黄铜矿和方铅矿浮选分离的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮选的发展已有一百多年的历史,但铜铅分离至今仍是选矿难题之一。本文在查阅大量文献资料的基础上,系统总结了铜铅分离的流程结构、药剂制度、电化学性质以及铜铅分离机理的研究现状。通过试验研究、仪器检测和理论计算,探讨了捕收剂、抑制剂对硫化矿物可浮性影响的作用机理:
     通过大量的浮选试验系统地研究了选择性捕收剂、Na2SO3和ZnSO4等抑制剂和新型抑制剂等浮选药剂对硫化矿物单矿物的可浮性和双矿物浮选分离以及实际矿物分离的影响;
     利用矿浆电位在线检测技术系统地记录了硫化矿物浮选过程中矿浆电位的变化规律;
     采用X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)以及其它物理、化学等现代分析技术检测了经过不同药剂处理后的黄铜矿、方铅矿表面产物的性质变化;
     利用Materials Studio等软件进行了分子力学、量子化学的计算。
     重点对比研究了乙硫氨酯、丁基铵黑药和乙基钾黄药等选择性捕收剂对黄铜矿和方铅矿的浮选效果。研究结果表明:
     在5.7≤pH≤7.2,10mV≤ECu≤50mV、-30mV≤EPb≤30mV、160≤EPt≤470mV
     或9.0≤pH≤11.5、-50mV≤ECu≤-10mV、-100mV≤EPb≤-50mV、0mV≤EPt≤100mV区间内
     乙硫氨酯可以用作黄铜矿和方铅矿浮选分离时的选择性捕收剂;且随着乙硫氨酯浓度的增大,黄铜矿和方铅矿间的浮游差基本稳定。机理研究表明,乙硫氨酯对黄铜矿的捕收作用是由于乙硫氨酯在黄铜矿表面与Cu原子或Fe原子发生作用,生成了新的表面生成物的缘故。
     经过对矿浆中可能存在的难免离子进行研究后发现,实际矿石在用去离子水浸泡后,上清液中发生显著变化的金属离子有Ca2+、Mg2+、Na+、Mn2+、Fe2+、Fe3+、K+、Cu2+、Zn2+、Al3+和Li+等。利用上述离子的可溶性盐的水溶液对黄铜矿和方铅矿的可浮性进行了研究,结果表明:
     上述离子对黄铜矿的浮选没有显著影响;
     而对方铅矿的影响可以分成三类:有活化作用的如Cu+;有抑制作用的如Al3+、Fe3+和Fe2+等离子,尤其是Al3+、Fe3+等高价离子实际上已经对用乙硫氨酯浮选方铅矿产生了实质性的抑制;基本不起作用的如Mg2+和Ca2+等离子。
     研究了ZnSO4、Na2SO3、NaHSO3、Na2S2O3、Na2SO4等化合物对黄铜矿和方铅矿单矿物浮选的影响,结果表明,在用乙硫氨酯做捕收剂的单矿物系统中,ZnSO4、Na2SO3、NaHSO3可以用作方铅矿的抑制剂,实现抑铅浮铜的目的。ZnSO4、Na2SO3对两种矿物的人工混合矿和实际矿物的分离试验结果表明:
     单用ZnSO4,低浓度时不能有效抑制方铅矿,但高浓度时可以起到抑制作用;
     单用Na2SO3,虽然对方铅矿具有抑制作用,但高浓度时对黄铜矿也有抑制作用。
     机理研究表明,Na2SO3对方铅矿的抑制作用是SO32-在方铅矿表面与Pb2+离子反应生成亲水性的PbSO3薄膜覆盖在方铅矿表面,阻碍了捕收剂与方铅矿的作用的缘故。
     根据矿浆电化学特性筛选出了三种新型方铅矿抑制剂PPD、DDT和PDA,研究表明:三种药剂对方铅矿均有抑制作用,对黄铜矿均有活化作用。用于黄铜矿和方铅矿单矿物、人工混合矿和实际矿物的铜铅分离试验结果表明,三种药剂均有可能成为铜铅分离的有效抑制剂,但三种药剂对方铅矿的抑制作用机理不同。
Under more than one hundred year, of research and development, flotation separation of Cu-Pb is not satisfying yet. On a basis of systematic literature search, this paper summarized flowsheet structure, reagent, electrochemistry property and mechanics of Cu-Pb separation. Via flotation tests, instrument detecting and calculation, extensively explored mechanics of collector and depressor's effect on sulphide floatability:
     With the aid of advanced modern physical and chemical analysis technique such as XRD, XPS and FTIR, surveyed property variation of precipitates formed on chalcopyrite and galena surface processed by various reagents;
     Systematically tested selective collectors, regular depressors such as Na2SO3 and ZnSO4 and newly developed depressors effect on single sulphide mineral's floatability, separation of two type of single minerals and production minerals;
     Kept trace of pulp potential variation trend in the course of sulphide minerals flotation by using on-line pulp potential measurement technique;
     Made calculation of molecular mechanics and quanta chemistry by using Materials Studio software.
     In comparison, selective collectors, typically, (CH3)2CHOC(S)NHC2H5, (C4H9O)2PSSNa and C2H5OSCSK, were tested to make the difference of chalcopyrite and galena flotation result, it was indicated that,
     In the case of 5.7≤pH≤7.2,10mV≤ECu≤50mV,-30mV≤EPb≤30mV, 160≤EPt≤470mV
     Or,9.0≤pH≤11.5,-50mV≤ECu≤-10mV,-10mV≤ECu≤-50mV,0mV≤EPt≤100mV
     (CH3)2CHOC(S)NHC2H5 can be of effective selective collector for chalcopyrite and galena separation, moreover, along with higher concentrates of (CH3)2CHOC(S)NHC2H5, the floatability difference of chalcopyrite and galena is almost fixed. The mechanism is such that (CH3)2CHOC(S)NHC2H5 makes reaction with Cu or Fe atom in surface of chalcopyrite to produce new resultant.
     The study on "hard to avoid cations" which might be present in pulp indicates that after ore was soaped in ion-removing water, ions in upper water, including Ca2+, Mg2+, Na+, Mn2+, Fe2+, Fe3+, K+, Cu2+, Zn2+, Al3+ and Li+ etc, make evident change. And results from further study on chalcopyrite and galena floatability which is affected by dissoluble saline solution of the above ions are:
     The above ions have no impact on chalcopyrite flotation;
     But the effect on galena flotation falls into three categories:activating factor such as Cu+; depressing factor such as Al3+, Fe3+ and Fe2+, typically when using (CH3)2CHOC(S)NHC2H5 to float galena, high valence ions like Al3+, Fe3+ are strongly depressing; non-influence factor such as Mg2+ and Ca2+.
     The investigation to influence of compound like ZnSO4, Na2SO3, NaHSO3, Na2S2O3 and Na2SO4 on single mineral flotation of chalcopyrite and galena reveals that ZnSO4, Na2SO3 and NaHSO3 can be used as depressor of galena to separate Cu from Pb when floating single mineral by using (CH3)2CHOC(S)NHC2H5 as collector. Test on man-made mixture of two type of minerals and production ore by using ZnSO4, Na2SO3 indicates that:
     ZnSO4 solely, not at low concentrate but high concentrate, is depressing to galena;
     Na2SO3 solely, is depressing to galena at low concentrate, but depressing to both galena and chalcopyrite at high concentrate.
     The mechanism lies in the fact that SO32- from Na2SO3 makes reaction with Pb2+ in surface of galena to produce hydrophilic thin membrane of PbSO3 which covers surface of galena to prevent collector from making action with galena.
     Three new depressors, PPD、DDT and PDA have been found out based on pulp electrochemistry property, which are depressing to galena and activating to chalcopyrite. Test on single mineral of chalcopyrite and galena, man-made mixture of chalcopyrite and galena and production ore conclude that possibly the three reagents will be effective depressors to separation of Cu-Pb, but response to different depressing mechanism.
引文
[1]胡熙庚.有色金属硫化矿选矿[M],北京:冶金工业出版社,1987:250
    [2]刘建军,魏明安,王荣生,等.小茅山银铜矿石选矿试验研究与生产实践[J].矿冶,2005(2):25-27.
    [3]Wei Ming-an, Sun Chuan-yao, Shi Jian-zhong, et al.Study on Comprehensive Recovery of Metals in Cu-Pb-Zn Complex Polymetallic Ores[C], Proceedings of ⅩⅩⅢ International Mineral Processing Congress. Istanbul:2006:807.
    [4]魏明安.复杂铜铅锌硫化矿分选新工艺的研究[C],选矿学术会议论文集-庆祝张卯均教授从事矿冶事业55周年.北京:冶金工业出版社:1993:195-203
    [5]Bolatovic S M, Wyslouzil D M, Selection of Reagent Scheme to Treat Massive Sulphide ores[C], Complex Sulphides, Processing of Ores,Concentrates and By-Products(Ⅰ), Pennsylvania, A Publication of the Metallurgical Society, Inc.,1985:101-137
    [6]前苏联发明书[P],证书号No.153048
    [7]前苏联发明书[P],证书号No.152439
    [8]前苏联发明书[P],证书号No.202805
    [9]郭月琴.CMC在铜铅分离浮选中的应用[J].有色金属矿产与勘查,1998,7(6):377-379.
    [10]K.L. Clifford, et al. Galena-sphalerite-chalcopyrite Flotation at St. Joe Minerals Corporation[R],1979:180-182
    [11]李长根.瑞典加尔彭贝尔格铜铅锌选矿厂[J].国外金属矿选矿,2004(8):42-43.
    [12]许运寿,蔡有兴.复杂难选铜铅锌矿选矿工艺研究[J].湖南有色金属,2000,16(3):13-14.
    [13]宋国顺,宁致强,董明菊.某铜铅锌多金属矿石选矿药剂的选择与工艺研究[J].有色矿冶,2003,19(6):23—25.
    [14]布拉托维奇·S.秘鲁劳拉选矿厂新铜铅分离法的研究和应用[J].国外金属矿选矿,2002(3):21-25.
    [15]陈代雄,田松鹤.复杂铜铅锌硫化矿浮选新工艺试验研究[J].有色金属(选矿部分),2003(2):1—5.
    [16]倪章元,王贤兴.新疆某难选铜铅锌多金属矿的选矿工艺研究[J].矿冶工程,2003,23(2):30-32.
    [17]王宁,韩潮,高起鹏.某铜铅锌多金属硫化矿铜精矿降锌工艺研究[J].有色矿冶,1997(3):22-27.
    [18]韩潮,王守义,朱风林,等.选矿某难选多金属铜铅锌矿石选别研究与应用[J].有色矿山,2001,30(1):23-27.
    [19]McQuiston F W. Flotation of Complex Copper-lead-zinc Ores[C] Progress in Mineral Dressing. Stockholm:Almgvist & Wiksell,1958:511-537.
    [20]Sharp F H.马格芒特选矿厂铅锌铜分离及当前的实践[M].Fuerstenau M C ed. Flotation, A.M. Gaudin Memorialvolume(上卷).北京:冶金工业出版社,1981: 529-544.
    [21]张锦林,李朝晖,王德海滩选铜铅锌多金属硫化矿选矿工艺的探讨[J].中国有色冶金,2004(4):68-72.
    [22]张学强.铜与铅锌分离作业Na2S药方优化调配的工业试验研究[J].甘肃冶金,2003(增刊):48-50.
    [23]张锦林,王德海.提高小铁山多金属硫化矿选矿技术指标的生产实践[J].甘肃冶金,2004,26(1):30-32,39.
    [24]前苏联发明书[P],证书号No.177369
    [25]前苏联发明书[P],证书号No.129573
    [26]曾懋华,姚亚萍,奚长生,等.某难选铜铅混合精矿的分离试验研究,金属矿山,2006(4):19-22
    [27]刘克俊译.日本黑矿选矿现状,国外金属矿选矿,1997(8):1-5
    [28]朱建光.2003年浮选药剂的进展[J].国外金属矿选矿,2004(2):4-11,38
    [29]张小田,陈宏,代淑娟.铜铅锌铁复杂多金属矿综合回收研究,有色矿冶,2005,21(3):17-19
    [30]李元坤,寇建军.铜铅锌银多金属矿湿法分离新工艺[J].有色金属(冶炼部分),2002(3):11-15
    [31]马宠.难选铜铅锌银共生矿的综合利用[J].矿产综合利用,2000(1):45-46
    [32]Yonezawa T. General Survey on Processing Techniques of "Kuroko"(Black Ore)[C], Joint Meeting MMIJ-AIME 1972, Tokyo,1972, Print No.Ⅲ:2
    [33]Matsuoka I, Kubota T and Shimoiizaka J. The Effect of Sulfite Ions on the Flotability of Artificial Sphalerite Activated by Copper Ions[J], Journal of the Mining and Metallurgical Institute on Japan, Vol.85, No.971, Mar.1969:175-179
    [34]Bogdanov O S, Hainman V Y and Podnek A K, et al. Investigation of the Action of Modifying Agents in Flotation, Progress in Mineral Dressing[M], Almgvist & Wiksell, Stockholm,1958:479-491
    [35]Matsuoka I, Sasaki H, Shimoiizaka J, et al. On the Depresssion of Galena by Chromate Ion,[J], Journal of the Mining and Metallurgical Institute of Japan, Vol.86, No.989, Aug.1970:543-548
    [36]Matsuoka I. The influence of pH, Chromate and sulfite ions on Xanthate Flotation of Lead Sulfate[J], Journal of the Mining and Metallurgical Institute of Japan, Vol.87, No.996, Mar.1971:167-171
    [37]Sasaki H and Yamasaki T. Anodic films formed on Galena in 1 M sodium Sulfite solution[J], Journal of the Electrochemical Society of Japan, Vol.38, No.8, Aug.1970:580-584
    [38]Sasaki H, Matsuoka I and Yamasaki T. Investigation of Action of Sulfite Ion on Galena Faces by Electron Diffraction[J], Journal of the Mining and Metallurgical Institute of Japan, Vol.86, No.986, May 1970:365-370
    [39]Taggart, A F. Handbook of Mineral Dressing[M]. New York:John Wiley & Sons, Inc., 1950:12-26
    [40]Bogdanoy. O S, Hainman, V Y, Podnek, A K, et al. Investigation of the Action of Modifying Agents in Flotation[C]. Progress in Mineral Dressing, Stockholm:Almgvist & Wiksell,1958:479-491
    [41]Sutherand K L and Wark I W. Principles of Flotation[M]. Melbourne:Australasian Institute of Mining and Metallurgy(Inc.),1955:114 and 142
    [421 Shimoiizaka J Usui S and Matsuoka I, et al. Depression of Galena Flotation by Sulfite orChromate Ion[M],. Fuerstenau M C ed. Flotation, A M Gaudin Memarial Volume(I), New York:Press,1976:293-311
    [43]Salamy S G and Nixon J G.The application of electrochemical methods to flotation research. Recent developments in mineral dressing[M]. London:Institution of Mining and Metallurgy,1953:503-516
    [44]Salamy S G and Nixon J G Aust. J. Chem[J].,1954(7):146-156
    [45]Woods R. Electrochemistry of sulphide flotation[J], Proceedings of the Australian Institute of Mining and Metallurgy,1972(241):53-62
    [46]Chander S, Fuerstenau D W. The Effect of Potassium Diethydithiophosphate on the Electrochemical Properties of Platium, Copper and Copper Sulfide in Aqueous Solutions[J]. Electroanalytical Chemistry and Interfacial Electrochemistry, Vol.56,1974: 217-247
    [47]Allison S A, Goold L A,Nicol M J, et al. A Determination of the Products of Reaction Between various Sulfide Minerals and Aqueous Xanthate Solution, and a Correlation of the Products with Electrode Rest Potentials[J], Metallurgical Transactions, Vol.3,1972: 2613-2618
    [48]Finkelstein N P, and Goold L A. The Reaction of Sulphide Minerals with Thiolcompounds[J], National Institute of Metallurgy, South Africa, Report No.1439,1972
    [49]Kowal A and pomianowski A. Cyclic Voltammetry of Ethyl Xanthate on a Matural Copper Sulphide Electrode[J], Electroanalytical Chemistry and Interfacial Electrochemistry, Vol.46,1973:411-420
    [50]孙水裕,王淀佐,李柏淡.硫化矿电化学调控浮选及无捕收剂浮选的理论与应用[J].国外金属矿选矿,1992,29(2):14-17
    [51]王淀佐.浮选理论的新进展[M].北京:科学出版社,1992:79-138.
    [52]孙水裕,王淀佐,李柏淡.硫化矿自诱导浮选的基本行为[J].江西有色金属,1994,8(3):28-32.
    [53]王淀佐,邱冠周,覃文庆等.硫化矿物Na2S诱导浮选的电化学研究[J].有色金属,1997,49(1):45—48
    [54]欧乐明,冯其明,卢毅屏等.浮选过程中黄铜矿抑制的电化学研究[J].矿冶工程,1999,19(3):34—36
    [55]欧乐明,冯其明,陈建华等.铜钼混合精矿体系中黄铜矿新型抑制剂的研究[J].矿冶工程,1998,18(1):34—37
    [56]Richardson P E, and Walker G W. The Flotation on Chalcocite, Bornite, Chalcopyrite and Pyrite in an Electrochemical-Flotation Cell[C]. in:XVth Proceeding of IMPC,1985, pp.198-210
    [57]Guy P J and Trahar W J. The Effects of Oxidation and Mineral Interaction on Sulphide Flotation[M]. in:Flotation of Sulphide Minerals. Forsberg, K.S.E.,ed;1985,Elsevier,the Netherlands,pp.61-79
    [58]Trahar W J. The Influence of Pulp Potential in Sulphide Flotation[M]. in:Principles of Flotation. The Wark Symposium,Jones M.H.,Woodcook J.T. eds:Proceedings of Austrian Institute of Mining and Metallurgy, Parkville, Vic; Australia,1984,pp.117-135
    [59]O'Dell C S and Richardson P E. ed:Proceeding International Symposium on Electrochemistry in Mineral and Metal Processing[C],1984:The Electrochemical society, Inc:NJ,pp.26-53
    [60]Basilio C and Yoon R H.Thermodynamics, Electrochemistry and Flotation of the Chalcocite-Potassium Ethyl Xanthate System[C]. SME-AIME Annual Meeting,1985:New York,NY, Preprint No.85-86,pp.10
    [61]Agar G E, Kipkie W B and Wells P E. The Separation of Chalcopyrite and Pentlandite From INCO Metals'Sudburg Area Ores[C], Paper ⅩⅣ-1,Proceedings ⅩⅣ IMPC, 1982:Toronto, Canada,pp.13;
    [62]邹晓平.黄铜矿和黄铁矿无捕收剂浮选分离的研究[D],中南工业大学硕士学位论文(选矿工程专业),1989
    [63]王云楚.黄铜矿和黄铁矿诱导浮选的研究[D],中南工业大学硕士学位论文(选矿工程专业),1989
    [64]胡庆春.方铅矿-毒砂浮选分离的电化学[D],中南工业大学硕士学位论文(选矿工程专业),1988
    [65]周荣华.巯基乙酸-乙黄药-黄铜矿体系的电化学研究[D],中南工业大学硕士学位论文(选矿工程专业),1986
    [66]孙水裕.黄铜矿-方铅矿浮选分离的电化学[D],中南工业大学硕士学位论文(选矿工程专业),1987
    [67]Poling G W and Beattie M J V Selective Depression in Complex Sulphide Flotation[M]. in:Principles of Flotation. The Wark Symposium,Jones M.H.,Woodcook J.T. eds:Proceedings of Austrian Institute of Mining and Metallurgy, Parkville, Vic; Australia,1984,pp137-146
    [68]Chander S and Fuerstenau D W. Int. J. Miner. Process[J].1983.10:89-94
    [69]Gardner J R and Woods R. Int. J. Miner. Process[J].1979.6:1-16
    [70]Kellsall G H and Dage. Aspects of Chalcopyrite Electrochemistry[M]. in:Richardson P E ed:Proceeding International Symposium on Electrochemistry in Mineral and Metal Processing,1984:The Electrochemical society, Inc:NJ,pp.303-320
    [71]Lutterd G H and Yoon R H. Surface Chemistry of Collectorless Flotation of Chalcopyrite[C].112th SME-AIME Annual Meeting,1983:Atlanta, Georgia, Preprint No.p.83-96
    [72]Pritzker M D and Yoon R H. Thermodynamic Calculations and Electrochemical Studies on the Galena-Ethyl Xanthate System[M]. in: Richardson P E ed:Proceeding International Symposium on Electrochemistry in Mineral and Metal Processing, 1984:The Electrochemical society, Inc:NJ,pp.26-53
    [73]Toperi D and Tolun R. Electrochemical Study and Thermodynamic Equilibria of the Galena-Oxygen-Xanthate Flotation System[J], Transactions the Institution of Mining and Metallurgy, Section C, Vol.78,1969:191-197
    [74]Allison S A and Finkelstein N P. Products of Reaction between Galena and Aqueous Xanthate Solutions[J], Transactions of the Institution of Mining and Metallurgy, Section C, Vol.80,1971:235-239
    [75]Woodcock J T and Jones M H. Chemical Environment in Australian Lead-Zinc Flotation Plant pulps:I. pH/Rodox Potentials and Oxygen Concentrations[J], Proceedings of the Australasian Institute of Mining and Metallurgy,No.235,1970:45-60
    [76]Woodcock J T and Jones M H. Oxygen Concentrations, Rodox Potentials, Xanthate Residuals and Other Parameters in Flotation Plant Pulps, in Mineral Processing and Extractive metallurgy[M], Jones M J ed., Institution of Mining and metallurgy,London,1970:439-468
    [77]顾帼华,李柏淡.方铅矿诱导浮选研究[J].有色矿山,1994(9):26-30
    [78]王福良,李凤楼.方铅矿-苯胺黑药体系浮选电化学特性的研究[J].有色金属,1998,50(1):13-23
    [79]孙水裕,硫化矿浮选的电化学调控及无捕收剂浮选,中南工业大学选矿工程专业博士学位论文,1991
    [80]Kelebek S and Smith G W. Colectorless Flotation of Chalcopyrite and Galena:Correlation Beween Flotation Rate and the Amount of Extracted Sulfur[J]. Minerals and metallurgical Processing.1989,Vol.6,pp.3:123-129
    [81]李凤楼,马塞夫斯基等.电化学控制浮选在西林铅锌矿的应用[J].矿冶,1995,4(3):26-32
    [82]周俊武.西林铅锌矿浮选过程自动控制系统的研究[J].冶金自动化,1997(2):5-8
    [83]左焕莹.用于电化学控制浮选的仪表计算机系统[J].矿冶,1995(2):79-85
    [84]沃国经,左焕莹.电化学控制浮选中的数据处理[J].矿冶,1997,6(1):47-51
    [85]安士杰.电化学控制浮选在乌拉嘎金矿生产中的应用[J].黄金,2001;22(11):36-39
    [86]孙传尧,王福良.蒙古额尔登特铜矿的电化学控制浮选研究与实践[J].矿冶,2001,10(1)20-26
    [87]周秀英.阿舍勒铜矿矿石电化学控制浮选研究[J].有色金属(选矿部分),1998(4):14-16
    [88]Heimal S. Electrochemistry in Mineral and Metal Processing[J]. Electrochemistry science,1988:170-182
    [89]赫马拉S等.矿物电极控制浮选[J].国外金属矿选矿,1999(3):6-8
    [90]Heimala S, Jounela S, Rantapuska S et al. New Potential Controlled Flotation Congress[C].Cannes,1985:2-9
    [91]Heimala S, Himmi M, Jounela S et al. The Potential Controlled Flotation (OK-PCF) Method in Outokumpu Nickel Concentrate Production[C].CIM 25th Annual Conference of Metallurgist, Toronto,1986:17-20
    [92]克拉克D W等.通过充氮和硫化调浆来提高硫化铜矿物浮选回收率[J].国外金属选矿,2000(12):10-14
    [93]Thomas Chen. Mineral Engineering[J].1993(4):292
    [94]顾帼华,刘如意,王淀佐.原生电位浮选过程中的捕收剂匹配[J].有色金属,1999,51(4):21-25
    [95]顾帼华,王淀佐,刘如意等.硫化矿电位调控浮选及原生电位浮选技术[J].有色金属,2000,52(2):18-21
    [96]顾帼华.硫化矿物在磨矿-浮选矿浆中的氧化-还原反应与原生电位浮选[D],长沙:中南工业大学,1998
    [97]左焕莹译.离子选择电极[J].国外金属矿选矿,1997(4):42-44
    [98]赵R,昌德S.金、铂和硫化物离子选择电极作为硫化物溶液中Eh测量传感器的比较[J].国外金属矿选矿,1997(4):35-42
    [99]芬奇J A,拉邦特G.用于矿浆测量的电极的校验[J].国外金属矿选矿,1997(4):24-29
    [100]Labonte G. Electrochemical Potentials in Flotation System:Measurement, Interpretation and Applications[J]. M. Eng. Thesis. Mc. Gill University,1987:174
    [101]托利W K等.浮选中氧化还原电位测定[J].国外金属矿选矿,1997(4):50-55
    [102]北京矿冶研究总院,硫化铅锌矿电化学控制浮选系统技术研究[R].北京:北京矿冶研究总院,2004
    [103]北京矿冶研究总院,苏州小茅山迂里矿区银铜铅锌矿石选矿试验研究报告[R].北京:北京矿冶研究总院,2004
    [104]北京矿冶研究总院,铅锌硫化矿中铜综合回收的试验研究报告[R].北京:北京矿冶研究总院,2007
    [105]周兵仔,硫化矿矿物电极的研制制及其电化学测试研究,北京矿冶研究总院硕士学位论文(选矿工程专业),2003
    [106]王建祺.电子能谱学(XPS/XAES/UPS)引论[M],北京:国防工业出版社,1992,519-559.
    [107]萨赛蓝德K L,。瓦尔克I W著,浮选原理[M],北京:中国工业出版社,1966:133
    [108]Gaudin A M, Glover H and Hansen M S, et al. Flotation Fundamentals (Part 1)[M]. University of Utah and U.S. Bureau of Mines tech, Paper No.1,1928
    [109]胡为柏.浮选[M],北京:冶金工业出版社,1989,132-154
    [110]Bogdanov 0 S et al. Proceedings of Ⅶth IMPC[C],1977:212-220
    [111]朱玉霜,朱建光,浮选药剂的化学原理[M],中南工业大学出版社:长沙,1996:10-23
    [112]Peter E. Trends in Electrochemistry[M]. J O M bockris, D A J Rand and B J Welch(eds.), New York:Plenum,1977:267-296
    [113]Goold L A. The Reaction of Sulphide Minerals with Thiol Collectors, Report No.1439 of NIM, Johnnesburg,1972
    [114]Jones M H and Woodstock J T. Spectrophotometric Determination of Z-200 in Flotation Liquours[C], Proc. Aust. IMM,231, Sept.1969:11-18
    [115]Scanlon W W. Polar Semiconductors, Solid State Physics—Advances in Research and Applications[M], Seitz F and Turnbull D.ed. New York:Academic Press,1959:83-137
    [116]Richardson P E, Maust E E. Surface Stoichiometry of Galena in Aqueous Electrolytes and Its Effect on Xanthate Interactions[M]. Fuerstenau M C. ed. Flotation, A M Gaudin Memorial Volume(Ⅰ) New York:Press,1976:268-292
    [117]冯其明,陈荩.硫化矿物浮选电化学[M],长沙:中南工业大学出版社,1992:1
    [118]王淀佐,胡岳华.浮选溶液化学[M],长沙:湖南科学技术出版社,1988:143,148,161
    [119]陈寿椿,唐春元,于肇德编.重要无机化学反应(第三版)[M],上海:上海科学技术出版社,1994年第3版:7,118,311,409,474,491,576,641
    [120]陈经华,孙传尧.超声波清洗对方铅矿、闪锌矿和黄铁矿可浮性的影响[J],矿冶,2005,14(4):13-16
    [121]Leja J. Surface Chemistry of Froth Flotation[M], New York:Plenum Publishing Corporation,1982:168-184
    [122]贾建业.常见硫化物表面的XPS研究[J].高校地质学报.2000.6(3):255-259
    [123]Fuerstenau M C. Sulphide Mineral Flotation[J], Cape Town:Cape and Transval Printers Ltd.,1982:159-182
    [124].Sutherland K L, Wark I W. Principles of Flotation[M], Molbourne: Australian Institute of Mining and Metallurgy,1955:21
    [125]Fuerstenau M C, Flotation A M. Gaudin Memorial Volume(Ⅱ)[M]. New York,1957: 205
    [126]Eric Forssberg K S. Flotation of Sulphide Minerals[M], New York:Elsevier Science Publishing company inc.,1985:1-3
    [127]潘道皑,赵成大,郑载兴.物质结构[M].北京:高等教育出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700