K4104镍基高温合金渗A1高温防护涂层性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温合金是航空工业发动机用关键材料,可以说高温合金的产生及发展与航空动力技术的突破和进步休戚相关。但是,以金属为基体的高温合金使用温度毕竟有限,人们利用表面改性技术,通过施加高温防护涂层来弥补高温合金抗高温腐蚀性能的不足。高温防护涂层分为两种:扩散涂层和覆盖涂层,目前使用的大多数高温防护涂层是形成Al203膜的铝化物扩散涂层。本文就是对镍基高温合金表面施加扩散渗铝防护涂层,以达到抗高温氧化的目的。
     K4104镍基高温合金是我国“重型燃气轮机材料研制及其工程应用”中的新研制叶片材料,关于此合金应用技术方面的研究还很少。本文采无机盐料浆法在K4104高温合金表面进行热扩散渗铝、渗铝硅,制备了一元渗Al和二元渗Al-Si涂层。为了进一步提高二元Al-Si涂层的抗高温氧化性能,还制备了两种稀土改性的二元Al-Si涂层:Al-Si-NiY和Al-Si-Y2O3涂层。通过测定1000℃恒温条件下不同高温氧化时间的氧化增重,来分析所制备各种涂层的抗高温氧化性能;利用带能谱的扫描电子显微镜(SEM/EDX)、X射线衍射(XRD)、热重分析(TGA)等技术和设备,研究了各种涂层的结构及组成相,对比分析了各种涂层不同高温氧化时间的表面、截面形貌,并对抗高温氧化机制进行了探讨。
     实验结果表明,K4104合金一元渗Al涂层明显提高了合金的抗高温氧化性能。在氧化初期形成的氧化膜以亚稳态θ-Al2O3为主;随着氧化进行,亚稳态θ-Al2O3逐步向稳态α-Al2O3转变,在此过程中由于体积的收缩导致氧化膜的开裂和剥落,产生氧化失重;Al的外扩散氧化和内扩散退化将导致涂层中Al含量逐渐降低,在Al含量的质量分数降到15%以下时,渗Al涂层不再有自修复能力,失去抗氧化能力。
     K4104合金二元渗Al-Si涂层的抗高温氧化性能优于一元渗Al涂层。由于Si的加入抑制了渗Al涂层中大块a-Cr相析出,使Cr与Si形成CrxSiy金属间化合物并弥散分布在Al-Si涂层之中,同时导致Al-Si涂层/基体合金界面形成富Cr的固溶体和Cr的碳化物;Si的加入促进了θ→α-Al203转变并降低了涂层的氧化速度;Si的加入提高了氧化膜抗剥落性能;Si的加入延长了涂层的寿命。
     稀土改性的K4104合金二元Al-Si涂层的抗高温氧化性能优于一元渗Al和二元渗Al-Si涂层。Y203的加入导致涂层结构更复杂,同时在表面形成大块CrxSiy相;NiY的加入使Cr与Si形成金属间化合物—CrxSiy并弥散分布在Al-Si涂层之中;Y203和NiY都有促进Al-Si涂层上θ→α-Al2O3相变作用,其中NiY具有更强的促进相变作用;与Y203相比,NiY的加入降低了氧化速度,从而降低了氧化膜/涂层界面空洞的形成速度,提高了氧化膜的抗剥落性能。
     通过对K4104高温合金所制备几种涂层的对比分析表明,稀土改性的涂层抗高温氧化性能好于一元渗Al和二元渗Al-Si涂层,添加两种稀土成分的涂层相比,Al-Si-NiY涂层的抗高温氧化性能更好。
Superalloy is the key materials for aero-engine. The development of superalloy is the foundation of the advance of aero-engine to some extent. Superalloy exhibits higher oxidation/hot corrosion rate at high temperature, therefore, protective coating is hot topic in the surface engineering field. Higher temperature coating can be dividing into diffusion coating and overlay coating. Aluminize diffusion coating is widely applied in the corrosion field.
     In this thesis, the Al-Si and Al coating on the surface of K4104 superalloy were prepared using slurry method from the Al and Al-Si powders, respectively. For comparison, NiY and Y2O3 modified aluminide coatings deposited on K4104 superalloy were also prepared in order to investigate the reactive element effect. The microstructures and the oxidation performance of various aluminide coatings were investigated using scanning electron microscopy with an energy-dispersive X-ray analysis (SEM/EDX), X-ray diffraction (XRD), and thermal-gravimetric analysis (TGA). The anti-oxidation mechanism of aluminized coatings was discussed.
     Aluminizing increased the oxidation resistance of K4104 superalloy. During the initial oxidation stage, the oxidation scale consisted ofθ-Al2O3. With the increasing of oxidation time, the main composition of oxidation scale wasa-Al2O3, which led to the cracking of oxidation scale. The content of aluminum obviously decreased due to inner and outer oxidation. When the aluminum content of coating was less than 15%, the oxidation resistance of aluminiuming coating significantly deteriorated.
     The oxidation resistance of Al-Si coating was superior to that of aluminized coatings. After the addition of Si, CrxSiy was formed and scattered in the Al-Si coating, which hindered the formation ofα-Cr phase. Meanwhile, the addition of Si led to the formation of chromate-enrichment solution and carbide on the coating/substrate interior. Moreover, Si accelerated the conversion ofθ-Al2O3 toα-Al2O3 and increased the oxidation resistance of Al-Si coating.
     After the addition of Y2O3, bulk CrxSiy was formed on the coating suface, while, CrxSiy was formed and scattered in the Al-Si coating with the addition of NiY. Both Y2O3 and NiY had accelerated effect on the phased transition ofθ-Al2O3 toα-Al2O3. Comparing with Y2O3, NiY decreased the oxidation rate and defect formation rate at the interior of oxidation scale and coating, which indicated the anti-oxidation performance of coating was improved.
     By the comparison of oxidation resistance of different coatings, the oxidation resistance of four coatings can be ranked as an increasing series:aluminized coating< Al-Si coating< Al-Si-Y2O3 coating< Al-Si-NiY coating.
引文
[1]王增强.高性能航空发动机制造技术及其发展趋势[J].航空制造技术.2007,1:52-55页
    [2]朱日彰,何业东.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995:271页
    [3]何玉怀,苏彬.中国航空发动机涡轮叶片用材料力学性能状况分析[J].航空发动机.2005,2:51-54页
    [4]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1996:3页
    [5]张光业等.航空用高温合金防护涂层的研制及其应用的新进展[J].材料导报.2006,(5):59页
    [6]朱日彰,何业东.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995:339页
    [7]Simons C T et al, Tanslated by Zhao Jie et al. Superalloys[M]. Dalian:Dalian Institute of Technology Press,1992:164P
    [8]P. C. Felix, Materials and Coatings to Resist High Temperature Corrosion. D. R. Holmes and A. Rahmel Ed, London,199P,1978P
    [9]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000:7页
    [10]National Research Council, Coatings for High-Temperature Structural Materials:Trends and Opportunities, ISBN:0-309-05381-1, National Academy Press,Washington, D.C.,1996
    [11]C. S. Tedmon. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys. J. Electrochem. Soc.,1966,113:766-768P
    [12]P. Kofstad, A. Rahmel, R. A. Rapp and D. L. Douglass. International workshop on "new fundamentals of scale growth". Oxid. Met.,1989,32: 125-135P
    [13]李铁藩.高温腐蚀与防护十年进展[A].中国腐蚀与护护学会成立十周年 学术论文集[C].北京:中国腐蚀与防护学会.1990
    [14]Li Jingui, Zhao Guiyan. Corrosion and Corrosion Control Handbook[M]. Beijing:National Defence Industry Press,1988:217P
    [15]刘培生.铝化物高温防护涂层的现状[J].稀有金属材料与工程.2003,(9):681页
    [16]陈孟成,霍晓等.高温涂层的研究与发展[J].材料工程.1999,(6):40页
    [17]Van Aller. T. US. Patent 1.155,974.1911
    [18]Go ward GW. Progress in coatings for gas turbine airfoils [J], Surface and Coatings Technology.1998,108/109:73-79P
    [19]彭秀云.航空发动机的表面涂层技术[J].航空制造技术.2007,(6):93-95页
    [20]Huntz A M. Influence of active elements on the oxidation mechanism of M-Cr-Al alloys, Mater Sci Eng [J],1987,87:251-260P
    [21]Rahmel A, Schutze M. Mechanical aspects of the rare-earth effect, Oxid Met[J],1992,38 (3/4):255-266P
    [22]Kuenzly I D, Douglass D L. The oxidation mechanism of Ni3Al containing yttrium, Oxid Met [J],1974,8 (3):139-178P
    [23]P. Choquet, R Mevrel,Microstructure of alumina scales formed on NiCoCrAl alloys with and without yttrium, Materials Science and Engineering,1989, A 120-121 (Part 1):153-159P
    [24]Kvernes I A. The role of yttrium in high-temperature oxidation behavior of Ni-Cr-Al alloys, Oxid Met[J],1973 (1),6:45-64P
    [25]M.J. Bennett, A.T. Tuson, D.P. Moon, J.M. Titchmarsh, P. Gould, H.M. Flower, The influence of cerium ion implantation on chromium oxidation, Surface and Coatings Technology,1992,51 (1-2):65-72P
    [26]D. G. Teer. Coatings for high temperature application. Applied Science Publishers,1983:79P
    [27]D. H. Boobe. Physical vapour deposition processes. Mater. Sci. and Tech., 1986,2:220-223P
    [28]D. S. Rickerby and M. I. Wood. Evaluation of sputter ion plated CoCrAlY and NiCrAlTi coating for gas turbines. J. Vac. Sci. Tech.,1986,4A: 2557-2564P
    [29]H. Y. Lou, F. H. Wang, S. L. Zhu, B. J. Xia and L. X. zhang. Oxide formation of K38G superalloy and its sputtered micrograined coating. Surf. Coat. Tech., 1994,63:105-114P
    [30]L. Hsu and A. R. Stetson. Evaluation of the mechanical properties and environmental resistance of Rene 125 and X-40 superalloys coated with controlled composition reaction-sintered Co-Ni-Cr-Al-Y. Thin Solid Films, 1980,73:419-428P
    [31]Marie-Pierre Bacos, Benoit Girard, Pierre Josso and Catherine Rio. MCrAlY coatings developed via a new electroless-like route:influence of deposition parameters. Surf. Coat. Tech.,2003,162:248-260P
    [32]R. Morbioli. RevEtements d Aluminiures complexes obtenus par depot electrophoretique consolide par aluminisation. Mater. Sci. and Eng.,1989, 121A:373-378P
    [33]H. F. Liu and W. X. Chen. Electrodeposited Ni-Al composite coatings with high Al content by sediment co-deposition. Surf. Coat. Tech.,2004,191: 341-350P
    [34]J. Foster, B. P. Cameron and J. A. Carew. The Production of multi-component alloy coatings by particle codeposition. Trans. Inst. Met. Finish.,1985,63: 115-119P
    [35]耿学洪.硕士论文.复合电镀NiCrAlY涂层及其高温氧化行为的研究.中国科学院金属腐蚀与防护研究所.1992
    [36]M. Izaki, M. Fukusumi, H. Enomoto, T. Omi and Y. Nakayama. High-temperature oxidation resistance of Ni-Al alloy films prepared by heating electrodeposited composite. J. Japan. Inst. Met.,1993,57:182-189P
    [37]D. F. Susan, A. R. Marder and K. Barmak. Electrodeposited Ni-Al particle composite coatings. Thin Solid Films,1997,307:133-139P
    [38]D. F. Susan and A. R. Marder. Ni-Al composite coatings:Diffusion analysis and coating lifetime estimation. Acta. Mater.,2001,49:1153-1163P
    [39]D. F. Susan, W. Z. Misiolek and A. R. Marder. Reaction synthesis of Ni-Al-based particle composite coatings. Metall. Mater. Trans.,2001,32A: 379-390P
    [40]D. F. Susan and A. R. Marder. Oxidation of Ni-Al-based electrodeposited composite coatings I:Oxidation kinetics and morphology at 800℃. Oxid. Met.,2002,57:131-157P
    [41]D. F. Susan and A. R. Marder. Oxidation of Ni-Al-based electrodeposited composite coatingsⅡ:Oxidation kinetics and morphology at 1000℃. Oxid. Met.,2002,57:159-180P
    [42]L. Duane, and L. Ruckle, Plasma-sprayed ceramic thermal barrier coatings for turbine vane platforms. Thin Solid Films,1980,73:455-461P
    [43]R. Rajendran, V. S. Raja, R. Sivakumar and R. S. Srinirasa. Reduction of interconnected porosity in Zirconia-based thermal barrier coating. Surf. Coat. Tech.,1995,73:198-120P
    [44]Kh. G. Schmitt-Thomas and V. Dielt. Thermal barrier coatings with improved oxidation resistance. Surf. Coat. Tech.,1994,68/69:113-115P
    [45]O. Knotek, F. Loffler and W. Beele. Diffusion barrier design against rapid interdiffusion of MCrAlY and Ni-based material. Surf. Coat. Tech.,1993,61: 6-13P
    [46]李美栓编著.金属的高温腐蚀.北京:冶金工业出版社,2001:412-413页
    [47]Q235钢喷涂扩散法渗铝工艺及性能.机车车辆工艺.2002,8(4):13-15页
    [48]Smith A B, Kempster A, Smith J et al. Vapour aluminide coating of internal cooling channels, in turbine blades and vanes. Surface and Coatings Technology,1999,120/121:112-117P
    [49]李铁藩编著.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:270-278页
    [50]马志春译.耐热扩散涂层.北京:国防工业出版社,1988:94-97页
    [51]石声泰,冯明仁,曹铁裸等.熔盐电解法渗铝的研究.中国腐蚀与防护学报.1981,1(4):1-6页
    [52]Li Shangjie, Minoru Aksishi, Toshikazu Ohsawa, et al. Sintering Behaviour of the Diamond-Super Invar Alloy System at High Temperature and Pressure. Journal of Materials Science,1990,25:4150P
    [53]Goward G W. Protective coatings for gas turbine airfoils-State of the art and science, Thin Solid Films,1978,53 (2):223-224P
    [54]Mevrel R. State of the art on high-temperature corrosion-resistant coatings, Mater Sci Eng [J],1989, A 120-121 (part 1):13-24P
    [55]Chungen Zhou, Huibin Xu, Shengkai Gong, Ying Yang, Kyoo Young Kim, A study on aluminide and Cr-modified aluminide coatings on TiAl alloys by pack cementation method, Surface and Coatings Technology,2000,132 (2-3):117-123P
    [56]Payear R B, Holloway J H. U. S. Patent 3365327 [P],1968
    [57]杨忠林.硅对抑制涂层氧化缺口破坏的作用[J].材料工程.1994,(3):34页
    [58]T. A. Kircher, B. G. McMordie, A. McCarter. Performance of a silicon-modified aluminide coating in high temperature hot corrosion test conditions, Surf Coat Technol [J],1994,68/69:32-37P
    [59]Goward G W. In:Rapp R A ed. High Temp Corr [C]. New York:NACE, 1983:553P
    [60]Young S G, Deadmore D L. An experimental low cost silicon/aluminide high temperature coating for superalloys, Thin Solid Films [J],1980,73 (2):373P
    [61]潘钢.熔烧型料浆法制备Al-Si涂层的应用研究[J].热加工工艺.2006,(10):28-30页
    [62]Grunling H W, Bauer R. The role of silicon in corrosion-resistant high temperature coatings, Thin Solid Films [J],1982,95 (1):3-20P
    [63]Levinstein M A, Grenier J W. U. S. Patent 3415672 [P],1968
    [64]Redden T K. Trans AIME[J],1968,242:1695P
    [65]Choi S C, H. J. Cho and D. B. Lee. Effect of Cr, Co, and Ti additions on the high-temperature oxidation behavior of Ni3Al, Oxid Met[J],1996,46 (1/2): 109-127P
    [66]刘培生.DZ-40M钴基合金低压气相沉积铝化物涂层的高温氧化行为[J].中国腐蚀与防护学报.1999,(3):144页
    [67]刘培生等.DZ40M钴基合金低压气相沉积铝化物涂层的高温氧化相变[J].稀有金属材料与工程.1999,(6):357页
    [68]刘培生等.DZ40M钴基合金铝化物涂层的循环氧化[J].稀有金属材料与工程.2000,(4):231页
    [69]P. S. Liu, K. M. Liang, S. R. Gu. High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air, Corrosion Science[J],2001,43:1217-1226P
    [70]Md. Zafir Alam, Dipak K. Das, Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy, Corrosion Science,2009,51 (6):1405-1412P
    [71]W. Zhou, Y.G. Zhao, Q.D. Qin, W. Li, B. Xu, A new way to produce Al+Cr coating on Ti alloy by vacuum fusing method and its oxidation resistance, Materials Science and Engineering,2006, A 430 (1-2):254-259P
    [72]M. S. Farrell, D. H. Boone, R. Streiff. Oxide adhesion and growth characteristics on platinum-modified aluminide coatings, Surf Coat Technol [J],1987,32:69-84P
    [73]G. Fisher, P. K. Datta, J. S. Burnell-Gray, W. Y. Chan, J. C. Soares, Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃,1998, Surf Coat Technol [J],110 (1-2):24-30P
    [74]Sebastien Dryepondt, David R. Clarke, Cyclic oxidation-induced cracking of platinum-modified nickel-aluminide coatings, Scripta Materialia,2009,60 (10):917-920P
    [75]P. Y. Hou, V.K. Tolpygo, Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings, Surf Coat Technol [J],2007,202 (4-7):623-627P
    [76]H. M. Tawancy, N. M. Abbas, T. N. Rhys-Jones. Role of platinum in aluminide coatings, Surf Coat Technol [J],1991,49 (1-3):1-7P
    [77]牛炎等.铂改性铝化物涂层的高温氧化[J].腐蚀科学与防护技术,2000,(2):63页
    [78]S. Alperine, P. Steinmetz, P. Josso, A. Costantini. High temperature-resistant palladium-modified aluminide coatings for nickel-base superalloys,1989, Mater Sci Eng [J],120-121A (part 2):367-372P
    [79]Alperine S P. Steinmetz, A. Friant-Costantini, P. Josso. Structure and high temperature performance of various palladium-modified aluminide coatings: A low cost alternative to platinum aluminides, Surf Coat Technol [J],1990, 43/44:347-358P
    [80]M. J. Li, X. F. Sun, H. R. Guan, X. X. Jiang, Z. Q. Hu, Cyclic oxidation behavior of palladium-modified aluminide coating, Surface and Coatings Technology,2003,167 (1):106-111P
    [81]Daxiong He, Hengrong Guan, Xiaofeng Sun, Xiaoxia Jiang, Manufacturing, structure and high temperature corrosion of palladium-modified aluminide coatings on nickel-base superalloy M38, Thin Solid Films,2000,376 (1-2):144-151P
    [82]Zhou W, Zhao Y G, Li W, Tian B, Hu S W, Qin Q D. Oxidation behavior of the Y2O3-modified aluminide coating on Ti-6Al-4V alloy.Materials Science and Engineering,2007,458A:34-38P
    [83]He Y D, Zhu R Z, Zhang W Q et al. Aluminized coating and Al-Y and Al-Ce codeposited coatings obtained by metalliding from molten salt films. Materials Science and Engineering,1990,123 A (1):117-122P
    [84]何业东,朱日彰,张文奇.熔盐膜电解渗Al.中国腐蚀与防护学报.1989,,9(2):103-111页
    [85]Wang F H, Lou Han Yi, Bai Lin Xiang et al. Hot corrosion of yttrium-modified aluminide coatings. Materials Science and Engineering, 1989,121A:387-389P
    [86]马信清,彭晓,李铁藩.稀土氧化物改进高温涂层的氧化行为研究.中国腐蚀与防护学报.1997,Suppl 17:436-440页
    [87]X. Peng, T. Li and W. P. Pan. Oxidation of a La2O3-modified aluminide coating. Scripta. Mater.,2001,44:1033-1038P
    [88][苏]П.T科洛梅采夫著.马志春译.耐热扩散涂层.北京:国防工业出版社,1988:218页
    [89]朱日彰,何业东,齐慧滨编著.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社,1995:343-344页
    [90]Patnaik PC. Mater. Manufact. Processes.1989,4:133
    [91]李铁藩编著.金属高温氧化和热腐蚀.北京:化学工业出版社,2003:15页
    [92]C. Wagner. Type of reaction on the oxidation of alloys. Z. Elektrochem,1959, 63:772-782P
    [93]P. Niranatlumpong, C. Pontoon and H. Evans. The failure of protective oxide on plasma-spraying NiCrAlY overlay coatings. Oxid. Met.,2000,53: 241-258P
    [94]J. L. Smialek and C. E. Lowell. Effect of diffusion on aluminum depletion and degradation of NiAl coatings. J. Electrochem. Soc.,1974,121 (6) 800-804P
    [95]S. R. Levine. Reaction diffusion in the NiCrAl and CoCrAl systems. Metall. Trans.,1978,9A:1237-1250P
    [96]H. Hindam and W. W. Smeltzer. Growth and microstructure of α-Al2O3 on Ni-Al alloys:internal precipitation and transition to external scale. J. Electrochem. Soc.,1980,127 (7):1622-1630P
    [97]H. Hindam and D. P. Whittle. High temperature internal oxidation behavior of dilute Ni-Al alloys. J. Mater. Sci.,1983,18:1389-1404P
    [98]A. J. Strutt and K. Vecchio. Simultaneous oxidation and sigma-phase formation in a stainless steel. Metall. Mater Trans.,1999,30A:355-362P
    [99]J. Stringer. The reactive element effect in high temperature corrosion. Mater. Sci. Eng.,1989,120A:129-137P
    [100]D. P. Whittle and J. Stringer. Improvement in high temperature oxidation resistance by addition of reactive elements or oxide dispersion. Phil. Trans. R. Soc. Lond,1980,295A:309-329P
    [101]F. H. Wang, H. Y. Lou and W. T. Wu. Cyclic oxidation resistance of CoCrAl alloys and their sputter microcrystalline coatings with and without yttrium. Vacuum,1992,43:749-752P
    [102]F. H. Wang, H. Y. Lou, S. L. Zhu and W. T. Wu. The mechanism of scale adhesion on sputtered microcrystalline CoCrAl film. Oxid Met.,1996,45: 39-50P
    [103]Y. He, Z. Huang, H. Qi, D. Wang, Z. Li and W. Gao. Oxidation behavior of microcrystalline Ni-20Cr-Y2O3 ODS alloy coating. Mater. Lett.,2000,45: 79-85 P
    [104]F. H. Wang. Oxidation resistance of sputtered Ni3 (AlCr) nanocrystalline coating. Oxid. Met.,1997,48:215-224P
    [105]F. H. Wang. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales. Oxid. Met.,1997,47:247-258P
    [106]L. B. Pfeil. Improvement in heat-resisting alloys.1937, U. K. Patent, No.459848
    [107]B.Lustman. The intermittent oxidation of some nickel-chromium base alloys [J]. Trans. Met. Soc. AIME,1950,88:995-996P
    [108]I.M.Allam. D.P.Whittle and J. Stringer. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met.,1978, 12:35-66P
    [109]J. K. Tien, F. S. Pettit. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys [J]. Met. Trans.,1972,3:1587-1599P
    [110]A. Rahmel, M.Schutze. Mechanical aspects of the rare-earth effect [J]. Oxid. Met.,1992,38:255-266P
    [111]J. G. Smeggil, A. J. Shuskus, N. S. Bornstein. in The role of active elements in the oxidation behavior of high temperature metals and alloys [M], Eds by Lang E. (ed.), London, Elsevier Applied Science,1989.271P
    [112]D. G. Lees. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the "sulfur effect" [J]. Oxid. Met.,1987, 27:75-81P
    [113]C. M. Cotell, and G. J. Yurek, and R. J. Hussey. The influence of implanted Yttrium on the mechanism of growth of Cr2O3 on Cr[J]. J. Electrochem. Soc.,1987,134:1871-1872P
    [114]B. A. Pint. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met.,1996,45:1-37P
    [115]P.Y. Hou, J. Stringer. The influence of implanted Yttrium on the selective oxidation of chromium in Co-25wt.% Cr [J]. Oxid. Met.,1988,29 (1/2):45-73P
    [116]G. J. Yurek, K. Przybylski, A. J. Garratt-Reed. Segregation of Y to grain boundaries in Cr2O3 and NiO scales formed on an ODS alloy [J]. J. Electrochem. Soc.,1987,134 (10):2643-2644P
    [117]黄乾尧,李汉.高温合金[M].北京:冶金工业出版社,2000.30 P
    [118]F. Czerwinski, W. W. Smeltzer. The early-stage oxidation kinetics of CeO2 Sol-coated nickel [J]. J. Electrochem. Soc.,1993,140:2606-2615P
    [119]H. Y. Lou、F. H. Wang, S. L. Zhu, B. J. Xia, L. X. Zhang. Oxide formation of K38G superalloy and its sputtered micrograined coating [J]. Sur. Coat. Tech.,1994,63:105-114P
    [120]K.L. Luthra, E. L. Hall. High temperature oxidation of Ni-20Cr-12.5Al coatings containing 1% dispersed oxides [J]. Oxid. Met.,1986, 26:385-396P
    [121]R. Bianco, R. A. Rapp. Pack cementation aluminide coatings on superalloys: codeposition of Cr and reactive elements [J]. J. Electrochem. Soc.,1993, 140 (4):1181-1190P
    [122]X. Peng, T. F. Li, W. T. Wu. Effect of La2O3 particles on the oxidation of electrodeposited nickel films [J]. Oxid. Met.,1999,51 (3/4):291-315P
    [123]X. Peng, D. H. Ping, T. F. Li, W. T. Wu. Oxidation behavior of a Ni-La2O3 codeposited film on nickel [J]. J. Electrochem. Soc.,1998,145 (2):389-398P
    [124]郑运荣,张德堂.高温合金与钢的彩色金相研究[M].北京:国防工业出版社,1997.131 P
    [125]李美栓,周延春.Al2O3形成合金过渡态氧化行为.腐蚀科学与防护技术.2005,(6):409-412页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700