胶体镍催化氢化丙烯腈的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体镍作为一种新型催化剂,在催化活性和选择性方面有着许多独特之处。本文采用化学还原法制备了胶体镍催化剂,并对其催化性能进行了考察。
     首先,详细研究了胶体镍的制备条件,并探索了胶体镍制备条件对催化丙烯腈加氢反应的影响。在没有保护剂和成核剂的条件下,用水合肼作还原剂和体系pH调节剂,乙二醇作溶剂,通过化学还原法制得了高分散、窄分布并能在空气中稳定存在的纯净胶体镍催化剂。系统研究了还原剂用量、体系pH值、反应物初始浓度、还原温度、反应时间和加料方式对胶体镍催化性能的影响,确定了较佳制备条件,即[N2H4]/[Ni~(2+)] = 8,pH = 8~9,[Ni~(2+)] =10 mmol/L,T = 90℃,反应3 h,向体系中滴加Ni~(2+)溶液。
     其次,利用紫外-可见吸收光谱(UV-vis)、X射线衍射(XRD)和透射电子显微镜(TEM)等分析手段对胶体镍的物相、形貌及大小进行了表征。
     最后,以较佳条件下制得的胶体镍为催化剂,考察了丙烯腈加氢反应中催化反应压力、反应物浓度、反应温度和反应时间对胶体镍催化活性和选择性的影响。在优化催化条件下,即氢压5.0 MPa、温度70℃、反应时间3 h,丙烯腈的转化率和丙腈的选择性分别高达96%和100%,表现出了较高的催化活性和优良的选择性。
As a new type of catalytic material, colloidal nickel catalyst has some special properties in catalytic activity and selectivity. In this paper, the catalytic performance of colloidal nickel catalyst which is prepared by chemical reduction is studied .
     Firstly, preparation conditions of colloidal nickel are studied and influence of preparation conditions on catalytic hydrogenation of acrylonitrile is explored. In the absence of protective agent and nucleating agent, the pure colloidal nickel catalysts with high dispersion and narrow distribution are gained by reducing nickel ion with hydrazine in glycol. The effects of reductant quantity, pH values, reactant concentrations, temperature, reaction time and mixing style to the catalytic performance of colloidal nickel catalyst are reviewed. The optimal preparation conditions are: [N_2H_4]/[Ni~(2+)] = 8, pH = 8~9, [Ni~(2+)] =10 mmol/L, T = 90℃, 3 h, adding Ni~(2+) solution dropwise.
     Secondly, the substance, shape and size are respectively affirmed by UV-vis, XRD and TEM.
     Lastly, the effects of reductive reaction conditions such as H2 pressure, reaction temperature, acrylonitrile concentration and time on the catalytic performance of colloidal nickel which is prepared under the optimal conditions are investigated. Under the optimized reaction conditions of H2 pressure 5.0 MPa, 70℃, concentration of acrylonitrile 1.7 mol·L-1 and 3 h, conversion of acrylonitrile and selectivity of propionitrile achieve 96% and 100% respectively. Colloidal nickel displays good catalytic performance in the hydrogenation of acrylonitrile.
引文
[1] S P Apell, J Giraldo, S Lundqvist. Small metal particles: nonlocal optical properties and quantum-size effects. Phase Trans, 1990, 24: 577~604
    [2] L N Lews. Chemical Catalysis by Colloids and Clusters. Chem Rev, 1993, 93: 2693~2730
    [3] A Henglein. Physicochemical Properties of Small Metal Particles in Solution:“Microelectrode”Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. J Phys Chem, 1993, 97: 5457~5471
    [4] M Faraday. Experimental relations of gold (and other metals) to light. Phil Trans R Soc, 1857, 147: 145~181
    [5]王相田,胡黎明,胡英.胶体科学的现状及发展.自然杂志,1997,19(4):227~230
    [6]王大志.纳米材料结构表征.功能材料,1993,24(4):303~305
    [7]张立德,牟季美.纳米材料和纳米结构.武汉:科学出版社,2001. 2~5
    [8] Wang Y, Herron N. Nanometer-sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects and Photophysical Properties. J Phys Chem, 1991, 95: 525~527
    [9]张敬畅,刘慷,曹维良.纳米粒子的特性、应用及制备方法.石油化工高等学校学报,2001,14(2):21~24
    [10]冯绪胜,刘洪国,郝京诚.胶体化学.北京:化学工业出版社,2005. 36~65
    [11]沈钟,赵振国,王国庭.胶体与表面化学.北京:化学工业出版社,2006. 50~106
    [12]吴其晔,冯莺.高分子材料概论.北京:机械工业出版社,2004. 159~162
    [13] B?nnemann H, Brijoux W. Modern synthetic Methods. In: Moser W R ed, Advanced Catalysts and Materials. New York: Academic Press Inc, 1996. 165~167
    [14] H Hirai, Y Nakao, N Toshima. Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J Macromol Sci Chem, 1978, 12: 1117~1141
    [15] N Toshima, K Kushihashi, T Yonexawa, et al. Colloidal Dispersions of Palladium-Platinum Bimetallic Clusters Protected by Polymers. Preparation and Application to Catalysis. Chem Lett, 1989, 18(10): 1769~1772
    [16] N Toshima, T Yonexawa, M Harada, et al. Polymer-protected palladium dium-platinum bimetallic clusters having catalytic activity for selective hydrogenation of dienes.Preparation and EXAFS investigation of the structure. Chem Lett, 1990, 19(5): 815~823
    [17]卢华,武艺,田爱军,等.两性高分子作为保护剂的贵金属胶体的制备及其催化氢化活性.分子催化,1992,6(5):387~392
    [18] W Yu, H Liu, Q Tao. Modification of Metal Cations to Metal Clusters in Liquid Medium. Chem Commun, 1996, 15: 1773~1774
    [19] W Yu, H Liu, M Liu, et al. Preparation and Characterization of Polymer-Stabilized Pt/Co Bimetallic Colloids and their Catalytic Properties in the Selective Hydrogenation of Cinnamaldehyde. J Mol Catal A: Chem, 1996, 112: 105~113
    [20]高林娜.胶体铜催化剂催化特征的研究及量化计算:[硕士学位论文].青岛:中国海洋大学,2005
    [21] Q Wang, H Liu, M Han, et al. Carbonylation of Methanol Catalyzed by Polymer-Protected Rhodium Colloid. J Mol Catal A: Chem, 1997, 118: 145~151
    [22] Schmid G, West H, Mehles H, et al. Hydrosilation Reactions Catalyzed by Supported Bimetallic Colloids. Inorg Chem, 1997, 36: 891~895
    [23]王瑛,黄黎中,王永立,等.燃料电池技术要论.贵金属,1997,18(1):49~54
    [24]廖代伟.催化科学导论.北京:化学工业出版社,2006. 25~36
    [25]张立德,牟季美.开拓原子和物质的中间领域一纳米微粒与纳米固体.物理,1992,21 (3):167~172
    [26] M Raney,US Pat. 1563787,1925-12-1
    [27] M Raney,US Pat. 1628191,1927-5-10
    [28]赵会吉,邢金仙,殷长龙,等.辛二腈加氢制取辛二胺的研究.石油大学学报(自然科学版),2001,25(3):59~61
    [29]周丹,冯亚青,傅雪晶.高活性、高选择性骨架镍在糠醇加氢中的应用研究.精细化工,2005,22(2):113~114
    [30]侯闽渤.苯甲腈液相催化加氢制苄胺的研究.精细石油化工进展,2004,5:25~28
    [31]王纪康,王桂林,严巍.采用骨架钻和骨架镍催化剂加氢还原制备糠醇的研究.精细化工,1998,15(6): 37~40
    [32]陆致龙,王蓉,柯俊,等.原始合金制备方法对Raney Nickel催化剂结构及加氢活性的影响.催化学报,1997,18(2):110~114
    [33]孟琦,吴跃东,万颖,等.用超声波技术制备的Raney Ni催化剂及其催化加氢活性.催化学报,2004,25(7):529~532
    [34]谭斌源,刘继泉,潘伟超.均相沉淀法制取纳米级氧化镍.青岛化工学院学报,1998,19(2):194~195
    [35]祖庸,刘超锋,李晓娥.均匀沉淀法合成纳米氧化锌.现代化工,1997,9:33~38
    [36]周根陶.一种新的制备超微粉末的方法一沉淀转化法.科学通报,1996,41(4):321~323
    [37]黄钧声,任山,谢成文.化学还原法制备纳米铜粉的研究.材料科学与工程学报,2003,21(1):57~59
    [38]顾大明,高农,程谨宁.次磷酸盐液相还原法快速制备纳米银粉.精细化工,2002, 19(11):634~635
    [39]张楠,翟秀静,翟玉春.纳米Ni-C合金粉末的溶液还原法制备与表征.中国有色金属学报,1998, 8(2): 39~42
    [40] Cavicchi R E, Silsbee R H. First steps towards tailoring fine and ultrafine iron particles using microemulsions . Phys Rev Lett, 1984, 52(5): 1453~1457
    [41]王宏志,高濂.共沉淀法制备纳米YAG粉体.无机材料学报,2001,16(4):630~634
    [42] Kisfaludi G, Schay Z, Guzi L. Surface structure and catalytic activity of rapidly quenched amorphous iron based alloys. Applied Surface Science, 1987, 28: 111~114
    [43] Yokoyama A, Komiyama H, Inoue H. The hydrogenation of carbon monoxide by amorphous ribbons. J Catal, 1981, 68: 355~361
    [44]范以宁,胡征,陈懿.镍基非晶态合金超细微粒催化剂的表面状态和催化性能.科学通报,1995,1:39~41
    [45]李同信,张秀峰,李合秋,等.非晶态超微粒子镍合金催化剂的研究.催化学报,1995,16(4):299~303
    [46]骆红山,庄莉,李和兴.超细Ni-B非晶态合金催化糠醛液相加氢制备糠醇.分子催化,2002,16(1):49~54
    [47] Chen Yin-Zu, Liaw Biing-Jye, Chiang Shu-Jen. Selective hydrogenation of citral over amorphous NiB and CoB nano-catalysts. Appl Catal A: General, 2005, 284: 97~104
    [48] Deng J F, Zhong X P, Min E Z. Amorphous Niclde-Phosphorus Alloy Deposited on a Support and its Hydrogenation Activity. Appl Catal, 1988, 37: 339~344
    [49]马爱增.负载型NiB非晶态合金催化剂的表征及催化性能.催化学报,1999,20(6):603~607
    [50] Li He-xing, Zhang Si-yong, Luo Hong-shan. A Ce-promoted Ni-B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol. Mater Lett, 2004, 58: 2741~2746
    [51] Li He-xing, Luo Hong-sham, Zhuang Li, et al. Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts. Journal of Molecular Catalysis A: Chemical, 2003, 203: 267~275
    [52]周海安,史鸿鑫. W/O微乳液体系稳定条件与纳米镍的制备.工业催化,2005,13,(5):46~49
    [53]杜艳,陈洪龄,陈日志,等.高活性纳米镍催化剂的制备及其催化性能研究.高校化学工程学报,2004,18(4):515~518
    [54]范崇正,李正华,焦健,等.无光条件下天然叶绿素的催化加氢反应.中国科学技术大学学报,2000,30(6):744~747
    [55]谢晖,杨圣军,张志杰.纳米镍催化α-蒎烯加氢合成顺式蒎烷的研究.林产化学与工业,2005,25(4):56~58
    [56] Hayashi T, Nagayama T. Catalytic Properties of Ultrafine Paraticles of Prepared by a Gas Evaporation Method. J Chem Soc Japan, 1984, 6: 1050~1054
    [57] Hayashi C. Ultrafine Particles. Physis Today, 1987, 12: 44~48
    [58]韦钦,刘雄飞,曹建.纳米Ni的制备与微观结构.中国矿冶学院学报,1994,27(1):137~139
    [59] R Richards, G Geibel, W Hofstadt, et al. Nanoscale Skeletal Nickel Catalysts Prepared via `Bottom up' Method. Appl Organomet Chem, 2002, 16: 377~383
    [60]陈新兵,安忠维.新颖的纳米镍催化芳基酸与芳基溴的偶联反应.化学通报,2002,1:36~40
    [61]谈玲华,李勤华,杨毅,等.纳米镍粉的制备及其催化性能研究.固体火箭技术,2004,27(3):198~200
    [62]李疏芬,江治,赵凤起,等.纳米金属粉对高氯酸铵热分解动力学的影响.化学物理学报,2004,17(5):623~628
    [63]刘磊力,李凤生,谈玲华,等.纳米金属粉对高氯酸铵热分解特性的影响.应用化学,2004,21(5):488~492
    [64]胡文斌,崔英德,廖列文,Duncan J. Macquarrie.微孔二氧化硅负载络合铂催化1-辛烯硅氢加成反应.现代化工,2007,27(4):27~29
    [65]郭方,王越,吕连海.高分散度Ru/C选择性催化对氯硝基苯加氢制备对氯苯胺.精细化工,2007,24(3):252~256
    [66] Hwai Peng Choo, Kong Yong Liew, Hanfan Liu, et al. Activity and selectivity of noble metal colloids for the hydrogenation of polyunsaturated soybean oil. Journal of Molecular Catalysis A: Chemical, 2003, 191(1): 113~116
    [67]王茜,刘汉范.碳负载胶体金属铑催化气相甲醇羰基化反应.催化学报,1997,18(2):171~174
    [68] Yuexiang Li, Chunxia Ren, Shaoqin Peng, et al. Effect of preparation method of colloidal platinum on performance of 12-tungstosilicate for photocatalytic hydrogen generation. Jounral of Molecular Catalysis A: Chemical, 2006, 246: 212~217
    [69] Manfred T Reetz, Roff Breinbauer, Petra Wedemann, et al. Nanostructured Nickel-Clusters as Catalysts in [3+2] Cydoaddition Reactions. Tetrahedron, 1998, 54: 1233~1240
    [70] Ely T O, C Amiens, B Chaudret, et al. Synthesis of Nickel Nanoparticles. Influence of Aggregation Induced by Modification of Poly(vinyl-pyrrolidone) Chain Length on Their Magnetic Properties. Chem Mater, 1999, 11(3): 526~529
    [71] S Illy, O Tillement, F Machizaud, et al. First direct evidence of size-dependent structural transition in nanosized nickel particles. Philosophical Magazine A, 1999, 79(5): 1021~1031
    [72] Kan-Sen Chou, Kuo-Cheng Huang. Studies on the chemical synthesis of nanosized nickel powder and its stability. Journal of Nanoparticle Research, 2001, 3: 127~132
    [73] G Cárdenas, J Acu?a. Nickel nanoparticles and solids using organic solvents. Colloid Polym Sci, 2001, 279: 442~448
    [74]高欲冉,何宝林,刘光荣,等.钯晶种镍纳米颗粒的制备和表征.中南民族大学学报(自然科学版),2006,25(3):20~23
    [75] Filankembo F, Pileni M P. Shape control of copper nanocrystals. Applied Surface Science, 2000, 164: 260~267
    [76]赵燕燕.胶体镍催化剂的制备及催化肉桂醛加氢反应的研究:[硕士学位论文].青岛:中国海洋大学,2007
    [77]齐艳妮,殷德宏,王季平,等.乙二醇溶剂中纳米镍的制备研究[J].材料科学与工程学报,2005,23(3):416~421
    [78]李鹏,官建国,张清杰,等. 1,2丙二醇液相还原法制备纳米镍粉的研究.材料科学与工艺,2001,9(3):259~262
    [79]李敏.纳米镍及其复合粉的制备及催化性能研究:[硕士学位论文].南京:南京理工大学,2004
    [80]李鹏,自建国,张清杰,等.聚合物保护纳米镍粉的制备与表征.功能材料,2005,2(36):364~368
    [81]陈爱成,孙世刚.乙二醇在铂电极上吸附和氧化过程的现场FTIR反射光谱研究(1I ).高等学校化学学报,1994,15(4):548~551
    [82] viau G, Fievet-Vincent F, Fievet F. Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics, 1996, 84: 259~270
    [83]张楠,翟秀静,翟玉春.超细镍粉的溶液还原法制备研究.功能材料,1999,30(3):264~267
    [84] Wu S H, Chen D H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Co11 Int Sci, 2003, 259(2): 282~286
    [85]张传福,湛菁,长谷川良佑,等.超声波喷雾液相还原法制备超细镍粉.矿冶工程,2001,21(2):48~52
    [86]周全法,蒋萍萍,朱雯,等.抗氧化纳米铜粉的制备及表征.稀有金属材料与工程,2004,33(2):179~183
    [87]冯国刚,李智渝.肼还原法制备纳米镍粉的研究.江苏广播电视大学学报,2004,5(6):37~41
    [88]陈孝彦,郑平友,刘芙蓉.关于冷却系统中NaCl结晶影响因素的几点思考.氯碱工业,2003,12:28~31
    [89]杨林军,熊方容,漆嘉惠.石膏两步法制硫酸钾中CaCO3及K2SO4结晶动力学研究. IM & P化工矿物与加工,2003,4:13~15
    [90] Yakobashvili P M, Chegolya A S. Kinetics of the hydrogenation of mononitriles at elevated hydrogen pressures. II. Trudy-Gruzinskii Politekhnicheskii Institut im V I Lenina, 1968, 5: 38~46
    [91]王法强.丙烯腈常压气相加氢氧化负载钯、镍催化剂及动力学研究:[硕士学位论文].上海:上海师范大学,2003
    [92]刘波,陈雪莹,庄继华,等.负载型Ni-B非晶态合金的制备及其催化加氢活性研究复旦学报(自然版),2002,41(4):424~427
    [93] H Li, H X Li, J F Deng. Influence on the reduction degree of Ni-B/SiO2 amorphous catalyst and its role in selective hydrogenation of acrylonitrile. Applied Catalysis A: General, 2000, 193(1, 2): 9~15
    [94] H Li, H X Li, W L Dai, et al. Influence of calcination and pretreatment temperature on the activity of Ni-B/SiO2 amorphous catalyst inacrylonitrilehydrogenation. Applied Catalysis A: General, 2001, 207(1, 2): 151~157
    [95]肖述章,徐祖辉,王法强,等.用低负载钯作催化剂的丙烯腈催化氢化反应.化学研究,2003,14(3):27~30
    [96]王法强,徐祖辉,周国光. Pd/Al2O3气相催化丙烯腈制丙腈添加CaO的研究.上海师范大学学报(自然科学版),2002,31(4):42~46
    [97]陈一飞,丘礼元.丙烯腈催化氢化制丙腈.化学世界,1995(7):365~366
    [98]茅素芬,陈宗翰,江英颜.聚苯乙烯磺酸-苯乙烯、马来酸共聚物-钯络合物的加氢催化作用.西安交通大学学报,1989,23(2):113~120
    [99]谢义鹏,黎耀忠,张素娟,等.两相体系中催化氢化丙烯腈制备丙腈.化学研究与应用,2004,16(1):85~87
    [100]陈诗煌,刘基万,游江.聚γ-(甘-丙二基)丙基硅氧烷钯催化剂的合成、加氢活性及结构表征.武汉大学学报,1997,43(6):697~700
    [101]刘基万,游江,王西新.含氨基酸侧链的有机硅高分子催化剂Ⅺ.聚γ-(组氨酸基)丙基硅氧烷钯催化剂的合成及其催化加氢活性.武汉大学学报,1993,1:37~41
    [102]刘基万,游江,王庆章,等.含氨基酸侧链的有机硅高分子催化剂(XVⅢ)—聚γ-(甘-谷氨酰胺基)丙基硅氧烷钯催化剂的合成及加氢活性.高等学校化学学报,1993,12(2):279~282
    [103]游江,刘基万,毛中云.含氨基酸侧链的有机硅高分子催化剂XV.聚γ- (L-酪氨酰胺基)丙基硅氧烷钯催化剂的合成加氢活性及其结构表征.分子催化,1992,6(5):359~363
    [104]傅相锴,马学兵,刘昌华,等.甘氨酸-N,N-双亚甲基膦酸锆-钯催化剂的催化加氢性能.应用化学,1997,14(1):74~76
    [105]傅相锴,马学兵,温淑英.亚磷酸氢锆/聚乙烯吡咯烷酮/钯催化剂的催化加氢性能.应用化学,1998,15(1):17~21
    [106]傅相锴,何佑秋,马学兵.带络合基团的混合磷酸-膦酸锆载体的研制.催化学报,1996,17(3):260~262
    [107]胡卫兵,张胜民,周忠信.高分子负载钯-金属氧化物催化剂的加氢性能研究.武汉工业大学学报,1994,16(1):59~64
    [108] Kameda Noriyuki, Igarash Reiko. Homogeneous catalytic hydrogenation of olefins using RhH2(Ph2N3)(PPh3)2 in tetrahydrofuran. Journal of Molecular Catalysis, 1992, 75(1): 15~20
    [109] Yang Z, Ebihara M, Kawamura T. Homogeneous hydrogenation of olefins catalyzed by a novel tetrarhodium(II) complex as precursor in aqueous solution. Journal of Molecular Catalysis A: Chemical, 2000, 158(2): 509~514
    [110] A Baiker, D Monti, Y S Fan. Deactivation of Copper, Nickel, and Cobalt Catalysts by interaction with Aliphatic Amines. J Catal, 1984, 88: 81~88
    [111]许越.催化剂设计与制备工艺.北京:化学工业出版社,2003. 158~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700