1-18.
    [30] LEBEGUE S and ERIKSSON O. Electronic structure of two-dimensional crystals fromab initio theory [J]. Physical Review B2009,79:115409-115412.
    [31] DING Y and NI J. Electronic structures of silicon nanoribbons [J]. Applied PhysicsLetters2009,95:083115-083117.
    [32] O’HARE A, KUSMARTSEV F V and KUGEL K I. A Stable “Flat″Form ofTwo-Dimensional Crystals: Could Graphene, Silicene, Germanene Be MinigapSemiconductors?[J]. Nano Letters2012,12:1045-1052.
    [33] CHEN L, LI H, FENG B, DING Z, QIU J, CHENG P, WU K and MENG S.Spontaneous Symmetry Breaking and Dynamic Phase Transition in Monolayer Silicene [J].Physical Review Letters2013,110:085504-085508.
    [34] SHAO Z-G, YE X-S, YANG L and WANG C-L. First-principles calculation of intrinsiccarrier mobility of silicene [J]. Journal of Applied Physics2013,114:093712-093714.
    [35] LIU C-C, FENG W and YAO Y. Quantum Spin Hall Effect in Silicene andTwo-Dimensional Germanium [J]. Physical Review Letters2011,107:076802-007685.
    [36] TSAI W-F, HUANG C-Y, CHANG T-R, LIN H, JENG H-T and BANSIL A. Gatedsilicene as a tunable source of nearly100%spin-polarized electrons [J]. NatureCommunications2013,4:1500-1505.
    [37] SAHIN H and PEETERS F M. Adsorption of alkali, alkaline-earth, and3d transitionmetal atoms on silicene [J]. Physical Review B2013,87:085423-085431.
    [38] OSBORN T H and FARAJIAN A A. Stability of Lithiated Silicene from First Principles[J]. Journal of Physical Chemistry C2012,116:22916-22920.
    [39] LI C, YANG S, LI S-S, XIA J-B and LI J. Au Decorated Silicene: Design of HighActivity Catalyst toward CO Oxidation [J]. The Journal of Physical Chemistry C2012.
    [40] HU W, XIA N, WU X, LI Z and YANG J. Silicene as High-Sensitive Molecule Sensorfor NH3, NO and NO2[J]. Physical Chemistry Chemical Physics2014.
    [41] MA D D D, LEE C S, AU F C K, TONG S Y and LEE S T. Small-diameter siliconnanowire surfaces [J]. Science2003,299:1874-1877.
    [42] ZHANG R-Q, LIFSHITZ Y and LEE S T. Oxide-Assisted Growth of SemiconductingNanowires [J]. Advanced Materials2003,15:635-640.
    [43] TEO B K, SUN X H, HUNG T F, MENG X M, WONG N B and LEE S T.Precision-Cut Crystalline Silicon Nanodots and Nanorods from Nanowires and DirectVisualization of Cross Sections and Growth Orientations of Silicon Nanowires [J]. NanoLetters2003,3:1735-1737.
    [44] AUFRAY B, KARA A, VIZZINI S, OUGHADDOU H, LEANDRI C, EALET B andLE LAY G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene[J]. Applied Physics Letters2010,96:183102-183104.
    [45] LALMI B, OUGHADDOU H, ENRIQUEZ H, KARA A, VIZZINI S, EALET B andAUFRAY B. Epitaxial growth of a silicene sheet [J]. Applied Physics Letters2010,97:223109-223102.
    [46] CHEN L, LIU C-C, FENG B, HE X, CHENG P, DING Z, MENG S, YAO Y and WU K.Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon [J]. Physical ReviewLetters2012,109:056804-056808.
    [47] JAMGOTCHIAN H, COLIGNON Y, HAMZAOUI N, EALET B, HOARAU J Y,AUFRAY B and BIB RIAN J P. Growth of silicene layers on Ag(111): unexpected effect ofthe substrate temperature [J]. Journal of Physics: Condensed Matter2012,24:172001-172007.
    [48] CHUN-LIANG L, RYUICHI A, KAZUAKI K, NORIYUKI T, EMI M, YOUSOO K,NORIAKI T and MAKI K. Structure of Silicene Grown on Ag(111)[J]. Applied PhysicsExpress2012,5:045802-045805.
    [49] CHIAPPE D, GRAZIANETTI C, TALLARIDA G, FANCIULLI M and MOLLE A.Local electronic properties of corrugated silicene phases [J]. Advanced Materials2012,24:5088-5093.
    [50] RESTA A, LEONI T, BARTH C, RANGUIS A, BECKER C, BRUHN T, VOGT P andLE LAY G. Atomic Structures of Silicene Layers Grown on Ag(111): Scanning TunnelingMicroscopy and Noncontact Atomic Force Microscopy Observations [J]. Scientific Reports2013,3:2399.
    [51] DE PADOVA P, QUARESIMA C, OTTAVIANI C, SHEVERDYAEVA P M, MORAS P,CARBONE C, TOPWAL D, OLIVIERI B, KARA A, OUGHADDOU H, AUFRAY B andLE LAY G. Evidence of graphene-like electronic signature in silicene nanoribbons [J].Applied Physics Letters2010,96:261905-261903.
    [52] HANNA E, S BASTIEN V, ABDELKADER K, BOUBEKEUR L and HAMID O.Silicene structures on silver surfaces [J]. Journal of Physics: Condensed Matter2012,24:314211.
    [53] HE G-M. Atomic structure of Si nanowires on Ag(110): A density-functional theorystudy [J]. Physical Review B2006,73:035311.
    [54] SHU H, CAO D, LIANG P, WANG X, CHEN X and LU W. Two-dimensional silicenenucleation on a Ag(111) surface: structural evolution and the role of surface diffusion [J].Physical Chemistry Chemical Physics2014,16:304-310.
    [55] VOGT P, DE PADOVA P, QUARESIMA C, AVILA J, FRANTZESKAKIS E,ASENSIO M C, RESTA A, EALET B and LE LAY G. Silicene: Compelling ExperimentalEvidence for Graphenelike Two-Dimensional Silicon [J]. Physical Review Letters2012,108:155501-155505.
    [56] VOGT P, CAPIOD P, BERTHE M, RESTA A, DE PADOVA P, BRUHN T, LE LAY Gand GRANDIDIER B. Synthesis and electrical conductivity of multilayer silicene [J].Applied Physics Letters2014,104:021602-021605.
    [57] LIN C-L, ARAFUNE R, KAWAHARA K, KANNO M, TSUKAHARA N,MINAMITANI E, KIM Y, KAWAI M and TAKAGI N. Substrate-Induced SymmetryBreaking in Silicene [J]. Physical Review Letters2013,110:076801-076805.
    [58] AVILA J, PADOVA P D, CHO S, COLAMBO I, LORCY S, QUARESIMA C, VOGT P,RESTA A, LAY G L and ASENSIO M C. Presence of gapped silicene-derived band in theprototypical (3×3) silicene phase on silver (111) surfaces [J]. Journal of Physics:Condensed Matter2013,25:262001.
    [59] CAHANGIROV S, AUDIFFRED M, TANG P, IACOMINO A, DUAN W, MERINO Gand RUBIO A. Electronic structure of silicene on Ag(111): Strong hybridization effects [J].Physical Review B2013,88.
    [60] TSOUTSOU D, XENOGIANNOPOULOU E, GOLIAS E, TSIPAS P and DIMOULASA. Evidence for hybrid surface metallic band in (4×4) silicene on Ag(111)[J]. AppliedPhysics Letters2013,103:-.
    [61] GAO J and ZHAO J. Initial geometries, interaction mechanism and high stability ofsilicene on Ag(111) surface [J]. Scientific Reports2012,2:861-868.
    [62] KALTSAS D and TSETSERIS L. Stability and electronic properties of ultrathin films ofsilicon and germanium [J]. Physical Chemistry Chemical Physics2013,15:9710-9715.
    [63] HUANG S, KANG W and YANG L. Electronic structure and quasiparticle bandgap ofsilicene structures [J]. Applied Physics Letters2013,102:133106-133105.
    [64] LIU H, GAO J and ZHAO J. Silicene on Substrates: A Way to Preserve or Tune itsElectronic Properties [J]. The Journal of Physical Chemistry C2013,117:10353-10359.
    [65] NAKANO H, MITSUOKA T, HARADA M, HORIBUCHI K, NOZAKI H,TAKAHASHI N, NONAKA T, SENO Y and NAKAMURA H. Soft Synthesis ofSingle-Crystal Silicon Monolayer Sheets [J]. Angewandte Chemie International Edition2006,45:6303-6306.
    [66] OKAMOTO H, KUMAI Y, SUGIYAMA Y, MITSUOKA T, NAKANISHI K, OHTA T,NOZAKI H, YAMAGUCHI S, SHIRAI S and NAKANO H. Silicon Nanosheets and TheirSelf-Assembled Regular Stacking Structure [J]. Journal of the American Chemical Society2010,132:2710-2718.
    [67] NAKANO H, NAKANO M, NAKANISHI K, TANAKA D, SUGIYAMA Y, IKUNO T,OKAMOTO H and OHTA T. Preparation of Alkyl-Modified Silicon Nanosheets byHydrosilylation of Layered Polysilane (Si6H6)[J]. Journal of the American ChemicalSociety2012,134:5452-5455.
    [68] PADOVA P D, LEANDRI C, VIZZINI S, QUARESIMA C, PERFETTI P, OLIVIERI B,OUGHADDOU H, AUFRAY B and LAY G L. Burning Match Oxidation Process of SiliconNanowires Screened at the Atomic Scale [J]. Nano Letters2008,8:2299-2304.
    [69] SCALISE E, HOUSSA M, POURTOIS G, BROEK B, AFANAS’EV V andSTESMANS A. Vibrational properties of silicene and germanene [J]. Nano Research2013,6:19-28.
    [70] VOON L C L Y, SANDBERG E, AGA R S and FARAJIAN A A. Hydrogen compoundsof group-IV nanosheets [J]. Applied Physics Letters2010,97:163114-163116.
    [71] DE PADOVA P, QUARESIMA C, OLIVIERI B, PERFETTI P and LE LAY G. sp2-likehybridization of silicon valence orbitals in silicene nanoribbons [J]. Applied Physics Letters2011,98:081909-081911.
    [72] HOUSSA M, SCALISE E, SANKARAN K, POURTOIS G, AFANAS'EV V V andSTESMANS A. Electronic properties of hydrogenated silicene and germanene [J]. AppliedPhysics Letters2011,98:223107-223103.
    [73] SOFO J O, CHAUDHARI A S and BARBER G D. Graphane: A two-dimensionalhydrocarbon [J]. Physical Review B2007,75:153401-153404.
    [74] GUZM N-VERRI G G and VOON L C L Y. Band structure of hydrogenated Sinanosheets and nanotubes [J]. Journal of Physics: Condensed Matter2011,23:145502-145506.
    [75] OSBORN T H, FARAJIAN A A, PUPYSHEVA O V, AGA R S and LEW YAN VOONL C. Ab initio simulations of silicene hydrogenation [J]. Chemical Physics Letters2011,511:101-105.
    [76] WANG X-Q, LI H-D and WANG J-T. Induced ferromagnetism in one-sidesemihydrogenated silicene and germanene [J]. Physical Chemistry Chemical Physics2012,14:3031-3036.
    [77] ZHANG C-W and YAN S-S. First-Principles Study of Ferromagnetism inTwo-Dimensional Silicene with Hydrogenation [J]. The Journal of Physical Chemistry C2012,116:4163-4166.
    [78] GARCIA J C, DE LIMA D B, ASSALI L V C and JUSTO J O F. Group IV Graphene-and Graphane-Like Nanosheets [J]. The Journal of Physical Chemistry C2011,115:13242-13246.
    [79] MORISHITA T, RUSSO S P, SNOOK I K, SPENCER M J S, NISHIO K and MIKAMIM. First-principles study of structural and electronic properties of ultrathin siliconnanosheets [J]. Physical Review B2010,82:045419.
    [80] SPENCER M J S, MORISHITA T and SNOOK I K. Reconstruction and electronicproperties of silicon nanosheets as a function of thickness [J]. Nanoscale2012,4:2906-2913.
    [81] LLOYD J R, CLEMENS J and SNEDE R. Copper metallization reliability [J].Microelectronics Reliability1999,39:1595-1602.
    [82] KAPUR P, MCVITTIE J P and SARASWAT K C. Technology and reliabilityconstrained future copper interconnects. I. Resistance modeling [J]. IEEE Transactions onElectron Devices2002,49:590-597.
    [83] TU K. Recent advances on electromigration in very-large-scale-integration ofinterconnects [J]. Journal of Applied Physics2003,94:5451.
    [84] JIANG Q, ZHU Y F and ZHAO M. Copper Metallization for Current Very Large ScaleIntegration [J]. Recent Patents on Nanotechnology2011,5:106-137.
    [85] SMALL M B and PEARSON D J. On-chip wiring for VLSI: Status and directions [J].IBM Journal of Research and Development1990,34:858-867.
    [86] http://www.webelements.com
    [87] AMES I, DHEURLE F M and HORSTMANN R E. Reduction of electromigration inaluminum films by copper doping [J]. IBM Journal of Research and Development2000,44:89-91.
    [88] Murarka S P, Multilevel interconnections for ULSI and GSI era [J]. Materials Scienceand Engineering: R: Reports1997,19:87-151.
    [89] ZHU Y F, LANG X Y, ZHENG W T and JIANG Q. Electron Scattering and ElectricalConductance in Polycrystalline Metallic Films and Wires: Impact of Grain BoundaryScattering Related to Melting Point [J]. ACS Nano2010,4:3781-3788.
    [90] RUICHEN LIU C-S P, EMILIO MARTINEZ. Interconnect technology trend formicroelectronics [J]. Solid State Electronics1999,43:1003-1009.
    [91] SHAVIV R, HARM G J, KUMARI S, KELLER R R, READ D T and IEEEElectromigration of Cu Interconnects Under AC, Pulsed-DC and DC Test Conditions; Ieee:New York,2011.
    [92] ARDEN W. Future semiconductor material requirements and innovations as projected inthe ITRS2005roadmap [J]. Materials Science and Engineering B-Solid State Materials forAdvanced Technology2006,134:104-108.
    [93]白宣羽,汪渊,徐可为,范多旺.集成电路的Cu互联线及其扩散阻挡层的研究进展[J].真空科学与技术学报,2004(z1)78-81.
    [94] ZHU Y F, LIAN J S and JIANG Q. Re-examination of Casimir limit for phonontraveling in semiconductor nanostructures [J]. Applied Physics Letters2008,92:113101-113103.
    [95] RODRIGUEZ O R, CHO W, SAXENA R, PLAWSKY J L and GILL W N. Mechanismof Cu diffusion in porous low-k dielectrics [J]. Journal of Applied Physics2005,98:9.
    [96] KASTLE G, BOYEN H G, SCHRODER A, PLETTL A and ZIEMANN P. Size effectof the resistivity of thin epitaxial gold films [J]. Physical Review B2004,70:6.
    [97] WADA J, SUGURO K, HAYASAKA N, OKANO H, Formation of single-crystal AlInterconnection by In Situ Annealing [J]. Jpn Journal of Applied Physics,1993,32:3094-3098.
    [98] WADA J, TOYODA H, KANEKO H, HAYASAKA N, YASUDA H, MORI H, OKANOH, In site transmission electron microscopy observation of single crystallization of filledaluminum interconnection [J]. Jpn Journal of Applied Physics,1995,34: L1260-L1262.
    [99] ZHOU X H, ZHAO M and JIANG Q. Single crystallization of Al interconnection wires[J]. Semiconductor Science and Technology2002,17:1108-1110.
    [100] LU H M, WEN Z and JIANG Q. Nucleus-liquid interfacial energy of elements [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects2006,278:160-165.
    [101] GANESH K J, DARBAL A D, RAJASEKHARA S, ROHRER G S, BARMAK K andFERREIRA P J. Effect of downscaling nano-copper interconnects on the microstructurerevealed by high resolution TEM-orientation-mapping [J]. Nanotechnology2012,23:135702.
    [102] HANAOKA Y, HINODE K, TAKEDA K, RSQUO, ICHI and KODAMA D. Increasein Electrical Resistivity of Copper and Aluminum Fine Lines [J]. MATERIALSTRANSACTIONS2002,43:1621-1623.
    [103] AGRA T N, YEYATI A L and VAN RUITENBEEK J M. Quantum properties ofatomic-sized conductors [J]. Physics Reports2003,377:81-279.
    [104] OLESEN L, LAEGSGAARD E, STENSGAARD I, BESENBACHER F, SCHIO/TZ J,STOLTZE P, JACOBSEN K W and NO/RSKOV J K. Quantized conductance in anatom-sized point contact [J]. Physical Review Letters1994,72:2251-2254.
    [105] RODRIGUES V, BETTINI J, ROCHA A R, REGO L G C and UGARTE D. Quantumconductance in silver nanowires: Correlation between atomic structure and transportproperties [J]. Physical Review B2002,65:153402.
    [106] LU N, LI Z and YANG J. Electronic Structure Engineering via On-Plane ChemicalFunctionalization: A Comparison Study on Two-Dimensional Polysilane and Graphane [J].The Journal of Physical Chemistry C2009,113:16741-16746.
    [107] ZHANG R Q, LIU X M, WEN Z and JIANG Q. Prediction of Silicon Nanowires asPhotocatalysts for Water Splitting: Band Structures Calculated Using Density FunctionalTheory [J]. The Journal of Physical Chemistry C2011,115:3425-3428.
    [108] PAULO V C M and ET AL. A DFT study of halogen atoms adsorbed on graphenelayers [J]. Nanotechnology2010,21:485701.
    [109] CHIAPPE D, SCALISE E, CINQUANTA E, GRAZIANETTI C, VAN DEN BROEKB, FANCIULLI M, HOUSSA M and MOLLE A. Two-Dimensional Si Nanosheets withLocal Hexagonal Structure on a MoS2Surface [J]. Advanced Materials2014,26:2096-2101.
    [110] HOHENBERG P and KOHN W. Inhomogeneous Electron Gas [J]. Physical Review1964,136: B864-B871.
    [111] ROOTHAAN C C J. New Developments in Modecular Orbital Theory [J]. Reviews ofModern Physcics,1951,23:69-89.
    [112] SLATER J. C. Statistical Exchange-Correlation in the Self-Consistent Field [J].Advance Quantum Chemical,1972,6:1-92.
    [113] DEWAR M J S, Development and Status of MINDO/3and MNDO [J]. Journal ofMolecule Structure,1983,100:41-50.
    [114] HEDIN L and LUNDQVIST B I. Explicit local exchange-correlation potentials [J].Journal of Physics C: Solid State Physics1971,4:2064.
    [115] CEPERLEY D M, ALDER B J, Ground State of the Electron Gas by a StochasticMethod [J], Physical Review Letter,1980,45:566-569.
    [116] LUNDQVIST S, MARCH N, Theory of the Inhomogeneous Electron Gas [M]. NewYork,1983.
    [117] von BARTH U, HEDIN L, A Local Exhange-Correlation Potential for the SpinPolarized Case [J]. Journal of Physics C,1972,5:1629-1642.
    [118] PERDEW J P and WANG Y. Accurate and simple analytic representation of theelectron-gas correlation energy [J]. Physical Review B1992,45:13244-13249.
    [119] SLATER J C, A Simplification of the Hartree-Fock Method [J]. Physical Reviews,1951,81:385-390.
    [120] von BARTH U, HEDIN L, A Local Exhange-Correlation Potential for the SpinPolarized Case [J]. Journal of Physics C,1972,5:1629-1642.
    [121] ZIEGLER T. Approximate density functional theory as a practical tool in molecularenergetics and dynamics [J]. Chemical Reviews1991,91:651-667.
    [122] LANANOWSHI K, ANDZELM J, Density Functional Methods in Chemistry [M].Spinger-Verlag: New York,1991.
    [123] POLITZER P, SEMINARIO J M, Density Functional Theory: A Tool for Chemistry
    [M]. Elsevier: Amsterdam,1995.
    [124] BECKE A D. A multicenter numerical integration scheme for polyatomic molecules [J].The Journal of Chemical Physics1988,88:2547-2553.
    [125] CEPERLEY D M. Ground State of the Electron Gas by a Stochastic Method [J].Physical Review Letters1980,45:566-569.
    [126] KOHN W and SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Physical Review1965,140: A1133-A1138.
    [127] ANDZELM J, WIMMER E and SALAHUB DENNIS R In The Challenge of d and fElectrons; American Chemical Society:1989; Vol.394, p228-245.
    [128] VERSLUIS L and ZIEGLER T. The determination of molecular structures by densityfunctional theory. The evaluation of analytical energy gradients by numerical integration [J].The Journal of Chemical Physics1988,88:322-328.
    [129] GRIMME S. Semiempirical GGA-type density functional constructed with along-range dispersion correction [J]. Journal of Computational Chemistry2006,27:1787-1799.
    [130] JURE KA P, ERN J, HOBZA P and SALAHUB D R. Density functional theoryaugmented with an empirical dispersion term. Interaction energies and geometries of80noncovalent complexes compared with ab initio quantum mechanics calculations [J]. Journalof Computational Chemistry2007,28:555-569.
    [131] ORTMANN F, BECHSTEDT F and SCHMIDT W G. Semiempirical van der Waalscorrection to the density functional description of solids and molecular structures [J].Physical Review B2006,73:10.
    [132] TKATCHENKO A and SCHEFFLER M. Accurate Molecular Van Der WaalsInteractions from Ground-State Electron Density and Free-Atom Reference Data [J].Physical Review Letters2009,102.
    [133] DAY G M, COOPER T G, CRUZ-CABEZA A J, HEJCZYK K E, AMMON H L,BOERRIGTER S X M, TAN J S, DELLA VALLE R G, VENUTI E, JOSE J, GADRE S R,DESIRAJU G R, THAKUR T S, VAN EIJCK B P, FACELLI J C, BAZTERRA V E,FERRARO M B, HOFMANN D W M, NEUMANN M A, LEUSEN F J J, KENDRICK J,PRICE S L, MISQUITTA A J, KARAMERTZANIS P G, WELCH G W A, SCHERAGA HA, ARNAUTOVA Y A, SCHMIDT M U, VAN DE STREEK J, WOLF A K andSCHWEIZER B. Significant progress in predicting the crystal structures of small organicmolecules-a report on the fourth blind test [J]. Acta Crystallographica Section B-StructuralScience2009,65:107-125.
    [134] ASMADI A, NEUMANN M A, KENDRICK J, GIRARD P, PERRIN M-A andLEUSEN F J J. Revisiting the Blind Tests in Crystal Structure Prediction: Accurate EnergyRanking of Molecular Crystals [J]. Journal of Physical Chemistry B2009,113:16303-16313.
    [135] MCNELLIS E R, MEYER J and REUTER K. Azobenzene at coinage metal surfaces:Role of dispersive van der Waals interactions [J]. Physical Review B2009,80.
    [136] SCHWIERZ F. Graphene transistors [J]. Nature Nanotechnology2010,5:487-496.
    [137] JOSE D and DATTA A. Structures and electronic properties of silicene clusters: apromising material for FET and hydrogen storage [J]. Physical Chemistry Chemical Physics2011,13:7304-7311.
    [138] LEU P W, SHAN B and CHO K. Surface chemical control of the electronic structureof silicon nanowires: Density functional calculations [J]. Physical Review B2006,73:195320.
    [139] ASAHI R, MANNSTADT W and FREEMAN A J. Optical properties and electronicstructures of semiconductors with screened-exchange LDA [J]. Physical Review B1999,59:7486.
    [140] KOHN W and SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Physical Review1965,140: A1133-A1138.
    [141] M. D. SEGALL, PHILIP J. D. LINDAN, M. J. PROBERT, C. J. PICHARD, P. J.HASNIP, S. J. CLARK and PAYNE M C. First-principles simulation: ideas, illustrations andthe CASTEP code [J]. Journal of Physics: Condensed Matter2002,14:2717-2744.
    [142] BYLANDER D M and KLEINMAN L. Good semiconductor band gaps with amodified local-density approximation [J]. Physical Review B1990,41:7868.
    [143] PERDEW J P, BURKE K and ERNZERHOF M. Generalized Gradient ApproximationMade Simple [J]. Physical Review Letters1996,77:3865-3868.
    [144] TROULLIER N, MARTINS J, EACUTE and LURIAAS. Efficient pseudopotentialsfor plane-wave calculations [J]. Physical Review B1991,43:1993-2006.
    [145] SEIDL A, OUML, RLING A, VOGL P, MAJEWSKI J A and LEVY M. GeneralizedKohn-Sham schemes and the band-gap problem [J]. Physical Review B1996,53:3764-3774.
    [146] GILLEN R and ROBERTSON J. Density functional theory screened-exchangeapproach for investigating electronical properties of graphene-related materials [J]. PhysicalReview B2010,82:125406.
    [147] YAN J-A, YANG L and CHOU M Y. Size and orientation dependence in the electronicproperties of silicon nanowires [J]. Physical Review B2007,76:115319-115324.
    [148] WANG S, ZHU L, CHEN Q, WANG J and DING F. Stability and electronic structureof hydrogen passivated few atomic layer silicon films: A theoretical exploration [J]. Journalof Applied Physics2011,109:053516-053520.
    [149] VAN DE WALLE C G and NORTHRUP J E. First-principles investigation of visiblelight emission from silicon-based materials [J]. Physical Review Letters1993,70:1116.
    [150] PULLMAN D P, TSEKOURAS A A, LI Y L, YANG J J, TATE M R, GOSALVEZ D B,LAUGHLIN K B, SCHULBERG M T and CEYER S T. Reactivity of Fluorinated Si(100)with F2[J]. The Journal of Physical Chemistry B2000,105:486-496.
    [151] BURIAK J M. Organometallic Chemistry on Silicon and Germanium Surfaces [J].Chemical Reviews2002,102:1271-1308.
    [152] ELIAS D C, NAIR R R, MOHIUDDIN T M G, MOROZOV S V, BLAKE P,HALSALL M P, FERRARI A C, BOUKHVALOV D W, KATSNELSON M I, GEIM A Kand NOVOSELOV K S. Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane [J]. Science2009,323:610-613.
    [153] SAVCHENKO A. Transforming Graphene [J]. Science2009,323:589-590.
    [154] WANG S. A comparative first-principles study of orbital hybridization intwo-dimensional C, Si, and Ge [J]. Physical Chemistry Chemical Physics2011.
    [155] http://www.webelements.com/
    [156] SUN C Q. Size dependence of nanostructures: Impact of bond order deficiency [J].Progress in Solid State Chemistry2007,35:1-159.
    [157] ZHU Y F, LANG X Y and JIANG Q. The Effect of Alloying on the Bandgap Energy ofNanoscaled Semiconductor Alloys [J]. Advanced Functional Materials2008,18:1422-1429.
    [158] BOLOTIN K I, SIKES K J, JIANG Z, KLIMA M, FUDENBERG G, HONE J, KIM Pand STORMER H L. Ultrahigh electron mobility in suspended graphene [J]. Solid StateCommunications2008,146:351-355.
    [159] ZHU Y F, DAI Q Q, ZHAO M and JIANG Q. Physicochemical insight into gapopenings in graphene [J]. Scientific Reports2013,3:1524-1531.
    [160] WANG T H, ZHU Y F and JIANG Q. Bandgap Opening of Bilayer Graphene by DualDoping from Organic Molecule and Substrate [J]. The Journal of Physical Chemistry C2013,117:12873-12881.
    [161] QUHE R, ZHENG J, LUO G, LIU Q, QIN R, ZHOU J, YU D, NAGASE S, MEI W-N,GAO Z and LU J. Tunable and sizable band gap of single-layer graphene sandwichedbetween hexagonal boron nitride [J]. NPG Asia Materials2012,4: e6.
    [162] JOSE D and DATTA A. Structures and Chemical Properties of Silicene: UnlikeGraphene [J]. Accounts of Chemical Research2014,47:593.
    [163] KIM U, KIM I, PARK Y, LEE K-Y, YIM S-Y, PARK J-G, AHN H-G, PARK S-H andCHOI H-J. Synthesis of Si Nanosheets by a Chemical Vapor Deposition Process and TheirBlue Emissions [J]. ACS Nano2011,5:2176-2181.
    [164] D VILA M E, MARELE A, PADOVA P D, MONTERO I, HENNIES F, PIETZSCH A,SHARIATI M N, G MEZ-RODR GUEZ J M and LAY G L. Comparative structural andelectronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbonsgrown on Ag(110)[J]. Nanotechnology2012,23:385703-385709.
    [165] GAO N, ZHENG W T and JIANG Q. Density functional theory calculations fortwo-dimensional silicene with halogen functionalization [J]. Physical Chemistry ChemicalPhysics2012,14:257-261.
    [166] WANG R, PI X, NI Z, LIU Y, LIN S, XU M and YANG D. Silicene oxides: formation,structures and electronic properties [J]. Scientific Reports2013,3:3507.
    [167] LIN X and NI J. Much stronger binding of metal adatoms to silicene than to graphene:A first-principles study [J]. Physical Review B2012,86:075440.
    [168] SIVEK J, SAHIN H, PARTOENS B and PEETERS F M. Adsorption and absorption ofboron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phononproperties [J]. Physical Review B2013,87:085444.
    [169] FRIEDLEIN R, FLEURENCE A, SADOWSKI J T and YAMADA-TAKAMURA Y.Tuning of silicene-substrate interactions with potassium adsorption [J]. Applied PhysicsLetters2013,102:221603-221604.
    [170] SAHIN H, SIVEK J, LI S, PARTOENS B and PEETERS F M. Stone-Wales defects insilicene: Formation, stability, and reactivity of defect sites [J]. Physical Review B2013,88:045434.
    [171] GAO J, ZHANG J, LIU H, ZHANG Q and ZHAO J. Structures, mobilities, electronicand magnetic properties of point defects in silicene [J]. Nanoscale2013,5:9785-9792.
    [172] NI Z, LIU Q, TANG K, ZHENG J, ZHOU J, QIN R, GAO Z, YU D and LU J. Tunablebandgap in silicene and germanene [J]. Nano Letters2012,12:113-118.
    [173] DRUMMOND N D, Z LYOMI V and FAL'KO V I. Electrically tunable band gap insilicene [J]. Physical Review B2012,85:075423-075429.
    [174] MOTOHIKO E. A topological insulator and helical zero mode in silicene under aninhomogeneous electric field [J]. New Journal of Physics2012,14:033003-033013.
    [175] CHEN K, WAN X and XU J. Controllable Modulation of Electronic Properties ofGraphene and Silicene by Interface Engineering and Pressure [J]. Journal of MaterialsChemistry C2013,1:4869-4878.
    [176] GUO Z-X, FURUYA S, IWATA J-I and OSHIYAMA A. Absence and presence ofDirac electrons in silicene on substrates [J]. Physical Review B2013,87:235435-235444.
    [177] KOKOTT S, MATTHES L and BECHSTEDT F. Silicene on hydrogen-passivatedSi(111) and Ge(111) substrates [J]. physica status solidi RRL2013,7:538-541.
    [178] MOLLE A, GRAZIANETTI C, CHIAPPE D, CINQUANTA E, CIANCI E,TALLARIDA G and FANCIULLI M. Hindering the Oxidation of Silicene withNon-Reactive Encapsulation [J]. Advanced Functional Materials2013,23:4340-4344.
    [179] THONHAUSER T, COOPER V R, LI S, PUZDER A, HYLDGAARD P andLANGRETH D C. Van der Waals density functional: Self-consistent potential and the natureof the van der Waals bond [J]. Physical Review B2007,76:125112-125122.
    [180] LI Y and CHEN Z. XH/π (X=C, Si) Interactions in Graphene and Silicene: Weak inStrength, Strong in Tuning Band Structures [J]. The Journal of Physical Chemistry Letters2012,4:269-275.
    [181] BLASE X, RUBIO A, LOUIE S G and COHEN M L. Quasiparticle band structure ofbulk hexagonal boron nitride and related systems [J]. Physical Review B1995,51:6868-6875.
    [182] QUHE R, FEI R, LIU Q, ZHENG J, LI H, XU C, NI Z, WANG Y, YU D, GAO Z andLU J. Tunable and sizable band gap in silicene by surface adsorption [J]. Scientific Reports2012,2:853-858.
    [183] DELLEY B. An all-electron numerical method for solving the local density functionalfor polyatomic molecules [J]. The Journal of Chemical Physics1990,92:508-517.
    [184] LIU W, CARRASCO J, SANTRA B, MICHAELIDES A, SCHEFFLER M andTKATCHENKO A. Benzene adsorbed on metals: Concerted effect of covalency and van derWaals bonding [J]. Physical Review B2012,86:245405-245410.
    [185] GAO M, PAN Y, ZHANG C, HU H, YANG R, LU H, CAI J, DU S, LIU F and GAOH J. Tunable interfacial properties of epitaxial graphene on metal substrates [J]. AppliedPhysics Letters2010,96:053109-053111.
    [186] QIN R, WANG C-H, ZHU W and ZHANG Y. First-principles calculations ofmechanical and electronic properties of silicene under strain [J]. AIP Advances2012,2:022159-022164.
    [187] LIAN C and NI J. Strain induced phase transitions in silicene bilayers: a firstprinciples and tight-binding study [J]. AIP Advances2013,3:052102-052110.
    [188] OOSTINGA J B, HEERSCHE H B, LIU X, MORPURGO A F and VANDERSYPENL M K. Gate-induced insulating state in bilayer graphene devices [J]. Nature Materials2007,7:151-157.
    [189] LI X, WANG X, ZHANG L, LEE S and DAI H. Chemically Derived, UltrasmoothGraphene Nanoribbon Semiconductors [J]. Science2008,319:1229-1232.
    [190] ZHENG F-B and ZHANG C-W. The electronic and magnetic properties offunctionalized silicene: a first-principles study [J]. Nanoscale Research Letters2012,7:1-5.
    [191] DEAN C R, YOUNG A F, MERICI, LEEC, WANGL, SORGENFREIS,WATANABEK, TANIGUCHIT, KIMP, SHEPARD K L and HONEJ. Boron nitridesubstrates for high-quality graphene electronics [J]. Nature Nanotechnology2010,5:722-726.
    [192] TAHIR M and SCHWINGENSCHL GL U. Valley polarized quantum Hall effect andtopological insulator phase transitions in silicene [J]. Scientific Reports2013,3:1075.
    [193] TRITSARIS G A, KAXIRAS E, MENG S and WANG E. Adsorption and Diffusion ofLithium on Layered Silicon for Li-Ion Storage [J]. Nano Letters2013,13:2258-2263.
    [194] HU W, LI Z and YANG J. Structural, electronic, and optical properties of hybridsilicene and graphene nanocomposite [J]. The Journal of Chemical Physics2013,139:154704-154708.
    [195] DING Y and WANG Y. Electronic structures of silicene/GaS heterosheets [J]. AppliedPhysics Letters2013,103:043114-043114.
    [196] HOUSSA M, VAN DEN BROEK B, SCALISE E, POURTOIS G, AFANAS'EV V Vand STESMANS A. An electric field tunable energy band gap at silicene/(0001) ZnSinterfaces [J]. Physical Chemistry Chemical Physics2013,15:3702-3705.
    [197] MAK K F, LEE C, HONE J, SHAN J and HEINZ T F. Atomically Thin MoS2: A NewDirect-Gap Semiconductor [J]. Physical Review Letters2010,105:136805-136808.
    [198] CHANG K and CHEN W. In situ synthesis of MoS2/graphene nanosheet compositeswith extraordinarily high electrochemical performance for lithium ion batteries [J]. ChemicalCommunications2011,47:4252-4254.
    [199] MA Y, DAI Y, GUO M, NIU C and HUANG B. Graphene adhesion on MoS2monolayer: An ab initio study [J]. Nanoscale2011,3:3883-3887.
    [200] LI X D, YU S, WU S Q, WEN Y H, ZHOU S and ZHU Z Z. Structural and ElectronicProperties of Superlattice Composed of Graphene and Monolayer MoS2[J]. The Journal ofPhysical Chemistry C2013,117:15347-15353.
    [201] DELLEY B. From molecules to solids with the DMol3approach [J]. The Journal ofChemical Physics2000,113:7756-7764.
    [202] DELLEY B. Hardness conserving semilocal pseudopotentials [J]. Physical Review B2002,66:155125-155134.
    [203] INADA Y and ORITA H. Efficiency of numerical basis sets for predicting the bindingenergies of hydrogen bonded complexes: Evidence of small basis set superposition errorcompared to Gaussian basis sets [J]. Journal of Computational Chemistry2008,29:225-232.
    [204] GAO N, LI J and JIANG Q. Bandgap opening in silicene: Effect of substrates [J].Chemical Physics Letters2014,592:222-226.
    [205] KALONI T P, CHENG Y C and SCHWINGENSCHLOGL U. Hole doped Dirac statesin silicene by biaxial tensile strain [J]. Journal of Applied Physics2013,113:104305-104304.
    [206] CHEN X F, ZHU Y F and JIANG Q. Utilisation of janus material for controllableformation of graphene p-n junctions and superlattices [J]. RSC Advances2014,4:4146-4154.
    [207] LI Y, LI F and CHEN Z. Graphane/Fluorographene Bilayer: Considerable C–H···F–CHydrogen Bonding and Effective Band Structure Engineering [J]. Journal of the AmericanChemical Society2012,134:11269-11275.
    [208] CHEN L, WANG L, SHUAI Z and BELJONNE D. Energy Level Alignment andCharge Carrier Mobility in Noncovalently Functionalized Graphene [J]. The Journal ofPhysical Chemistry Letters2013,4:2158-2165.
    [209] HU W, LI Z and YANG J. Electronic and optical properties of graphene and graphiticZnO nanocomposite structures [J]. The Journal of Chemical Physics2013,138:124706-124710.
    [210] HU T and GERBER I C. Theoretical Study of the Interaction of Electron Donor andAcceptor Molecules with Graphene [J]. The Journal of Physical Chemistry C2013,117:2411-2420.
    [211] KAN E, REN H, WU F, LI Z, LU R, XIAO C, DENG K and YANG J. Why the BandGap of Graphene Is Tunable on Hexagonal Boron Nitride [J]. The Journal of PhysicalChemistry C2012,116:3142-3146.
    [212] LEMBKE D and KIS A. Breakdown of High-Performance Monolayer MoS2Transistors [J]. ACS Nano2012,6:10070-10075.
    [213] NEEK-AMAL M, SADEGHI A, BERDIYOROV G R and PEETERS F M.Realization of free-standing silicene using bilayer graphene [J]. Applied Physics Letters2013,103:261904.
    [214] SONDHEIMER E H. The mean free path of electrons in metals [J]. Advances inPhysics1952,1:1-42.
    [215] WEBER B, MAHAPATRA S, RYU H, LEE S, FUHRER A, REUSCH T C G,THOMPSON D L, LEE W C T, KLIMECK G, HOLLENBERG L C L and SIMMONS M Y.Ohm’s Law Survives to the Atomic Scale [J]. Science2012,335:64-67.
    [216] GONZ LEZ J C, RODRIGUES V, BETTINI J, REGO L G C, ROCHA A R, COURA PZ, DANTAS S O, SATO F, GALV O D S and UGARTE D. Indication of Unusual PentagonalStructures in Atomic-Size Cu Nanowires [J]. Physical Review Letters2004,93:126103-126106.
    [217] NEERAV K, SWATI R M, YU Z, ROBERT E G and SAROJ K N. A comparativestudy of quantum transport properties of silver and copper nanowires using first principlescalculations [J]. Journal of Physics: Condensed Matter2011,23:085501-085506.
    [218] SCHEER E, AGRAIT N, CUEVAS J C, YEYATI A L, LUDOPH B,MARTIN-RODERO A, BOLLINGER G R, VAN RUITENBEEK J M and URBINA C. Thesignature of chemical valence in the electrical conduction through a single-atom contact [J].Nature1998,394:154-157.
    [219] HASMY A, P REZ-JIM NEZ A J, PALACIOS J J, GARC A-MOCHALES P,COSTA-KR MER J L, D AZ M, MEDINA E and SERENA P A. Ballistic resistivity inaluminum nanocontacts [J]. Physical Review B2005,72:245405-245409.
    [220] SIMBECK A J, LANZILLO N, KHARCHE N, VERSTRAETE M J and NAYAK S K.Aluminum Conducts Better than Copper at the Atomic Scale: A First-Principles Study ofMetallic Atomic Wires [J]. ACS Nano2012,6:10449-10455.
    [221] LIU D, ZHENG W T and JIANG Q. Forming abilities of monatomic chains of severalfcc and bcc metals in different crystallographic orientations [J]. Applied Surface Science2005,252:1780-1784.
    [222] HE C, ZHANG W and DENG J. Electric Field and Size Effects on Atomic Structuresand Conduction Properties of Ultrathin Cu Nanowires [J]. The Journal of Physical ChemistryC2011,115:3327-3331.
    [223] WANG B, YIN S, WANG G, BULDUM A and ZHAO J. Novel Structures andProperties of Gold Nanowires [J]. Physical Review Letters2001,86:2046-2049.
    [224] G LSEREN O, ERCOLESSI F and TOSATTI E. Noncrystalline Structures of UltrathinUnsupported Nanowires [J]. Physical Review Letters1998,80:3775-3778.
    [225] WANG B, ZHAO J, CHEN X, SHI D and WANG G. Structures and quantumconductances of atomic-sized copper nanowires [J]. Nanotechnology2006,17:3178-3182.
    [226] OPITZ J, ZAHN P and MERTIG I. Ab initiocalculated electronic structure of metallicnanowires and nanotubes [J]. Physical Review B2002,66:245417-245425.
    [227] VAN WEES B J, VAN HOUTEN H, BEENAKKER C W J, WILLIAMSON J G,KOUWENHOVEN L P, VAN DER MAREL D and FOXON C T. Quantized conductance ofpoint contacts in a two-dimensional electron gas [J]. Physical Review Letters1988,60:848-850.
    [228] ZHANG X, KUO J-L, GU M, FAN X, BAI P, SONG Q-G and SUN C Q. Localstructure relaxation, quantum trap depression, and valence charge polarization induced bythe shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures [J].Nanoscale2010,2:412-417.
    [229] DIAO J, GALL K, DUNN M L and ZIMMERMAN J A. Atomistic simulations of theyielding of gold nanowires [J]. Acta Materialia2006,54:643-653.
    [230] LIU W, LIU D, ZHENG W T and JIANG Q. Size and Structural Dependence ofCohesive Energy in Cu [J]. The Journal of Physical Chemistry C2008,112:18840-18845.
    [231] SWART J C W, VAN HELDEN P and VAN STEEN E. Surface Energy Estimation ofCatalytically Relevant fcc Transition Metals Using DFT Calculations on Nanorods [J]. TheJournal of Physical Chemistry C2007,111:4998-5005.
    [232] DIAO J, GALL K and DUNN M L. Surface-stress-induced phase transformation inmetal nanowires [J]. Nature Materials2003,2:656-660.
    [233] JIANG Q, LIANG L H and ZHAO D S. Lattice Contraction and Surface Stress of fccNanocrystals [J]. The Journal of Physical Chemistry B2001,105:6275-6277.
    [234] ZHOU Y, SREEKALA S, AJAYAN P M and NAYAK S K. Resistance of coppernanowires and comparison with carbon nanotube bundles for interconnect applications usingfirst principles calculations [J]. Journal of Physics: Condensed Matter2008,20:095209.
    [235] CUEVAS J C, YEYATI A L and MART N-RODERO A. Microscopic Origin ofConducting Channels in Metallic Atomic-Size Contacts [J]. Physical Review Letters1998,80:1066-1069.
    [236] OGATA S, LI J and YIP S. Ideal Pure Shear Strength of Aluminum and Copper [J].Science2002,298:807-811.
    [237] LEE S and HUANG H. From covalent bonding to coalescence of metallic nanorods [J].Nanoscale Research Letters2011,6:559.
    [238] LIU D, LIAN J S and JIANG Q. Surface Energy and Electronic Structures of AgQuasicrystal Clusters [J]. The Journal of Physical Chemistry C2009,113:1168-1170.
    [239] KASHID V, SHAH V and SALUNKE H. Electronic structure effects on stability andquantum conductance in2D gold nanowires [J]. Journal of Nanoparticle Research2011,13:5225-5238.
    [240] SUN C Q. Dominance of broken bonds and nonbonding electrons at the nanoscale [J].Nanoscale2010,2:1930-1961.
    [241] BEENAKKER C W J. Random-matrix theory of quantum transport [J]. Reviews ofModern Physics1997,69:731-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700