金属正交切削仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属切削加工是利用刀具和工件相对运动去除工件上多余金属或余量以获得合乎要求的零件的加工方法之一。金属切削过程是一个高度非线性、热力耦合的过程。为了弄清出切削机理,提高加工效率以及对加工过程的参数优化,获得最好的加工效果,国内外都对金属的切削过程进行了广泛的研究。本文通过有限元技术对正交切削过程进行模拟分析,以便为改进切削工艺和加工参数优化提供理论依据。
     本文根据金属切削的理论,对金属正交切削过程进行了的分析和研究;结合有限元理论和实际金属正交切削的特点,提出了有限元分析模型。针对此模型,应用DEFORM有限元软件,将工件、刀具材料的一些特性参数结合起来,分析和定义了载荷边界条件,对刀具前刀面与切屑之间复杂的摩擦状况,用库仑摩擦定理作一定的简化处理,定义了切屑分离准则和网格重划标准,完成了有限元分析仿真的预处理工作。
     对正交切削过程中应力、应变的变形特性进行了模拟仿真,得到了加工过程中应力应变规律和不同加工参数对切削力的影响曲线。通过仿真剪切角的形成过程,验证了剪切角理论,得到了剪切角的仿真结果。
     建立了切削温度仿真模型,通过对切削过程中温度的仿真研究,得到了切削过程中不同加工参数对切削温度的影响曲线。
     利用CA6150车床进行切削实验,对仿真结果进行了实验验证,证明仿真结果可以反映实际切削加工过程,可为实际加工参数的选择提供依据和参考。
The metal machining is a method which removes the unnecessary metal through the relative motion of cutting tool and the work piece for obtaining expectant components .Metal cutting is a complexity process with exceeding non-linear and heat-stress coupled. In order to clarify cutting mechanism as well as to optimize the machining process parameter and obtain the best processing effect, the researches have been carried out extensively on the metal cutting process. The numerical simulation based on the finite element technology is applied to the metal cutting process in this paper, in order to provide the theory basis for the improvement cutting art and the optimization processing parameter.
     The metal orthogonal cutting process is studied on the base of metal cutting theory. The finite element analysis model is proposed on the foundation of the finite element theory and the actual metal orthogonal cutting characteristic. In view of this model, applying the DEFORM finite element software, combining the work piece with cutting tool material characteristic parameter, the load boundary condition is defined and complex friction condition between cutting tool rake and scrap with the coulomb friction theorem is simplified. The nodes separation the criterion from mesh and remeshing standard are put forward .The pretreatment of simulation work is completed.
     The chip stress-strain rule and the different processing parameter to the cutting force the influence curve are obtained under the simulation of the chip distortion in the orthogonal cutting process. The angle of shear principle is confirmed, obtained the angle of shear simulation result through the simulation angle of shear forming process.
     The cutting temperature simulation model is established. The different processing parameter to the cutting temperature influence curve is obtained through the simulation the cutting temperature in metal machining.
     The cutting experiment is carried out by the CA6150 lathe. The simulation results are proved by theexperimental result. All these imply that simulation machining process is feasible and may provide the reference for the actual processing parameter choice.
引文
[1]华南工学院.金属切削原理及道具设计[M].上海科学技术出版社.1979
    [2](苏)罗金著,喻怀仁,陈世忠等译.金属切削刀具[M].北京:机械工业出版社,1985.8
    [3](美)G. E.凯恩编,赵广兴,陆贵译.切削刀具新的发展方向[M].北京:机械工业出版社,1987. 10
    [4]张幼祯主编.金属切削理论[M].北京:航空工业出版社,1988.6
    [5]黄志刚,柯映林. 航空整体结构件铣削加工变形的有限元模拟理论及方法研究.[博士学位论文].[D]浙江大学.2003 年 10 月
    [6]王勖成,邵敏编著.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1996
    [7]Fang Ning. Kinematic Characterization of Chip Lateral-Curl-The Third Pattern of Chip Curl in Machining. Journal of Manufacturing Science and Engineering[J],124(2002):667^675
    [8]施志辉,赵纷,王启义等.金属切削加工切屑形成过程仿真技术[J].大连铁道学院学报,2000, 21(3):64^68
    [9]蒋孝煌编著.有限元法基础[M].北京:清华大学出版社,1992
    [10]王秉愚著.有限元法程序设计[M].北京:北京理工大学出版社,1991. 12
    [11]Usui E, Shirakashi T, Mechanics of machining from descriptive to predictive theory on the art of cutting Metals 75 years later, ASME PED[R],1982,7:13^35
    [12]刘建生等著,金属塑性加工有限元模拟技术[M].北京:冶金工业出版社,2003
    [13]赵德文著,连续体成形力学数学解法[M].沈阳:东北大学出版社,2003
    [14]李尙健等著,金属塑性成形过程腄鈁M].北京:机械工业出版社,1999
    [15][日]北川浩,塑性力学基础[M].北京:高等教育,1987
    [16]阎海鹏. 高速铣削铝合金切削温度研究.[硕士学位论文]. 南京理工大学.2003 年 3 月
    [17]方刚,曾攀.切削加工过程数值模拟的研究进展,力学进展[J].2001,31(3):395~404
    [18]黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究.中国机械工程[J].2003, 14(6): 84-89
    [19]刘培德等.切削力学新篇[M].大连理大学出版社.1991
    [20]赵吉文.二维金属切削过程计算机仿真及刀具几何参数优化.[硕士学位论文].合肥工业大学.2002年 3 月
    [21] 李言,袁启龙等.功能表面切削—挤压复合成形方法的研究.西安理工大学学报[J].1999,15(1);5~10
    [22] Shih, A. J. Finite Element Simulation of Orthogonal Metal Cutting. ASME Journal of Engineering for Industry [J]. 1995. Vol.117, 84-92
    [23]刘德福,于晓霞,娄平宜.正交金属切削温度场有限元分析.北京理工大学学报[J].1999,Vol.8 No.4
    [24]邓文军,夏伟.正交切削高强耐磨铝青铜的有限元分析,机械工程学报[J].2004,40(3);71~74
    [25]王国强,实用工程数值模拟技术及其在 ANSYS 上的实践[M].西安:西北工业大学出版社。2000
    [26] Ch.PavanaChand. R.KrishnaKumar.Remeshing issue in the Finite Element analysis of metal forming problems. Journal of material processing Technology [J]. 75(1998)63—74
    [27] Piispanen V,Theory of formation of metal chips. Journal of Applied Physics [J]. 1948,19(10):876^881
    [28] Ceretti E,Fallbohmer P,Wu W T,AltanT.Application of 2D FEM to Chip formation in orthogonal cutting. Journal of Materials processing Technology [J].1996.59
    [29]袁哲俊.金属切削实验技术[M].北京:机械工业出版社.1988
    [30] Movahhedy M,Gadala M S, Altintas Y. Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian Eulerian finite element method. Journal of Material Processing Technology [J].2000,103:267~275
    [31]Huang J M, Black J T. An evaluation of chip separation criteria for the FEM simulation of Machining. ASME Journal of Manufacturing Science and Engineering[J]. 1996(4), 118:545-554
    [32]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术[J].2003,22(4):641~645
    [33]谢峰,刘正士.金属切削起始阶段切削力变化过程的数值模拟.机械工程师[J].2003,7,16~18
    [34] J.Q.Xie, 吴希让译.有限元分析建模和模拟金属切削时剪切区切屑形成. 国外金属加工[J].1998,(9);41-52
    [35][H]臼井英治.金属加工力学[J].国防工业出版社,1984。
    [36]SFTC. Machining model using DEFORM 2D under orthogonal cutting condition .DEFORMTM—2D documentation. oct 27.2003
    [37]Shet, C, Deng, X. Finite element analysis of the orthogonal metal cutting process, Journal of Material Processing Technology [J]. 2000, 105(1):95-110
    [38]李振加等,切屑折断机理及应用[M].大连:大连理工大学出版社,1994
    [39]Milton.C,Show. Metal cutting principles[M]. Oxford Clarendon press,1984
    [40]艾兴.切削用量手册[M].北京:机械工业出版社,1985
    [41] [日]中山一雄.金属切削加工理论[M].机械工业出版社,1985
    [42] Ceretti E, Taupin E, Altan T. Simulation of metal flow and fracture application in orthogonal cutting, blanking and cold extrusion. Annal of CIRP [C].1997,46(1): 187-190
    [43] Zhang Liangchi. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method.Journal of Materials Processing Technology [J]. 1999, 88-89: 273-278
    [44] McDill, J.M.J, Lindgren, Lars-Erik, Reed, r.C, Oddy, A.S. Continuous improvement in thermal-mechanical finite element analysis. International Conference on Processing and Manufacturing of Advanced Materials[C] .Lasvegas, USA, 2000, 4-8
    [45] Lei, S, Shih, YC, Incropera, F.P. Thermo-mechanical modeling of orthogonal machining process by finite element analysis. International Journal of Machine Tools and Manufacture, Design, Research and Application [J].1999, 39(5): 731-770
    [46]顾立志,袁哲俊.正交切削中切屑温度分布的研究.机械工程学报[J].2000, 36(3): 82-86
    [47] Natarajan R, Jeelani S. Residual stresses in machining using finite element method.Computers inEngineering. Computer Software and Applications ASME [J]. New York, 1983, 3(l): 19-20
    [48] Liu CR, Lin ZC, Sarash MM. Effects of plane strain and plane stress conditions on stress filed in the workpiece during machining an elasto plastic finite element analysis. High-speed Machining [J].1984, 2: 167-180
    [49] Liu CR, Lin ZC, Barash MM. Thermal and mechanical stresses in the workpiece during machining. High-Speed Machining [J]. 1984, 2:181 一 191
    [50] Shih AJ. Finite element simulation of orthogonal metal cutting. Transactions of the ASME, Journal of Engineering for Industry [J] .1995, 117(1):84-93
    [51] Booththrod, G. Fundamentals of metal machining and machine tools [M].Scripta book company, 1975
    [52] zorev, N. N. Metal Cutting Mechanics [M]. Ed. Shaw, M. C, Pergamon Press, 1966
    [53] E,Shamoto, YAltintas. Pridiction of Shear Angle in Oblique Cutting with Maximum Shear Stress and Mininum Energy Principle. ASME Journal of Manufacturing Science and Engineering [J]. AUGUST 1999, Vol .121,399-407
    [54]《工程材料实用手册》编辑委员会编.工程材料实用手册[M].V3,中国标准出版社,1989
    [55]S. Lei;Y. C. Shin;F. P. Incropera. Meterial Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests, ASME Journal of Manufacturing Science and Engineering [J]. NOVEMBER, 1999,Vol,121: 577-585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700