肌萎缩侧索硬化的遗传学和基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分中国肌萎缩侧索硬化患者的遗传学研究
     背景:肌萎缩侧索硬化(ALS)是一种由于大脑皮质、脑干和脊髓前角的上下运动神经元进行性变性,导致肌肉无力、萎缩,言语、吞咽、呼吸功能障碍的神经变性疾病。迄今为止,全世界已经发现了17种与ALS相关的突变基因。其中C9orf72基因、铜/锌超氧化物歧化酶1(SOD1)基因、反式激活反应-DNA结合蛋白(TARDBP)基因和肉瘤熔合(FUS)基因被认为是ALS最常见的4种突变基因。
     目的:本研究旨在对一个大样本的中国ALS患者进行系统的遗传学研究,明确我国ALS患者常见的突变基因及其突变率,并系统回顾国内外有关ALS患者SOD1、ANG、 TARDBP、FUS、C9orf72基因突变的研究,进行基因突变型—临床表型分析。
     方法:提取北京协和医院神经科就诊的324例SALS患者和20个家族性ALS(FALS)家系,以及255例健康对照的全基因组DNA,对SOD1基因全部5个外显子,ANG基因第2号外显子,TARDBP基因第2-6号外显子,FUS基因第3-6、12-15号外显子,VCP基因第4、5、10、14号外显子,PFNl基因全部3个外显子进行PCR扩增;对20例FALS先证者,除以上外显子外,还扩增FUS基因其他7个外显子,VCP基因其他13个外显子,PCR产物直接测序。使用重复引物聚合酶链反应扩增C9orf72基因非编码外显子1a和1b间的内含子上的GGGGCC核苷酸六聚体重复序列,产物行毛细管电泳分析产物荧光片断长度,确定重复序列数目。检索国内外对ALS患者进行SOD1、ANG、TARDBP、FUS、C9orf72基因突变筛查的研究,计算各研究的基因突变率,汇总后分别计算不同国家、亚欧北美三大洲及全世界ALS患者中这些基因的突变率,并结合文献进行不同基因突变型—临床表型的关联分析。
     结果:在FALS中发现5例SOD1突变和2例FUS突变,在SALS中发现6例FUS突变、3例SOD1突变,3例TARDBP突变和1例ANG突变,所有患者均未发现C9orf72突变、VCP突变和PFN1突变。除ANG基因的p.V103I突变为新突变外,其余突变国内外文献均有报道。4例携带FUS基因的SALS患者表现为特殊的少年型ALS,其中1例p.G504Wfs*14和1例p.R495X突变经证实为新发突变。SALS患者中PFN1基因rs13204T等位基因的频率明显高于对照组,携带T等位基因者发生SALS的风险是携带C等位基因者的1.58倍(95%可信区间为1.15-2.15)。SOD1基因p.H46R突变是亚洲人种多见的较为良性的突变类型,患者均以下肢起病,病情进展缓慢,生存期长;而FUS基因p.P525L, p.R495X和移码突变的临床表型为发病年龄小,病情进展迅速、生存期短。
     结论:SOD1基因和FUS基因为中国大陆FALS患者突变率排名前两位的基因(分别为26.9%和10.0%);FUS基因(1.9%)、SOD1基因(1.3%)和TARDBP基因(0.9%)分别为SALS患者排名前三位的基因。某些特定的基因突变有其特征性的临床表型。
     第二部分肉瘤熔合基因突变与肌萎缩侧索硬化神经元损害的相关性研究
     背景:肉瘤熔合(FUS)基因突变可引起肌萎缩侧索硬化(ALS)。病理资料显示野生型FUS蛋白主要位于神经元的细胞核内,而FUS基因突变的ALS患者神经元细胞质内出现大量的FUS蛋白聚集并可形成阳性包涵体。由此推测FUS基因突变引起入核转运障碍而导致FUS蛋白在细胞质中的异位分布,由于FUS蛋白在细胞质的过度堆积而获得了毒性,引起运动神经元的损伤。
     目的:本实验旨在观察野生型FUS与不同的FUS突变蛋白在神经元细胞质中的分布差异,并分析神经元细胞质中FUS蛋白的分布是否与神经元凋亡率存在相关性,是否与携带突变的ALS患者的临床表型具有相关性。
     方法:在Neuro2a细胞中过表达野生型FUS基因、p.R521H和p.P525L突变FUS基因,通过免疫荧光测定野生型FUS与不同的FUS突变蛋白在神经元细胞质中的分布,通过Western blotting检测转染野生型和不同突变FUS基因的神经元中PARP蛋白的表达,通过流式细胞仪测定神经元的凋亡率,观察FUS蛋白在神经元细胞质中的分布差异,并测定神经元凋亡率。
     结果:野生型FUS蛋白主要分布在细胞核中,仅少许位于细胞质中,p.R521H突变FUS蛋白除分布于细胞核外,在细胞质中也有明显的分布,而p.P525L突变FUS蛋白则主要分布中细胞质中,细胞核内仅有少许分布,无论转染野生型FUS还是突变型FUS的细胞中均未见FUS阳性包涵体形成;转染p.P525L突变和转染p.R521H突变的细胞其细胞质中荧光强度所占比例均显著高于野生型FUS的细胞(P均<0.01),转染p.P525L突变的细胞其细胞质中荧光强度所占比例也明显高于转染p.R521H突变的细胞(P<0.05),Western blotting检测发现FUS突变并未明显促进PARP蛋白的表达,流式细胞仪检测显示FUS突变未引起细胞凋亡率的明显增加。
     结论:不同的FUS基因突变对入核转运的影响程度不同,而且其入核转运障碍的程度与携带突变的ALS患者临床病情进展程度相关,即入核转运障碍程度重的FUS突变引起较严重的临床表型;过表达FUS突变可能并不直接导致神经元的凋亡。
     第三部分亚甲基四氢叶酸还原酶基因多态性与肌萎缩侧索硬化的关系:荟萃分析
     目的:亚甲基四氢叶酸还原酶(MTHFR)基因c.677C>T和c.1298A>C单核苷酸多态性与肌萎缩侧索硬化(ALS)发病风险是否存在关联存在争议,因此我们就相关的研究进行了荟萃分析。
     方法:对PubMed, EmBase, ISI, HuGe,和CNKI数据库2012年9月30日以前的文献进行检索,有3个病例对照研究符合纳入标准。对于入选的每个研究进行Hardy-Weinberg遗传平衡检验。再计算等位基因模型、纯合模型、杂合模型、显性模型和隐性模型下的合并OR值及相应的P值。使用Q统计方法评价研究间的异质性。
     结果:MTHFR基因c.677C>T或者c.1298A>C多态性和ALS总体发病风险没有明显相关性。然而,亚组分析提示在基于医院的研究中c.677C>T在纯合模型(比值比(OR)=1.54,95%可信区间(CI)=1.03-2.31,P=0.03)和隐性遗传模型(OR=1.50,95%CI=1.02-2.21,P=0.04)下与ALS易感性存在明显相关性;c.677C>T在杂合模式下可降低45岁前起病的患者ALS发病风险(OR=0.68,95%CI=0.50-0.93,P=0.02)。
     结论:荟萃分析的结果提示MTHFR c.677CT基因型对于45岁起病的ALS患者具有保护作用。研究的设计、起病年龄、种族和地域都是研究异质性的可能来源;因此对于这个荟萃分析的结果的解释应谨慎。今后需要有大样本、设计合理、以人群为基础的病例对照研究来探索基因—基因和基因—营养—环境之间的相互作用对于MTHFR基因多态性和ALS发病风险的影响。
Part1. Genetics study of amyotrophic lateral sclerosis patients of Chinese origin
     Backgrounds:Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle weakness, atrophy, dysarthria, dysphagia, and respiratory failure, which is resulted from loss of motor neurons in the motor cortex, brain stem, and spinal cord. To date,17genes have been associated with ALS. Mutations in SOD1, TARDBP, FUS, and C9ORF72are supposed to be the most common mutations in ALS patients.
     Objective:To determine the mutation rate of the most common mutated genes and genotype-phenotype associations in a large cohort of Chinese ALS patients.
     Methods:Screening for mutations of SOD1, ANG, TARDBP, FUS, VCP, C9orf72, and PFN1genes was consecutively carried out in20index FALS patients,324SALS patients, and245healthy controls admitted to Peking Union Medical College Hospital. Mutation rates of SOD1, ANG, TARDBP, FUS, C9orf72gene in ALS patients in different countries, continents and total mutation rate in the world were calculated, genotype-phenotype associations were analyzed by reviewing all published studies screening for mutations in these genes in ALS patients.
     Results:SOD1mutations and FUS mutations were found in five and two out of20index FALS patients, respectively. FUS, SOD1, TARDBP and ANG mutations were detected in six, three, three, and one out of324SALS patients, respectively. All of the mutations were reported previously except the mutations in ANG, p.V103I, which is novel. Four SALS patients carrying FUS mutations were juvenile ALS. The p.G504Wfs*14mutation and one p.R495X mutation was proved to be de novo mutation. Although no mutations was detected in VCP, C9orf72, and PFN1gene in either FALS patients or SALS patients, there was an increase in the frequency of the T allele of the rs13204single nucleotide polymorphism in PFN1in SALS patients compared with that in controls, individuals carrying the T allele had a greater risk of SALS than those carrying the C allele (odds ratio=1.58,95%confidence interval=1.15to2.15). Patients with p.H46R mutation in SOD1gene always manifested with weakness in the legs, the lower motor neuron signs usually dominate the clinical presentation and the disease progresses very slowly, with a mean survival of more than17years. Patients with mutations of p.P525L, p.R495X and nonsense mutations in FUS gene are associated with an early onset, a rapid disease progression, and short lifespan.
     Conclusions:Mutations in major ALS-related genes are present in approximately35.0%(95%CI,14.1%-55.9%) and4.0%(95%CI,1.9%-6.1%) of Chinese FALS and SALS patients, respectively. SOD1(25.0%) and FUS (10.0%) are the most frequently mutated genes in FALS patients, while FUS(1.9%), SOD1(0.9%) and TARDBP(0.9%) are the most common mutated gene in SALS patients in China. Some characterized clinical phenotypes are associated with some specific gene mutations.
     Part2. Correlation between FUS mutations and the injury of neurons in amyotrophic lateral sclerosis
     Background:Mutations in fused in sarcoma (FUS) gene have been reported to cause a subset of amyotrophic lateral sclerosis (ALS) cases. Wild-type FUS is mostly localized in the nuclei of neurons, whereas the ALS mutants are partly mislocalized in the cytoplasm and can form inclusions. We proposed that mutations in FUS may impair nuclear import and lead to the cytoplasmic mislocalization of FUS, which will further cause the injury of neurons due to gain of toxicity.
     Aims:We aimed to observe the difference in the cytoplasmic localization of FUS protein in neuron transfected with wild type and mutant FUS, and analyze if the cytoplasmic localization of FUS protein is correlated with the apoptosis rate of neuron and the phenotypes of the mutation carriers.
     Methods:Wild type, p.R521H and p.P525L mutant FUS tagged with an N-terminal flag tag was transfected in cultured Neuron2a cells. Quantitative immunofluorescence analysis of wild type and mutant FUS in Neuron2a cell was performed48hours after transfection. Western blotting was used to analyze the expression of apoptotic protein PARP in transfected cells. Quantification of neuronal apoptosis as the percentage of Annexin V-EGFP/PI-positive neurons in transfected cells was also performed by Flow Cytometry.
     Results:Wild type FUS mainly localize in the nucleus, while both mutations showed a varying degree of cytosolic accumulation, with an intermediate mislocalization for p.R521H (p<0.01when compared with wild type FUS) and a severe mislocalization for p.P525L (p<0.001and P<0.05when compared with wild type FUS and p.R521H, respectively), which is correlated with the phenotype of the mutations. No stress granules was seen in cells transfected with both mutations. Western blotting showed that the expression of apoptotic protein PARP in cells transfected with mutant FUS was not higher than that in cells transfected with wild type FUS (both P>0.05). No significant difference in neuronal apoptosis rate was observed between cells transfected with mutant and wild type FUS (both P>0.05).
     Conclusion:Different degree of the cytosolic mislocalization of mutant FUS caused by FUS mutations is correlated with the phenotype of the mutations carriers, that is, the higher degree of cytosolic mislocalization of the mutant FUS, the more severe phenotype of the mutation carrier. Overexpression of FUS mutations may not directly lead to apoptosis of neuron.
     Part3. Association of methylenetetrahydrofolate reductase polymorphisms with amyotrophic lateral sclerosis:a meta-analysis
     Objective:Associations between methylenetetrahydrofolate reductase(MTHFR) c.677C>T or c.1298A>C polymorphisms and amyotrophic lateral sclerosis (ALS) risk are controversial. We conducted a meta-analysis of available published studies.
     Methods:A literature search was performed of PubMed, EmBase, ISI, HuGe, and CNKI databases up to September30,2012. Three case-control studies met the inclusion criteria. For the control group of each study, the distribution of genotypes was evaluated for agreement with Hardy-Weinberg equilibrium. The pooled ORs and the corresponding P value were estimated at the allele level, the homozygote model, the heterozygote model, the dominant model, and recessive model. Heterogeneity between studies was assessed by the Q statistic.
     Results:No significant association was found between c.677C>T or c.1298A>C and ALS risk for the overall population. However, subgroup analyses indicated c.677C>T was significantly associated with ALS susceptibility under homozygote (odds ratio (OR)=1.54,95%confidence interval (CI)=1.03-2.31, P=0.03) and recessive models (OR=1.50,95%CI=1.02-2.21, P=0.04) in hospital-based studies, and was protective against ALS under the heterozygote model (OR=0.68,95%CI=0.50-0.93, P=0.02) in patients with onset before age45.
     Conclusions:This meta-analysis suggests that MTHFR c.677CT genotype protects against ALS in patients with onset before age45. Study design, age of onset, ethnicity, and geography are potential sources of heterogeneity; our conclusions should be interpreted with caution. Large-scale, well-designed, population-based, case-control studies are necessary to investigate gene-gene and gene-nutrition-environment interactions between MTHFR polymorphisms and ALS.
引文
[1]Hardiman O, Van Den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis [J]. Nature reviews Neurology,2011,7(11):639-49.
    [2]Cronin S, Hardiman O, Traynor BJ. Ethnic variation in the incidence of ALS:a systematic review [J]. Neurology,2007,68(13):1002-7.
    [3]Logroscino G, Traynor BJ, Hardiman O, et al. Incidence of amyotrophic lateral sclerosis in Europe [J]. J Neurol Neurosurg Psychiatry,2010,81(4):385-90.
    [4]Aran FA. Research on an as yet undescribed disease of the muscular system (progressive muscular atrophy) [French] [J]. Arch Gen Med,1848,24:15-35.
    [5]Charcot JM. Lectures on the Diseases of the Nervous System [M]. London:New Sydenham Society, 1881:163-204.
    [6]Chio A, Traynor BJ, Lombardo F, et al. Prevalence of SOD1 mutations in the Italian ALS population [J]. Neurology,2008,70(7):533-7.
    [7]Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis [J]. Nature,1993,362(6415):59-62.
    [8]Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 [J]. Nat Genet,2001,29(2):166-73.
    [9]Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4) [J]. Am J Hum Genet,2004,74(6):1128-35.
    [10]Nishimura AL, Mitne-Neto M, Silva HC, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis [J]. Am J Hum Genet,2004, 75(5):822-31.
    [11]Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis [J]. Nat Genet,2006,38(4):411-3.
    [12]Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Science,2008,319(5870):1668-72.
    [13]Chow CY, Landers JE, Bergren SK, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS [J]. Am J Hum Genet,2009,84(1):85-8.
    [14]Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis [J]. Science,2009,323(5918):1205-8.
    [15]Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 [J]. Science,2009,323(5918):1208-11.
    [16]Orlacchio A, Babalini C, Borreca A, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis [J]. Brain,2010,133(Pt 2):591-8.
    [17]Mitchell J, Paul P, Chen HJ, et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase [J]. Proc Natl Acad Sci U S A,2010,107(16):7556-61.
    [18]Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis [J]. Nature,2010,465(7295):223-6.
    [19]Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS [J]. Nature,2010,466(7310):1069-75.
    [20]Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS [J]. Neuron,2010,68(5):857-64.
    [21]Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia [J]. Nature,2011,477(7363):211-5.
    [22]Dejesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS [J]. Neuron,2011,72(2): 245-56.
    [23]Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD [J]. Neuron,2011,72(2):257-68.
    [24]Fecto F, Yan J, Vemula SP, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Arch Neurol,2011,68(11):1440-6.
    [25]Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis [J]. Nature,2012,488(7412):499-503.
    [26]Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase [J]. Science,1993,261(5124):1047-51.
    [27]Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion:a population-based cohort study [J]. Lancet Neurol,2012,11(3):232-40.
    [28]Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia:a cross-sectional study [J]. Lancet Neurol,2012,11(4):323-30.
    [29]Fong GC, Kwok KH, Song YQ, et al. Clinical phenotypes of a large Chinese multigenerational kindred with autosomal dominant familial ALS due to Ile149Thr SOD1 gene mutation [J]. Amyotroph Lateral Scler,2006,7(3):142-9.
    [30]Zhao G, Yin X, Wu D, et al. Clinical features and Cu/Zn superoxide dismutase gene mutations in two mainland Chinese families with amyotrophic lateral sclerosis [J]. Int J Neurosci,2011,121(4): 191-5.
    [31]Wu J, Shen E, Shi D, et al. Identification of a novel Cys146X mutation of SOD1 in familial amyotrophic lateral sclerosis by whole-exome sequencing [J]. Genet Med,2012,14(9):823-6.
    [32]Zhang H, Zhao H, Lu M, et al. A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset and incomplete penetrance in China [J]. Amyotroph Lateral Scler Other Motor Neuron Disord,2005,6(4):234-8.
    [33]史树贵,李露丝,陈康宁等.一个肌萎缩侧索硬化家系的SOD1基因突变[J].中华医学遗传学杂志,2004,21(2):149-52.
    [34]李晓光,邹漳钰,彭郁等.肌萎缩侧索硬化的分子遗传学[J].协和医学杂志,2012,3(3):337-43.
    [35]牛艳芳,熊慧玲,邬剑军等.肌萎缩侧索硬化患者SOD1基因突变检测及突变与临床表型的关系[J].遗传,2011,33(7):720-4.
    [36]张华纲,唐璐,张楠等.中国家族性肌萎缩侧索硬化患者超氧化物歧化酶1基因突变与临床表型[J].中华神经科杂志,2012,45(7):453-8.
    [37]Huang R, Fang D-F, Ma M-Y, et al. TARDBP gene mutations among Chinese patients with sporadic amyotrophic lateral sclerosis [J]. Neurobio Aging,2012,33(5):1015.e1-6.
    [38]Xiong HL, Wang JY, Sun YM, et al.Association between novel TARDBP mutations and Chinese patients with amyotrophic lateral sclerosis [J]. BMC Med Genet,2010, in press.
    [39]Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene [J]. Curr Neurol Neurosci Rep,2006,6(1):37-46.
    [40]Tsai CP, Soong BW, Lin KP, et al. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS [J]. Neurobiol Aging,2011,32(3):553.e13-21.
    [41]Tsai CP, Soong BW, Tu PH, et al. A hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic ALS in Taiwan [J]. Neurobiol Aging,2012,33(9):2232 el 1-e18.
    [42]Brooks BR, Miller RG, Swash M, et al. El Escorial revisited:revised criteria for the diagnosis of amyotrophic lateral sclerosis [J]. Amyotroph Lateral Scler Other Motor Neuron Disord,2000,1(5): 293-9.
    [43]Den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations:a discussion [J]. Hum Mutat,2000,15(1):7-12.
    [44]Brotherton T, Polak M, Kelly C, et al. A novel ALS SOD1 C6S mutation with implications for aggregation related toxicity and genetic counseling [J]. Amyotroph Lateral Scler,2011,12(3):215-9.
    [45]Fernandez-Santiago R, Hoenig S, Lichtner P, et al. Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis [J]. J Neurol,2009,256(8): 1337-42.
    [46]Orrell RW, Habgood JJ, Gardiner I, et al. Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis [J]. Neurology,1997,48(3):746-51.
    [47]Gellera C, Castellotti B, Riggio MC, et al. Superoxide dismutase gene mutations in Italian patients with familial and sporadic amyotrophic lateral sclerosis:identification of three novel missense mutations [J]. Neuromuscul Disord,2001,11(4):404-10.
    [48]Van Es MA, Dahlberg C, Birve A, et al. Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis [J]. J Neurol Neurosurg Psychiatry,2010,81(5): 562-6.
    [49]Andersen PM, Sims KB, Xin WW, et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis:a decade of discoveries, defects and disputes [J]. Amyotrophic Lateral Sclerosis,2003,4(2):62-73.
    [50]Brown JA, Min J, Staropoli JF, et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis:a United States clinical testing lab experience [J]. Amyotroph Lateral Scler,2012,13(2): 217-22.
    [51]Boukaftane Y, Khoris J, Moulard B, et al. Identification of six novel SOD1 gene mutations in familial amyotrophic lateral sclerosis [J]. Can J Neurol Sci,1998,25(3):192-6.
    [52]Hayward C, Brock DJ, Minns RA, et al. Homozygosity for Asn86Ser mutation in the CuZn-superoxide dismutase gene produces a severe clinical phenotype in a juvenile onset case of familial amyotrophic lateral sclerosis [J]. J Med Genet,1998,35(2):174.
    [53]Andersen PM, Nilsson P, Ala-Hurula V, et al. Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase [J]. Nat Genet,1995,10(1): 61-6.
    [54]Synofzik M, Ronchi D, Keskin I, et al. Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS [J]. Hum Mol Genet,2012,21(16):3568-74.
    [55]Kato M, Aoki M, Ohta M, et al. Marked reduction of the Cu/Zn superoxide dismutase polypeptide in a case of familial amyotrophic lateral sclerosis with the homozygous mutation [J].Neurosci Lett,2001, 312(3):165-8.
    [56]Luquin N, Yu B, Trent RJ, et al. An analysis of the entire SOD1 gene in sporadic ALS [J]. Neuromuscul Disord,2008,18(7):545-52.
    [57]Aguirre T, Matthijs G, Robberecht W, et al. Mutational analysis of the Cu/Zn superoxide dismutase gene in 23 familial and 69 sporadic cases of amyotrophic lateral sclerosis in Belgium [J]. Eur J Hum Genet,1999,7(5):599-602.
    [58]Eisen A, Mezei MM, Stewart HG, et al. SOD1 gene mutations in ALS patients from British Columbia, Canada:clinical features, neurophysiology and ethical issues in management [J]. Amyotroph Lateral Scler,2008,9(2):108-19.
    [59]Millecamps S, Salachas F, Cazeneuve C, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis:genotype-phenotype correlations [J]. J Med Genet,2010,47(8): 554-60.
    [60]Niemann S, Joos H, Meyer T, et al. Familial ALS in Germany:origin of the Rl 15G SOD1 mutation by a founder effect [J]. J Neurol Neurosurg Psychiatry,2004,75(8):1186-8.
    [61]Rabe M, Felbecker A, Waibel S, et al. The epidemiology of CuZn-SOD mutations in Germany:a study of 217 families [J]. J Neurol,2010,257(8):1298-302.
    [62]Alexander MD, Traynor BJ, Coor B, et al. SOD1 Mutation analysis in the Irish ALS population-a preliminary report [J]. Amyotroph Lateral Scler Other Motor Neuron Disord,2000,1(S3):99.
    [63]Alavi A, Nafissi S, Rohani M, et al. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients [J]. Neurobiol Aging,2013,34(5):1516 e1-8.
    [64]Gellera C. Genetics of ALS in Italian families [J]. Amyotroph Lateral Scler Other Motor Neuron Disord,2001,2 (Suppl 1):S43-6.
    [65]Corrado L, D'alfonso S, Bergamaschi L, et al. SOD1 gene mutations in Italian patients with Sporadic Amyotrophic Lateral Sclerosis (ALS) [J]. Neuromuscul Disord,2006,16(11):800-4.
    [66]Battistini S, Giannini F, Greco G, et al. SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study [J]. J Neurol,2005,252(7):782-8.
    [67]Chio A, Calvo A, Mazzini L, et al. Extensive genetics of ALS:a population-based study in Italy [J]. Neurology,2012,79(19):1983-9.
    [68]Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease [J]. Neurology,2012,79(1):66-72.
    [69]Abe K, Aoki M, Ikeda M, et al. Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations [J]. J Neurol Sci,1996,136(1-2):108-16.
    [70]Akimoto C, Morita M, Atsuta N, et al. High-Resolution Melting (HRM) Analysis of the Cu/Zn Superoxide Dismutase (SOD1) Gene in Japanese Sporadic Amyotrophic Lateral Sclerosis (SALS) Patients [J]. Neurol Res Int,2011, in press.
    [71]Kwon MJ, Baek W, Ki CS, et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS [J]. Neurobiol Aging,2012,33(5):1017 e17-23.
    [72]Van Blitterswijk M, Van Es MA, Hennekam EA, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis [J]. Hum Mol Genet,2012,21(17):3776-84.
    [73]Skvortsova VI, Limborska SA, Slominsky PA, et al. Sporadic ALS associated with the D90A Cu,Zn superoxide dismutase mutation in Russia [J]. Eur J Neurol,2001,8(2):167-72.
    [74]Jones CT, Swingler RJ, Simpson SA, et al. Superoxide dismutase mutations in an unselected cohort of Scottish amyotrophic lateral sclerosis patients [J]. J Med Genet,1995,32(4):290-2.
    [75]Garcia-Redondo A, Bustos F, Juan YSB, et al. Molecular analysis of the superoxide dismutase 1 gene in Spanish patients with sporadic or familial amyotrophic lateral sclerosis [J]. Muscle Nerve,2002, 26(2):274-8.
    [76]Gamez J, Corbera-Bellalta M, Nogales G, et al. Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population:should all sporadic ALS cases also be screened for SOD1? [J]. J Neurol Sci,2006,247(1):21-8.
    [77]Andersen PM, Nilsson P, Keranen ML, et al. Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia [J]. Brain,1997,120 (Pt 10): 1723-37.
    [78]Orrell RW, Habgood JJ, Malaspina A, et al. Clinical characteristics of SOD1 gene mutations in UK families with ALS [J]. J Neurol Sci,1999,169(1-2):56-60.
    [79]Jones CT, Shaw PJ, Chari G, et al. Identification of a novel exon 4 SOD1 mutation in a sporadic amyotrophic lateral sclerosis patient [J]. Mol Cell Probes,1994,8(4):329-30.
    [80]Jackson M, Al-Chalabi A, Enayat ZE, et al. Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis:analysis of 155 cases and identification of a novel insertion mutation [J]. Ann Neurol,1997,42(5):803-7.
    [81]Shaw CE, Enayat ZE, Chioza BA, et al. Mutations in all five exons of SOD-1 may cause ALS [J]. Ann Neurol,1998,43(3):390-4.
    [82]Cudkowicz ME, Mckenna-Yasek D, Sapp PE, et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis [J]. Ann Neurol,1997,41(2):210-21.
    [83]Van Es Ma, Diekstra F, Veldink J, et al. A case of ALS-FTD in a large FALS pedigree with a K171 ANG mutation [J]. Neurology,2009,72(3):287-8.
    [84]Luigetti M, Lattante S, Zollino M, et al. SOD1 G93D sporadic amyotrophic lateral sclerosis (SALS) patient with rapid progression and concomitant novel ANG variant [J]. Neurobiol Aging,2011,32(10): 1924.e15-8.
    [85]Van Es MA, Schelhaas HJ, Van Vught PW, et al. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis [J]. Ann Neurol,2011,70(6):964-73.
    [86]Zou ZY, Wang XN, Liu MS, et al. Identification of a novel missense mutation in angiogenin in a Chinese amyotrophic lateral sclerosis cohort [J]. Amyotroph Lateral Scler,2012,13(3):270-5.
    [87]Paubel A, Violette J, Amy M, et al. Mutations of the ANG Gene in French Patients With Sporadic Amyotrophic Lateral Sclerosis [J]. Arch Neurol,2008,65(10):1333-6.
    [88]Greenway MJ, Alexander MD, Ennis S, et al. A novel candidate region for ALS on chromosome 14q11.2. [J]. Neurology,2004,63(10):1936-8.
    [89]Conforti F, Sprovieri T, Mazzei R, et al. A novel Angiogenin gene mutation in a sporadic patient with amyotrophic lateral sclerosis from southern Italy [J]. Neuromuscul Disord,2008,18(1):68-70.
    [90]Corrado L, Battistini S, Penco S, et al. Variations in the coding and regulatory sequences of the angiogenin (ANG) gene are not associated to ALS (amyotrophic lateral sclerosis) in the Italian population [J]. J Neurol Sci,2007,258(1-2):123-7.
    [91]Del Bo R, Scarlato M, Ghezzi S, et al. Absence of angiogenic genes modification in Italian ALS patients [J]. Neurobiol Aging,2008,29(2):314-6.
    [92]Gellera C, Colombrita C, Ticozzi N, et al. Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis [J]. Neurogenetics,2007,9(1):33-40.
    [93]Wu D, Yu W, Kishikawa H, et al. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis [J]. Ann Neurol,2007,62(6):609-17.
    [94]Van Blitterswijk M, Vlam L, Van Es MA, et al. Genetic overlap between apparently sporadic motor neuron diseases [J]. PLoS One,2012,7(11):e48983.
    [95]Corcia P, Valdmanis P, Millecamps S, et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations [J]. Neurology,2012,78(19):1519-26.
    [96]Fujita Y, Ikeda M, Yanagisawa T, et al. Different clinical and neuropathologic phenotypes of familial ALS with A315E TARDBP mutation [J]. Neurology,2011,77(15):1427-31.
    [97]Iida A, Kamei T, Sano M, et al. Large-scale screening of TARDBP mutation in amyotrophic lateral sclerosis in Japanese [J]. Neurobiol Aging,2012,33(4):786-90.
    [98]Borghero G, Floris G, Cannas A, et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD [J]. Neurobiol Aging,2011,32(12):2327 e1-5.
    [99]Kabashi E, Valdmanis PN, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis [J]. Nat Genet,2008,40(5):572-4.
    [100]Guerreiro RJ, Schymick JC, Crews C, et al. TDP-43 is not a common cause of sporadic amyotrophic lateral sclerosis [J]. PLoS One,2008,3(6):e2450.
    [101]Rutherford NJ, Zhang YJ, Baker M, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis [J]. PLoS Genet,2008,4(9):e1000193.
    [102]Van Deerlin VM, Leverenz JB, Bekris LM, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology:a genetic and histopathological analysis [J]. Lancet Neurol,2008, 7(5):409-16.
    [103]Williams KL, Durnall JC, Thoeng AD, et al. A novel TARDBP mutation in an Australian amyotrophic lateral sclerosis kindred [J]. J Neurol Neurosurg Psychiatry,2009,80(11):1286-8.
    [104]Solski JA, Yang S, Nicholson GA, et al. A novel TARDBP insertion/deletion mutation in the flail arm variant of amyotrophic lateral sclerosis [J]. Amyotroph Lateral Scler,2012,13(5):465-70.
    [105]Gijselinck I, Sleegers K, Engelborghs S, et al. Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS [J]. Neurobiol Aging,2009,30(8):1329-31.
    [106]Lemmens R, Race V, Hersmus N, et al. TDP-43 M311V mutation in familial amyotrophic lateral sclerosis [J]. J Neurol Neurosurg Psychiatry,2009,80(3):354-5.
    [107]Zou ZY, Peng Y, Wang XN, et al. Screening of the TARDBP gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin [J]. Neurobiol Aging,2012,33(9):2229 e11-8.
    [108]Mentula HK, Tuovinen L, Penttila S, et al. TARDBP mutations are not a frequent cause of ALS in Finnish patients [J]. Acta myol,2012,31(2):134-8.
    [109]Daoud H, Valdmanis PN, Kabashi E, et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis [J]. J Med Genet,2008,46(2):112-4.
    [110]Kuhnlein P, Sperfeld AD, Vanmassenhove B, et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations [J]. Arch Neurol,2008,65(9):1185-9.
    [111]Chio A, Calvo A, Moglia C, et al. Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations [J]. Arch Neurol,2010,67(8):1002-9.
    [112]Piaceri I, Del MM, Tedde A, et al. Clinical heterogeneity in Italian patients with amyotrophic lateral sclerosis [J]. Clin Genet,2011,82(1):83-7.
    [113]Origone P, Caponnetto C, Bandettini Di Poggio M, et al. Enlarging clinical spectrum of FALS with TARDBP gene mutations:S393L variant in an Italian family showing phenotypic variability and relevance for genetic counselling [J]. Amyotroph Lateral Scler,2010,11(1-2):223-7.
    [114]Corrado L, Ratti A, Gellera C, et al. High frequency of TARDBPgene mutations in Italian patients with amyotrophic lateral sclerosis [J]. Hum Mutat,2009,30(4):688-94.
    [115]Orru S, Manolakos E, Orru N, et al. High frequency of the TARDBP p.Ala382Thr mutation in Sardinian patients with amyotrophic lateral sclerosis [J]. Clin Genet,2011,81(2):172-8.
    [116]Chio A, Borghero G, Pugliatti M, et al. Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene [J]. Arch Neurol,2011,68(5):594-8.
    [117]Del Bo R, Ghezzi S, Corti S, et al. TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS:identification of two novel mutations [J]. Eur J Neurol,2009,16(6):727-32.
    [118]Conforti FL, Sproviero W, Simone IL, et al. TARDBP gene mutations in south Italian patients with amyotrophic lateral sclerosis [J]. J Neurol Neurosurg Psychiatry,2011,82(5):587-8.
    [119]Kamada M, Maruyama H, Tanaka E, et al. Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis [J]. J Neurol Sci,2009,284(1-2):69-71.
    [120]Yokoseki A, Shiga A, Tan C-F, et al. TDP-43 mutation in familial amyotrophic lateral sclerosis [J]. Ann Neurol,2008,63(4):538-42.
    [121]Chiang HH, Andersen PM, Tysnes OB, et al. Novel TARDBP mutations in Nordic ALS patients [J]. J Hum Genet,2012,57(5):316-9.
    [122]Czell D, Andersen PM, Morita M, et al. Phenotypes in Swiss Patients with Familial ALS Carrying TARDBP Mutations [J]. Neurodegener Dis,2013,
    [123]Kirby J, Goodall EF, Smith W, et al. Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis [J]. Neurogenetics,2009,11(2): 217-25.
    [124]Baumer D, Parkinson N, Talbot K. TARDBP in amyotrophic lateral sclerosis:identification of a novel variant but absence of copy number variation [J]. Neurol Neurosurg Psychiatry,2009,80(11): 1283-5.
    [125]Gitcho MA, Baloh RH, Chakraverty S, et al. TDP-43 A315T mutation in familial motor neuron disease [J]. Ann Neurol,2008,63(4):535-8.
    [126]Ticozzi N, Leclerc AL, Van Blitterswijk M, et al. Mutational analysis of TARDBP in neurodegenerative diseases [J]. Neurobiology of Aging,2009,32(11):2096-9.
    [127]Waibel S, Neumann M, Rabe M, et al. Novel missense and truncating mutations in FUS/TLS in familial ALS [J]. Neurology,2010,75(9):815-7.
    [128]Groen EJ, Van Es MA, Van Vught PW, et al. FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands [J]. Arch Neurol,2010,67(2):224-30.
    [129]Chio A, Restagno G, Brunetti M, et al. Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation [J]. Neurobiol Aging,2009,30(8):1272-5.
    [130]Blair IP, Williams KL, Warraich ST, et al. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis [J]. J Neurol Neurosurg Psychiatry,2010, 81(6):639-45.
    [131]Robertson J, Bilbao J, Zinman L, et al. A novel double mutation in FUS gene causing sporadic ALS [J]. Neurobiol Aging,2011,32(3):553 e27-30.
    [132]Belzil VV, Langlais JS, Daoud H, et al. Novel FUS Deletion in a Patient With Juvenile Amyotrophic Lateral Sclerosis [J]. Arch Neurol,2012,69(5):653-6.
    [133]Nagayama S, Minato-Hashiba N, Nakata M, et al. Novel FUS mutation in patients with sporadic amyotrophic lateral sclerosis and corticobasal degeneration [J]. J Clin Neurosci,2012,19(12): 1738-9.
    [134]Yamashita S, Mori A, Sakaguchi H, et al. Sporadic juvenile amyotrophic lateral sclerosis caused by mutant FUS/TLS:possible association of mental retardation with this mutation [J]. J Neurol, 2012,259(6):1039-44.
    [135]Belzil VV, Daoud H, St-Onge J, et al. Identification of novel FUS mutations in sporadic cases of amyotrophic lateral sclerosis [J]. Amyotroph Lateral Scler,2011,12(2):113-7.
    [136]Belzil VV, St-Onge J, Daoud H, et al. Identification of a FUS splicing mutation in a large family with amyotrophic lateral sclerosis [J]. J Hum Genet,2011,56(3):247-9.
    [137]Drepper C, Herrmann T, Wessig C, et al. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany [J]. Neurobiol Aging,2011,32(3):548 e1-4.
    [138]Damme PV, Goris A, Race V, et al. The occurrence of mutations in FUS in a Belgian cohort of patients with familial ALS [J]. Eur J Neurol,2010,17(5):754-6.
    [139]Rademakers R, Stewart H, Dejesus-Hernandez M, et al. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Muscle Nerve,2010,42(2):170-6.
    [140]Belzil VV, Valdmanis PN, Dion PA, et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations [J]. Neurology,2009,73(15):1176-9.
    [141]Corrado L, Del Bo R, Castellotti B, et al. Mutations of FUS gene in sporadic amyotrophic lateral sclerosis [J]. J Med Genet,2010,47(3):190-4.
    [142]Waibel S, Neumann M, Rosenbohm A, et al. Truncating mutations in FUS/TLS give rise to a more aggressive ALS-phenotype than missense mutations:a clinico-genetic study in Germany [J]. Eur J Neurol,2013,20(3):540-6.
    [143]Ticozzi N, Silani V, Leclerc AL, et al. Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort [J]. Neurology,2009,73(15):1180-5.
    [144]Sproviero W, La Bella V, Mazzei R, et al. FUS mutations in sporadic amyotrophic lateral sclerosis:clinical and genetic analysis [J]. Neurobiol Aging,2012,33(4):837 e1-5.
    [145]Lai S-L, Abramzon Y, Schymick JC, et al. FUS mutations in sporadic amyotrophic lateral sclerosis [J]. Neurobiol Aging,2011,32(3):550.el-.e4.
    [146]Suzuki N, Aoki M, Warita H, et al. FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusion [J]. J Hum Genet,2010,55(4):252-4.
    [147]Syriani E, Morales M, Gamez J. FUS/TLS gene mutations are the second most frequent cause of familial ALS in the Spanish population [J]. Amyotroph Lateral Scler,2011,12(2):118-23.
    [148]Baumer D, Hilton D, Paine SM, et al. Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations [J]. Neurology,2010,75(7):611-8.
    [149]Hewitt C, Kirby J, Highley JR, et al. Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis [J]. Arch Neurol,2010,67(4):455-61.
    [150]Rutherford NJ, Finch NA, Dejesus-Hernandez M, et al. Pathogenicity of exonic indels in fused in sarcoma in amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(2):424 e23-4.
    [151]Dejesus-Hernandez M, Kocerha J, Finch N, et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis [J]. Hum Mutat,2010,31(5):E1377-89.
    [152]Yan J, Deng HX, Siddique N, et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia [J]. Neurology,2010,75(9):807-14.
    [153]Sabatelli M, Conforti FL, Zollino M, et al. C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population [J]. Neurobiol Aging,2012,33(8):1848 e15-20.
    [154]Chio A, Borghero G, Restagno G, et al. Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 [J]. Brain,2012,135(Pt 3):784-93.
    [155]Xi Z, Zinman L, Grinberg Y, et al. Investigation of c9orf72 in 4 neurodegenerative disorders [J]. Arch Neurol,2012,69(12):1583-90.
    [156]Smith BN, Newhouse S, Shatunov A, et al. The C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder [J]. Eur J Hum Genet,2013,21(1):102-8.
    [157]Pamphlett R, Cheong PL, Trent RJ, et al. Transmission of C9orf72 hexanucleotide repeat expansions in sporadic amyotrophic lateral sclerosis:an Australian trio study [J]. Neuroreport,2012, 23(9):556-9.
    [158]Gijselinck I, Van Langenhove T, Van Der Zee J, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum:a gene identification study [J]. Lancet Neurol,2012,11(1):54-65.
    [159]Stewart H, Rutherford NJ, Briemberg H, et al. Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p [J]. Acta Neuropathol,2012,123(3):409-17.
    [160]Zou ZY, Li XG, Liu MS, et al. Screening for C9orf72 repeat expansions in Chinese amyotrophic lateral sclerosis patients [J]. Neurobiol Aging,2013,34(6):1710.e5-6.
    [161]Millecamps S, Boillee S, Le Ber I, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes [J]. J Med Genet, 2012,49(4):258-63.
    [162]Mok KY, Koutsis G, Schottlaender LV, et al. High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients [J]. Neurobiol Aging,2012,33(8): 1851 el-5.
    [163]Conte A, Lattante S, Luigetti M, et al. Classification of familial amyotrophic lateral sclerosis by family history:effects on frequency of genes mutation [J]. J Neurol Neurosurg Psychiatry,2012, 83(12):1201-3.
    [164]Ratti A, Corrado L, Castellotti B, et al. C9ORF72 repeat expansion in a large Italian ALS cohort:evidence of a founder effect [J]. Neurobiol Aging,2012,33(10):2528 e7-14.
    [165]Jang JH, Kwon MJ, Choi WJ, et al. Analysis of the C9orf72 hexanucleotide repeat expansion in Korean patients with familial and sporadic amyotrophic lateral sclerosis [J]. Neurobiol Aging,2013, 34(4):1311 e7-9.
    [166]Ogaki K, Li Y, Atsuta N, et al. Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(10):2527 el 1-6.
    [167]Ishiura H, Takahashi Y, Mitsui J, et al. C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan [J]. Arch Neurol,2012,69(9):1154-8.
    [168]Konno T, Shiga A, Tsujino A, et al. Japanese amyotrophic lateral sclerosis patients with GGGGCC hexanucleotide repeat expansion in C9ORF72 [J]. J Neurol Neurosurg Psychiatry,2012,84(4): 398-401.
    [169]Chester C, De Carvalho M, Miltenberger G, et al. Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation [J]. Amyotroph Lateral Scler Frontotemporal Degener,2013,14(1):70-2.
    [170]Garcia-Redondo A, Dols-Icardo O, Rojas-Garcia R, et al. Analysis of the C9orf72 gene in patients with amyotrophic lateral sclerosis in Spain and different populations worldwide [J]. Hum Mutat, 2013,34(1):79-82.
    [171]Cooper-Knock J, Hewitt C, Highley JR, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72 [J]. Brain,2012,135(Pt 3):751-64.
    [172]Al-Sarraj S, King A, Troakes C, et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-1 inked FTLD and MND/ALS [J]. Acta Neuropathol,2011,122(6):691-702.
    [173]Brettschneider J, Van Deerlin VM, Robinson JL, et al. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion [J]. Acta Neuropathol,2012, 123(6):825-39.
    [174]Rutherford NJ, Dejesus-Hernandez M, Baker MC, et al. C9ORF72 hexanucleotide repeat expansions in patients with ALS from the Coriell Cell Repository [J]. Neurology,2012,79(5):482-3.
    [175]邹漳钰,崔丽英.肉瘤融合基因与肌萎缩侧索硬化[J].中华神经科杂志,2011,44(11):777-9.
    [176]邹漳钰,刘明生,李晓光等.血管生成素基因与肌萎缩侧索硬化[J].中华神经科杂志,2012,45(7):516-9.
    [177]Miller JW, Smith BN, Topp SD, et al. Mutation analysis of VCP in British familial and sporadic amyotrophic lateral sclerosis patients [J]. Neurobiol Aging,2012,33(11):2721 e1-2.
    [178]Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein [J]. Nat Genet,2004, 36(4):377-81.
    [179]Abramzon Y, Johnson JO, Scholz SW, et al. Valosin-containing protein (VCP) mutations in sporadic amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(9):2231 el-e6.
    [180]Koppers M, Van Blitterswijk MM, Vlam L, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(4):837 e7-13.
    [181]Dejesus-Hernandez M, Desaro P, Johnston A, et al. Novel p.Ile151 Val mutation in VCP in a patient of African American descent with sporadic ALS [J]. Neurology,2011,77(11):1102-3.
    [182]Tiloca C, Ratti A, Pensato V, et al. Mutational analysis of VCP gene in familial amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(3):630 e1-2.
    [183]Williams KL, Solski JA, Nicholson GA, et al. Mutation analysis of VCP in familial and sporadic amyotrophic lateral sclerosis [J]. Neurobiol Aging,2012,33(7):1488 e15-6.
    [184]Simon-Sanchez J, Dopper EG, Cohn-Hokke PE, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions [J]. Brain,2012,135(Pt 3):723-35.
    [185]Collins JS, Schwartz CE. Detecting polymorphisms and mutations in candidate genes [J]. Am J Hum Genet,2002,71(5):1251-2.
    [186]Mclaughlin R, Phukan J, Mccormack W, et al. Angiogenin levels and ANG genotypes: dysregulation in amyotrophic lateral sclerosis [J]. PLoS One,2010,5(11):e15402.
    [187]Goodall EF, Greenway MJ, Van Marion I, et al. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS [J]. Neurology,2005,65(6):934-7.
    [188]Saeed M, Siddique N, Hung WY, et al. Paraoxonase cluster polymorphisms are associated with sporadic ALS [J]. Neurology,2006,67(5):771-6.
    [189]Slowik A, Tomik B, Wolkow PP, et al. Paraoxonase gene polymorphisms and sporadic ALS [J]. Neurology,2006,67(5):766-70.
    [190]Van Es MA, Van Vught PW, Blauw HM, et al. ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis:a genome-wide association study [J]. Lancet Neurol,2007,6(10):869-77.
    [191]Dunckley T, Huentelman MJ, Craig DW, et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis [J]. N Engl J Med,2007,357(8):775-88.
    [192]Cronin S, Berger S, Ding J, et al. A genome-wide association study of sporadic ALS in a homogenous Irish population [J]. Hum Mol Genet,2008,17(5):768-74.
    [193]Shatunov A, Mok K, Newhouse S, et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries:a genome-wide association study [J]. Lancet Neurol,2010, 9(10):986-94.
    [194]Van Es MA, Veldink JH, Saris CG, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis [J]. Nat Genet, 2009,41(10):1083-7.
    [195]He X, Lu X, Hu J, et al. H63D polymorphism in the hemochromatosis gene is associated with sporadic amyotrophic lateral sclerosis in China [J]. Eur J Neurol,2011,18(2):359-61.
    [196]Li XG, Zhang JH, Xie MQ, et al. Association between DPP6 polymorphism and the risk of sporadic amyotrophic lateral sclerosis in Chinese patients [J]. Chin Med J,2009,122(24):2989-92.
    [197]Chen Y, Zeng Y, Huang R, et al. No association of five candidate genetic variants with amyotrophic lateral sclerosis in a Chinese population [J]. Neurobiol Aging,2012,33(11):2721.e3-5.
    [198]Iida A, Takahashi A, Deng M, et al. Replication analysis of SNPs on 9p21.2 and 19p13.3 with amyotrophic lateral sclerosis in East Asians [J]. Neurobiol Aging,2011,32(4):757 e13-4.
    [199]Stewart HG, Andersen PM, Eisen A, et al. Corticomotoneuronal dysfunction in ALS patients with different SOD1 mutations [J]. Clin Neurophysiol,2006,117(8):1850-61.
    [200]Aoki M, Ogasawara M, Matsubara Y, et al. Familial amyotrophic lateral sclerosis (ALS) in Japan associated with H46R mutation in Cu/Zn superoxide dismutase gene:a possible new subtype of familial ALS [J]. J Neurol Sci,1994,126(1):77-83.
    [201]Arisato T, Okubo R, Arata H, et al. Clinical and pathological studies of familial amyotrophic lateral sclerosis (FALS) with SOD1 H46R mutation in large Japanese families [J]. Acta Neuropathol, 2003,106(6):561-8.
    [202]Ohi T, Saita K, Takechi S, et al. Clinical features and neuropathological findings of familial amyotrophic lateral sclerosis with a His46Arg mutation in Cu/Zn superoxide dismutase [J]. J Neurol Sci, 2002,197(1-2):73-8.
    [203]Ohi T, Nabeshima K, Kato S, et al. Familial amyotrophic lateral sclerosis with His46Arg mutation in Cu/Zn superoxide dismutase presenting characteristic clinical features and Lewy body-like hyaline inclusions [J]. J Neurol Sci,2004,225(1-2):19-25.
    [204]Yamashita S, Kimura E, Yamamoto F, et al. Flexor-dominant myopathic phenotype in patients with His46Arg substitution in the Cu/Zn superoxide dismutase gene [J]. J Neurol Sci,2009,281(1-2): 6-10.
    [205]Holmoy T, Bjorgo K, Roos PM. Slowly progressing amyotrophic lateral sclerosis caused by H46R SOD1 mutation [J]. Eur Neurol,2007,58(1):57-8.
    [206]Camu W, Khoris J, Moulard B, et al. Genetics of familial ALS and consequences for diagnosis. French ALS Research Group [J]. J Neurol Sci,1999,165 (Suppl 1):S21-6.
    [207]Ostern R, Fagerheim T, Orstavik K, et al. Hereditary motor neuron disease in a large Norwegian family with a "H46R" substitution in the superoxide dismutase 1 gene [J]. Neuromuscul Disord,2012,22(6):511-21.
    [208]Ceroni M, Malaspina A, Poloni TE, et al. Clustering of ALS patients in central Italy due to the occurrence of the L84F SOD1 gene mutation [J]. Neurology,1999,53(5):1064-71.
    [209]Robberecht W, Aguirre T, Van Den Bosch L, et al. D90A heterozygosity in the SOD1 gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis [J]. Neurology,1996,47(5): 1336-9.
    [210]Luigetti M, Conte A, Madia F, et al. Heterozygous SOD1 D90A mutation presenting as slowly progressive predominant upper motor neuron amyotrophic lateral sclerosis [J]. Neurol Sci,2009,30(6): 517-20.
    [211]Origone P, Caponnetto C, Mascolo M, et al. Heterozygous D90A-SOD1 mutation in an Italian ALS patient with atypical presentation [J]. Amyotroph Lateral Scler,2009,10(5-6):492.
    [212]Felbecker A, Camu W, Valdmanis PN, et al. Four familial ALS pedigrees discordant for two SOD1 mutations:are all SOD1 mutations pathogenic? [J]. J Neurol Neurosurg Psychiatry,2010,81(5): 572-7
    [213]Giannini F, Battistini S, Mancuso M, et al. D90A-SOD1 mutation in ALS:The first report of heterozygous Italian patients and unusual findings [J]. Amyotroph Lateral Scler,2010,11(1-2):216-9.
    [214]Parton MJ, Broom W, Andersen PM, et al. D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis-acting disease modifier in the recessive haplotype [J]. Hum Mutat,2002,20(6):473.
    [215]Kawamata J, Hasegawa H, Shimohama S, et al. Leu106-->Val (CTC-->GTC) mutation of superoxide dismutase-1 gene in patient with familial amyotrophic lateral sclerosis in Japan [J]. Lancet, 1994,343(8911):1501.
    [216]Hineno A, Nakamura A, Shimojima Y, et al. Distinctive clinicopathological features of 2 large families with amyotrophic lateral sclerosis having L106V mutation in SOD1 gene [J]. J Neurol Sci,2012, 319(1-2):63-74.
    [217]Battistini S, Ricci C, Lotti EM, et al. Severe familial ALS with a novel exon 4 mutation (L106F) in the SOD1 gene [J]. J Neurol Sci,2010,293(1-2):112-5.
    [218]Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia [J]. Lancet Neurol,2010,9(10):995-1007.
    [219]Conte A, Lattante S, Zollino M, et al. P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis [J]. Neuromuscul Disord,2012,22(1):73-5.
    [220]Huang EJ, Zhang J, Geser F, et al. Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions [J]. Brain pathol,2010,20(6):1069-76.
    [221]Ito H, Fujita K, Nakamura M, et al. Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease [J]. Acta Neuropathol, 2011,121(4):555-7.
    [222]Fecto F, Siddique T. Making connections:pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia [J]. J Mol Neurosci,2011,45(3):663-75.
    [223]Zou ZY, Cui LY, Sun Q, et al. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China [J]. Neurobiol Aging,2013,34(4):1312 e1-8.
    [224]Mochizuki Y, Isozaki E, Takao M, et al. Familial ALS with FUS P525L mutation:two Japanese sisters with multiple systems involvement [J]. J Neurol Sci,2012,323(1-2):85-92.
    [225]Orban P, Devon RS, Hayden MR, et al. Chapter 15 Juvenile amyotrophic lateral sclerosis [J]. Handbook of clinical neurology/edited by PJ Vinken and GW Bruyn,2007,82(301-12.
    [226]Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis:a population-based study [J]. J Neurol Neurosurg Psychiatry,2012,83(1):102-8.
    [227]Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis:what do we really know? [J]. Nat Rev Neurol,2011,7(11):603-15.
    [228]Hardiman O, Figlewicz DA. The expansions of ALS [J]. Neurology,2012,79(9):842-3.
    [229]Byrne S, Bede P, Elamin M, et al. Proposed criteria for familial amyotrophic lateral sclerosis [J]. Amyotroph Lateral Scler,2011,12(3):157-9.
    [230]Ito D, Suzuki N. Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS [J]. Neurology,2011,77(17):1636-43.
    [231]邹漳钰,李晓光,崔丽英.肌萎缩侧索硬化的进展与挑战[J].中华神经科杂志,2012,45(12):893-6.
    [232]Alexander MD, Traynor BJ, Miller N, et al. "True" sporadic ALS associated with a novel SOD-1 mutation [J]. Ann Neurol,2002,52(5):680-3.
    [233]Chio A, Calvo A, Moglia C, et al. A de novo missense mutation of the FUS gene in a "true" sporadic ALS case [J]. Neurobiol Aging,2011,32(3):553 e23-6.
    [234]Subramanian V, Crabtree B, Acharya K. Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension pathfinding and survival of motor neurons [J]. Hum Mol Genet,2008,17(1):130-49.
    [235]Wang J, Xu G, Borchelt DR. Mapping superoxide dismutase 1 domains of non-native interaction:roles of intra-and intermolecular disulfide bonding in aggregation [J]. J Neurochem,2006, 96(5):1277-88.
    [236]Seetharaman SV, Prudencio M, Karch C, et al. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis [J]. Exp Biol Med (Maywood),2009,234(10):1140-54.
    [237]Lindberg MJ, Bystrom R, Boknas N, et al. Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants [J]. Proc Natl Acad Sci U S A,2005, 102(28):9754-9.
    [238]Jonsson PA, Graffmo KS, Brannstrom T, et al. Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1 [J]. J Neuropathol Exp Neurol,2006,65(12): 1126-36.
    [239]Nagai M, Aoki M, Miyoshi I, et al. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis:associated mutations develop motor neuron disease [J]. J Neurosci,2001,21(23):9246-54.
    [240]Smith BD, Raines RT. Genetic selection for critical residues in ribonucleases [J]. J Mol Biol, 2006,362(3):459-78.
    [241]Budini M, Romano V, Avendano-Vazquez SE, et al. Role of selected mutations in the Q/N rich region of TDP-43 in EGFP-12xQ/N-induced aggregate formation [J]. Brain Res,2012, in press.
    [242]Bosco DA, Lemay N, Ko HK, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules [J]. Hum Mol Genet,2010,19(21):4160-75.
    [243]Dormann D, Rodde R, Edbauer D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import [J]. EMBO J,2010,29(16):2841-57.
    [244]Ito D, Seki M, Tsunoda Y, et al. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS [J]. Ann Neurol,2011,69(1):152-62.
    [245]Penco S, Lunetta C, Mosca L, et al. Phenotypic Heterogeneity in a SOD1 G93D Italian ALS Family:An Example of Human Model to Study a Complex Disease [J]. J Mol Neurosci,2010,44(1): 25-30.
    [246]Chio A, Restagno G, Brunetti M, et al. ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations [J]. J Neurol Neurosurg Psychiatry,2012,83(7):730-3.
    [247]Van Blitterswijk M, Van Es MA, Koppers M, et al. VAPB and C9orf72 mutations in 1 familial amyotrophic lateral sclerosis patient [J]. Neurobiol Aging,2012,33(12):2950 e1-4.
    [248]Turner MR, Hardiman O, Benatar M, et al. Controversies and priorities in amyotrophic lateral sclerosis [J]. Lancet Neurol,2013,12(3):310-22.
    [249]Lagier-Tourenne C, Cleveland DW. Rethinking ALS:the FUS about TDP-43 [J]. Cell,2009, 136(6):1001-4.
    [250]Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis [J]. Lancet,2011, 377(9769):942-55.
    [251]Ferraiuolo L, Kirby J, Grierson AJ, et al. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis [J]. Nature reviews Neurology,2011,7(11):616-30.
    [252]沈定国.对肌萎缩侧索硬化发病机制的新认识[J].中华神经科杂志,2011,44(8):574-7.
    [253]Dormann D, Haass C. TDP-43 and FUS:a nuclear affair [J]. Trends in neurosciences,2011, in press.
    [1]Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis [J]. Nat Rev Neurosci, 2013,13(4):248-64.
    [2]Chio A, Traynor B J, Lombardo F, et al. Prevalence of SOD1 mutations in the Italian ALS population [J]. Neurology,2008,70(7):533-7.
    [3]Neumann M, Sampathu D M, Kwong L K, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J]. Science,2006,314(5796):130-3.
    [4]Sreedharan J, Blair I P, Tripathi V B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Science,2008,319(5870):1668-72.
    [5]Kwiatkowski T J, Jr,, Bosco D A, Leclerc A L, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis [J]. Science,2009,323(5918):1205-8.
    [6]Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 [J]. Science,2009,323(5918):1208-11.
    [7]Zinszner H, Sok J, Immanuel D, et al. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling [J]. J Cell Sci,1997,110 (Pt 15):1741-50.
    [8]Ayala Y M, Zago P, D'ambrogio A, et al. Structural determinants of the cellular localization and shuttling of TDP-43 [J]. J Cell Sci,2008,121(Pt 22):3778-85.
    [9]邹漳钰,崔丽英.肉瘤融合基因与肌萎缩侧索硬化[J].中华神经科杂志,2011,44(11):777-9.
    [10]Lagier-Tourenne C, Cleveland D W. Rethinking ALS:the FUS about TDP-43 [J]. Cell,2009,136(6): 1001-4.
    [11]Buratti E, Baralle F E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease [J]. Front Biosci,2008,13:867-78.
    [12]Dormann D, Rodde R, Edbauer D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import [J]. EMBO J,2010,29(16):2841-57.
    [13]Zou Z Y, Cui L Y, Sun Q, et al. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China [J]. Neurobiol Aging,2013,34(4):1312 e1-8.
    [14]Corrado L, Del Bo R, Castellotti B, et al. Mutations of FUS gene in sporadic amyotrophic lateral sclerosis [J]. J Med Genet,2010,47(3):190-4.
    [15]Hewitt C, Kirby J, Highley J R, et al. Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis [J]. Arch Neurol,2010,67(4):455-61.
    [16]Belzil V V, Valdmanis P N, Dion PA, et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations [J]. Neurology,2009,73(15):1176-9.
    [17]Dejesus-Hernandez M, Kocerha J, Finch N, et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis [J]. Hum Mutat,2010,31(5):E1377-89.
    [18]Bosco D A, Lemay N, Ko H K, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules [J]. Hum Mol Genet,2010,19(21):4160-75.
    [19]Gal J, Zhang J, Kwinter D M, et al. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants [J]. Neurobiol Aging,2011,32(12):2323 e27-40.
    [20]Kino Y, Washizu C, Aquilanti E, et al. Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations [J]. Nucleic Acids Res,2011, 39(7):2781-98.
    [21]Ito D, Seki M, Tsunoda Y, et al. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS [J]. Ann Neurol,2011,69(1):152-62.
    [22]Kabashi E, Bercier V, Lissouba A, et al. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis [J]. PLoS Genet,2011,7(8):e1002214.
    [23]Wang J W, Brent J R, Tomlinson A, et al. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span [J]. J Clin Invest,2011,121(10):4118-26.
    [1]Chio A, Traynor BJ, Lombardo F, et al. Prevalence of SOD 1 mutations in the Italian ALS population [J]. Neurology,2008,70(7):533-7.
    [2]Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis [J]. Nature,1993,362(6415):59-62.
    [3]Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 [J]. Nat Genet,2001,29(2):166-73.
    [4]Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4) [J]. Am J Hum Genet,2004,74(6):1128-35.
    [5]Nishimura AL, Mitne-Neto M, Silva HC, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis [J]. Am J Hum Genet,2004, 75(5):822-31.
    [6]Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis [J]. Nat Genet,2006,38(4):411-3.
    [7]Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Science,2008,319(5870):1668-72.
    [8]Chow CY, Landers JE, Bergren SK, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS [J]. Am J Hum Genet,2009,84(1):85-8.
    [9]Kwiatkowski TJ, Jr,, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis [J]. Science,2009,323(5918):1205-8.
    [10]Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 [J]. Science,2009,323(5918):1208-11.
    [11]Orlacchio A, Babalini C, Borreca A, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis [J]. Brain,2010,133(Pt 2):591-8.
    [12]Mitchell J, Paul P, Chen HJ, et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase [J]. Proc Natl Acad Sci U S A,2010,107(16):7556-61.
    [13]Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis [J]. Nature,2010,465(7295):223-6.
    [14]Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS [J]. Nature,2010,466(7310):1069-75.
    [15]Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS [J]. Neuron,2010,68(5):857-64.
    [16]Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia [J]. Nature,2011,477(7363):211-5.
    [17]Dejesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS [J]. Neuron,2011,72(2): 245-56.
    [18]Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD [J]. Neuron,2011,72(2):257-68.
    [19]Fecto F, Yan J, Vemula SP, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Arch Neurol,2011,68(11):1440-6.
    [20]Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis [J]. Nature,2012,488(7412):499-503.
    [21]Van Blitterswijk M, Dejesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia:can we learn from other noncoding repeat expansion disorders? [J]. Curr Opin Neurol,2012,25(6):689-700.
    [22]Dunckley T, Huentelman MJ, Craig DW, et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis [J]. N Engl J Med,2007,357(8):775-88.
    [23]Ferraiuolo L, Kirby J, Grierson AJ, et al. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis [J]. Nat Rev Neurol,2011,7(11):616-30.
    [24]Lambrechts D, Poesen K, Fernandez-Santiago R, et al. Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis:increased susceptibility in male carriers of the-2578AA genotype [J]. J Med Genet,2009,46(12):840-6.
    [25]Attia J, Thakkinstian A, D'este C. Meta-analyses of molecular association studies:methodologic lessons for genetic epidemiology [J]. J Clin Epidemiol,2003,56(4):297-303.
    [26]Goyette P, Pai A, Milos R, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR) [J]. Mamm Genome,1998,9(8):652-6.
    [27]Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease:a common mutation in methylenetetrahydrofolate reductase [J]. Nat Genet,1995,10(1):111-3.
    [28]Van Der Put NM, Gabreels F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene:an additional risk factor for neural-tube defects? [J]. Am J Hum Genet,1998,62(5):1044-51.
    [29]Clarke R, Smith AD, Jobst KA, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease [J]. Arch Neurol,1998,55(11):1449-55.
    [30]Isobe C, Murata T, Sato C, et al. Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer's disease and Parkinson's disease [J]. Life Sci,2005,77(15):1836-43.
    [31]Levin J, Botzel K, Giese A, et al. Elevated levels of methylmalonate and homocysteine in Parkinson's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis [J]. Dement Geriatr Cogn Disord,2010,29(6):553-9.
    [32]Valentino F, Bivona G, Butera D, et al. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS [J]. Eur JNeurol,2010,17(1):84-9.
    [33]Zoccolella S, Simone IL, Lamberti P, et al. Elevated plasma homocysteine levels in patients with amyotrophic lateral sclerosis [J]. Neurology,2008,70(3):222-5.
    [34]Peerbooms OL, Van Os J, Drukker M, et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder:evidence for a common genetic vulnerability? [J]. Brain Behav Immun,2011,25(8):1530-43.
    [35]Gao S, Li H, Xiao H, et al. Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage:a meta-analysis [J]. J Neurol Sci,2012,323(1-2):40-5.
    [36]Sarecka-Hujar B, Kopyta I, Pienczk-Reclawowicz K, et al. The TT genotype of methylenetetrahydrofolate reductase 677C>T polymorphism increases the susceptibility to pediatric ischemic stroke:meta-analysis of the 822 cases and 1,552 controls [J]. Mol Biol Rep,2012,39(8): 7957-63.
    [37]Cochran WG. The combination of estimates from different experiments [J]. Biometrics,1954,10: 101-29.
    [38]Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses [J]. BMJ, 2003,327(7414):557-60.
    [39]Dersimonian R, Laird N. Meta-analysis in clinical trials [J]. Controlled clinical trials,1986,7: 177-88.
    [40]Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease [J]. J Natl Cancer Inst,1959,22:719-48.
    [41]Penco S, Buscema M, Patrosso MC, et al. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background [J]. BMC bioinformatics, 2008,9:254
    [42]Sazci A, Idrisoglu H, Ergul E, et al. Methylenetetrahydrofolate reductase gene polymorphisms in amyotrophic lateral sclerosis (ALS) [J]. Amyotroph Lateral Scler,2005,6:86.
    [43]Sazci A, Ozel MD, Emel E, et al. Gender-specific association of methylenetetrahydrofolate reductase gene polymorphisms with sporadic amyotrophic lateral sclerosis [J]. Genet Test Mol Biomarkers,2012,16(7):716-21.
    [44]Kuhnlein P, Jung H, Farkas M, et al. The thermolabile variant of 5,10-methylenetetra hydrofolate reductase is a possible risk factor for amyotrophic lateral sclerosis [J]. Amyotroph Lateral Scler,2011, 12(2):136-9.
    [45]Ricci C, Penco S, Benigni M, et al. No association of MTHFR c.677C>T variant with sporadic ALS in an Italian population [J]. Neurobiol Aging,2012,33(1):208 e7-8.
    [46]Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses [J]. BMJ,2007,335(7626):914-6.
    [47]Wilcken B, Bamforth F, Li Z, et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR):findings from over 7000 newborns from 16 areas world wide [J]. J Med Genet,2003,40(8):619-25.
    [48]Gueant-Rodriguez RM, Gueant JL, Debard R, et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status:a comparative study in Mexican, West African, and European populations [J]. The American journal of clinical nutrition,2006,83(3):701-7.
    [49]Xu WH, Shrubsole MJ, Xiang YB, et al. Dietary folate intake, MTHFR genetic polymorphisms, and the risk of endometrial cancer among Chinese women [J]. Cancer Epidemiol Biomarkers Prev,2007, 16(2):281-7.
    [50]Holmes MV, Newcombe P, Hubacek JA, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk:a meta-analysis of genetic studies and randomised trials [J]. Lancet,2011,378(9791):584-94.
    [51]Linnebank M, Homberger A, Nowak-Gottl U, et al. Linkage disequilibrium of the common mutations 677C> T and 1298A> C of the human methylenetetrahydrofolate reductase gene as proven by the novel polymorphisms 129C> T,1068C> T [J]. Eur J Pediatr,2000,159(6):472-3.
    1. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis [J]. Nat rev Neurol,2011,7(11):639-49.
    2. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis:what do we really know [J]? Nat rev Neurol,2011,7(11):603-15.
    3. Greenway MJ, Andersen PM, Russ C, et al. ANG mutations segregate with familial and'sporadic' amyotrophic lateral sclerosis. Nat Genet,2006,38(4):411-3.
    4. Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis [J]. Science,2008,319(5870):1668-72.
    5. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis [J]. Science,2009,323(5918):1205-8.
    6. Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 [J]. Science,2009,323(5918):1208-11.
    7. Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis [J]. Nature,2010,465(7295):223-6.
    8. Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS [J]. Neuron,2010,68(5):857-64.
    9. Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia [J]. Nature,2011,477(7363):211-5.
    10. Zou ZY, Peng Y, Feng XH, et al. Screening of the FUS gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin [J]. Eur J Neurol,2012,19(7):977-83.
    11. Zou ZY, Peng Y, Wang XN, et al. Screening of the TARDBP gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin [J]. Neurobiol Aging,2012,33(9):2229. el 1-8.
    12.邹漳钰,刘明生,李晓光,等.血管生成素基因与肌萎缩侧索硬化症[J].中华神经科杂志,2012,45(7):516-8.
    13. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD [J]. Neuron,2011,72(2):257-68.
    14. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS [J]. Neuron, 2011,72(2):245-56.
    15. Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion:a population-based cohort study [J]. Lancet Neurol,2012,11(3):232-40.
    16. Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia:across-sectional study [J]. Lancet Neurol,2012,11(4):323-30.
    17. Ito D, Suzuki N. Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS [J]. Neurology,2011,77(17):1636-43.
    18. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J]. Science,2006,314(5796):130-3.
    19. Renoux AJ, Todd PK. Neurodegeneration the RNA way [J]. Prog Neurobiol,2012,97(2):173-89.
    20. Quadri M, Cossu G, Saddi V, et al. Broadening the phenotype of TARDBP mutations:the TARDBP Ala382Thr mutation and Parkinson's disease in Sardinia [J]. Neurogenetics,2011,12(3):203-9.
    21. Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein [J]. Nat Genet, 2004,36(4):377-81.
    22. van Es MA, Schelhaas HJ, van Vught PW, et al. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis [J]. Ann Neurol,2011,70(6):964-73.
    23. Majounie E, Abramzon Y, Renton AE, et al. Repeat expansion in C9ORF72 in Alzheimer's disease [J]. N Engl J Med,2012,366(3):283-4.
    24. Cooper-Knock J, Hewitt C, Highley JR, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72 [J]. Brain,2012,135(Pt 3):751-64.
    25. Chio A, Ilardi A, Cammarosano S, et al. Neurobehavioral dysfunction in ALS has a negative effect on outcome and use of PEG and NIV [J]. Neurology,2012,78(14):1085-9.
    26. Lagier-Tourenne C, Cleveland DW. Rethinking ALS:the FUS about TDP-43 [J]. Cell, 2009,136(6):1001-4.
    27. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet, 2011,377(9769):942-55.
    28. Glass JD. New drugs for ALS:How do we get there [J]? Exp Neurol,2011,233(1):112-7.
    29. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis [J]. Nat rev Neurol,2011,7(11):616-30.
    30.沈定国.对肌萎缩侧索硬化发病机制的新认识[J].中华神经科杂志,2011,44(8):574-7.
    31. Dormann D, Haass C. TDP-43 and FUS:a nuclear affair. Trends in neurosciences,2011. In press.
    32.邹漳钰,崔丽英.肉瘤融合基因与肌萎缩侧索硬化[J].中华神经科杂志,2011,44(11):777-9.
    33. Zou ZY, Wang XN, Liu MS, et al. Identification of a novel missense mutation in angiogenin in a Chinese amyotrophic lateral sclerosis cohort [J]. Amyotroph Lateral Scler,2012,13(3):270-5.
    34. Stallings NR, Puttaparthi K, Luther CM, Burns DK, Elliott JL. Progressive motor weakness in transgenic mice expressing human TDP-43 [J]. Neurobiol Dis,2010,40(2):404-14.
    35. Swarup V, Phaneuf D, Bareil C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments [J]. Brain,2011,134(Pt 9):2610-26.
    36. EFNS Task Force on Diagnosis and Management of Amyotrophic Lateral Sclerosis:, Andersen PM, Abrahams S, et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)--revised report of an EFNS task force [J]. Eur J Neurol,2012,19(3):360-75.
    37. Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis:opportunities and limitations [J]. Nat rev Neurol,2011,7(11):631-8.
    38. Gordon PH, Meininger V. How can we improve clinical trials in amyotrophic lateral sclerosis [J]? Nat rev Neurol,2011,7(11):650-4.
    39. Zinman L, Cudkowicz M. Emerging targets and treatments in amyotrophic lateral sclerosis [J]. Lancet Neurol,2011,10(5):481-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700