轮毂用高性能铸铝合金的微合金化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A356合金是Al-Si-Mg系亚共晶铸造合金,国内牌号为ZL101。它具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质及热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能等一系列优点,受到汽车制造业的青睐,成为实现汽车轮毂轻量化目标最理想的首选材料。
     本论文以Al-Si-Mg系A356合金为基础,研究Sr、Y对A356合金的微观组织和力学性能的影响。主要采用“对掺法”制备Al-Sr中间合金、Al-Y中间合金、Al-Sr变质后的A356合金和Al-Y、Al-Sr复合变质的A356合金,采用光学显微镜(OM)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)和力学性能测试等检测手段对铸态、热处理态实验合金进行表征,研究了Y含量对A356合金的微观组织和力学性能的影响规律;探索了Sr对A356合金微观组织和力学性能的影响规律,分析了A356合金的断裂机制。研究结果表明:
     ①利用“对掺法”制备Al-10Sr、Al-Y中间合金和A356合金,通过XRD以及EDS分析得出:Al-10Sr中间合金有基体相α-Al、共晶硅、A14Sr、Al2Sr相组成,其中α-Al是合金的主要组成相。Al-Y中间合金有基体相α-Al和共晶化合物A13Y、Al2Y相组成。加Y后A356合金由α-Al相、共晶相、少量的Fe23Y6,其中Al4Sr主要沿晶界分布,Al3Y弥散分布与基体内。
     ②金属Sr、Y能够细化合金晶粒,当Sr的添加量为0.02wt%时,Y的添加量为0.05wt%时,实验合金铸态组织晶粒最细小,并无“中毒”现象出现。随着Y含量的继续增加,晶粒出现粗化趋势。铸态A356合金中含0.05wt%Y时,铸态合金抗拉强度达到最大值240.1MPa,与原A356合金相比,合金抗拉强度有较大的提高。但随着Y含量的继续增加,合金强度下降。合金延伸率随着Y含量的增加呈现减小趋势。
     ③加Y后的A356铸铝合金在热处理后晶粒明显细化,Al4Sr相由铸态连续网状分布逐步趋于弥散以块状或颗粒状分布于合金基体中。Al3Y弥散分布,提高了合金的强度。Al3Y相、Al4Sr相的数量及分布对合金的力学性能影响很大。
     ④对比分析加Y后铸态和热处理后A356实验合金的显微组织和力学性能测试结果,得出:热处理态实验合金力学性能明显优于铸态。当Y含量为0.05wt%时,铸态与热处理后实验合金的抗拉强度和屈服强度均达到最大值。与铸态相比,热处理后A356铸铝合金的抗拉强度提高17.9%,屈服强度提高18.8%,合金的延伸率提高22.3%。本实验所制备的合金当中,热处理后A356合金表现出良好的综合力学性能。
     ⑤加Y后铸态A356合金的断裂机制主要为准解理断裂机制,而热处理后实验合金则呈现为韧窝断裂与局部解理断裂的混合断裂的特征。
A356 is hypoeutectic cast alloy of Al-Si-Mg system. The domestic grade is ZL101. the lightest structural materials with excellent casting fluidity,good air tightness,small shrinkage and hot cracking tendency.it has good mechanical properties,physical properties,corrosion resistance and machinability after metamorphic and heat treatment. So A356 alloys have been certainly used in the fields of automobile manufactory.it becomes the preferred material in lightweight of hub.
     This thesis based on A356 alloys,Sr and Y were added into A356 alloys and the effect of Sr and Y on microstructure and mechanical properties of A356 alloys was studied. Al-Sr master alloy,Al-Y master alloy, metamorphosed by Al-Sr A356 alloy and compound modificated by Al-Sr and Al-Y A356 alloy were prepared by“mixture method”. The as-cast and heat-treated hot-extruded test alloys were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and mechanical property test. The effect of Sr and Y on microstructure and mechanical properties of A356 alloys was studied, the influence of heat treatment on microstructure and mechanical properties of A356 alloys was investigated and the fracture mechanism of the test alloys was analyzed. The results show that:
     ①Al-10Sr master alloy is consist ofα-Al、eutectic compounds、A14Sr、Al2Sr,α-Al is the mainly composition phases. Al-Y master alloy is composed ofα-Al、eutectic compounds,A13Y,Al2Y, A356 alloy is composed ofα-Al, eutectic compounds, a little Fe23Y6,Al4Sr is distributed along the boundary of matrix grain, and Al3Y phase is distributed is dispersed distribution in matrix.
     ②Sr and Y has refining effect on magnesium alloys grains. When Sr content is 0.02wt% and Y content is 0.05wt%, the grains of A356 alloy are the finest. The phenomenon of“poisoning”does not occurred. XRD and EDS shows that with the Y addition the grains of A356 change coarsening.The result of mechanical property test indicates that containing 0.05wt% Y, the as-cast A356 alloy reaches to the best mechanical properties, the tensile strength (reaches to the peak value 241.1MPa). However, with adding too much Y could reduce the mechanical properties of A356 alloys. The elongation of the as-cast test alloys show decreasing trend.
     ③The dynamic recrystallization occurs during the heat treatment.so the grains of heat treatment A356 added with Y alloys are more smaller than as-cast alloys, Al4Sr phase distributes dispersively in the form of block structure or particle structure. Al3Y phase distributes gathering states. The amount and distribution of Al3Y and Al4Sr have great effect on the mechanical properties of the test alloys.
     ④The comparision result of the mechanical properties between as-cast and heat-treated A356 added with Y alloys indicates that: the heat-treated A356 alloys performances good mechanical properties with good elongation and high specific strength. when Y content is 0.05wt%, The tensile strength of heat-treated A356 added with Y alloys and the as-cast alloy reaches its maximum. After heat treatment A356 exhibits good comprehensive mechanical properties
     ⑤The fracture mechanism of as-cast A356 added with Y alloys is cleavage fracture mechanism.but the heat-treated alloys is mixed fracture with dimple fracture and locally cleavage fracture.
引文
[1]金道成. A356系列铝合金在汽车工业中大显身手[J].金属世界,2000,9(3):4.
    [2]刘闯,姚嘉,卢伟.铝合金在汽车上的应用现状和前景分析[J].佳木斯大学学报,2006,24(4):559-562.
    [3]毛麒瑞.汽车轻量化与铝合金[J].金属世界,2002,8(6):16-17.
    [4]姜玉波.铝合金材料在汽车轻量化中的应用分析[J].试验技术与试验机, 2004,44(3,4):31-34.
    [5]宋春强.铝合金汽车轮毂的市场需求与发展趋势[J].铝加工,2006,32(5): 5-9.
    [6]周洁,白杉.铝合金轮毂的市场特点和制造工艺.铝加工,2006,32(3):43-44.
    [7]王祝堂.铝合金轮毂工业的发展[J].轻合金加工技术,1994,22(3):17-21.
    [8]熊艳才,刘伯操.铸造铝合金现状及未来发展[J].特种铸造及有色合金,1998 (4):1~5.
    [9]张承甫,龚建森,黄杏蓉等.液态金属的净化与变质[M].上海:上海科学技术出版社,1989.
    [10]胡赓祥,蔡殉.材料科学基础[M].第一版.上海交通大学出版社,2001: 166-211.
    [11]陆文华,等.铸造合金及其熔炼[M].北京:机械工业出版社,2002.
    [12]文红艳,方东,范晓明.Mn对改善A356合金中Fe相有害作用的研究[J].金属铸锻焊技术,2010,39(1):50-55.
    [13]蔡勖勤.铝硅系铸造铝合金中的铁相[J].理化检验-物理分册, 2003, 39(4): 180-183.
    [14]曾诚.铝合金车轮的制造工艺及设备探析[[J].铝加工,2006,6(2):13-14.
    [15] M.Estey,S.L.CocKcroft .Constitutive behaviour of A356 during the quenching peration[J]. materials science&engineering ,2004, 383 (6):241-245.
    [16]陆文华,等.铸造合金及其熔炼[M].北京:机械工业出版社,2002.
    [17]龚磊清,金长庚等.铸造铝合金金相图谱[M].湖南:中南工业大学出版社,1987:3-7.
    [18]刘启阳.Al-Si合金变质机理及共晶硅形态控制:[博士学位论文].哈尔滨:哈尔滨工业大学,1987.
    [19]陈鸿国.铝-锶合金长效变质剂的应用[J].轻合金加工技术,1992,20(2):13-16.
    [20]刘军.新产品铝-锶合金的开发与前景分析[J].轻金属,2001,(8):35-36.
    [21] S. Sreeja Kumari, R.M. Pillai,B.C. Pai. A study on the structural, age hardening nd mechanical characteristics of Mn and Ca added Al-7Si-0.3Mg-0.6Fe alloy. Ournal of Alloys and CoMPounds.2006,13 5 (11):1-7.
    [22]张泉林.整体式铝合金轮毂的合金处理及其铸造[J].特种铸造及有色合金.2001:21-24.
    [23] GUAN Shao-Kang,YAO Bo ,WANG Ying-xin. The progressand prospect of research on aluminium alloys for auto body sheets[J].Materials for Mechanical Engineering,2001,57(5):12-18.
    [24]张作贵,刘相法,边秀房. A1-Ti-B中间合金的遗传性研究与推广应用[J].铸造758-760.2000 49(10):23-27.
    [25]鲁薇华,王汝耀.锶变质铝硅合金的组织、性能及其变质工艺[J].铸造,1997 (9):44-49.
    [26]陈体军,马颖等.凝固条件和熔体处理对ZL101合金组织和力学性能的影响[J] .热加工艺,2001(1):9-11.
    [27] T.Kobayashi, Strength and fracture of alumium alloys[J]. Materials Science and Engineering. 2000,A280: 8-16.
    [28]廖恒成,孙瑜,孙国雄等. Al-5%Ti-1%B对Sr变质Al-13.0%Si合金组织影响的研究[J].铸造,2000, 49 ( 5):251-256.
    [29]李双寿,唐靖林,曾大本.Sr变质对A356合金细化效果的影响[J].铸造,2004,53(8):599-601.
    [30] Grong, Dahle AK,Onsien Miet. Analytical modeling of equiaxed solidification [J]. Acta Mater. , 1998 , 46 ( 14) : 5045-5052.
    [31]胥锴,刘徽平,王甫等.Sr变质对ZL101合金中共晶Si形貌的影响[J].铸造技术2009,30(5)646-649.
    [32]陈忠伟,何志,介万奇. Al-5Ti细化剂和Al-l0Sr变质剂对A357合金微观组织和力学性能的影响[J] .铸造,2005 , (54) 2 :129-133.
    [33]仲志国,左秀荣,孙海斌,等.细化及变质方法对A356铝合金微观组织的影响[J].铸造技术,2006 , (27) 1 :49-51.
    [34]米国发,朱兆军,王宏伟,等. Sr变质对Al2Si合金组织的影响[J].铸造技术,2006 , (27) 11 :1217-1222.
    [35]王晓秋,丁伟中,王新国,等.混合稀土对Zl108铝合金组织与性能的影响[J] .中国稀土学报,2004 ,22 (2) :243-246.
    [36]王海东,杨必成,田战峰,等. Sr变质对A1Si6Mg2半固态铝合金组织和性能的影响[J] .热加工工艺,2006 ,35(1) :7-10.
    [37]李顺朴,陈熙琛. Al-Si合金的共晶共生区及组织形成规律[J].金属学报,1995 ,31 (2) :47-50.
    [38] Kori S A , Murly B S , Chalcrahorly M. Development ofan efficient grain refiner for Al-7Si and its modification with st ronlium [J].Materials Science and Engineering 2000,283 :94-104.
    [39]李树索,赵爱民,毛卫民,等.半固态铝硅合金中共晶硅的形貌[J].材料科学与工艺,2000 ,2 (8) :8-11.
    [40] L Liu. A M Samuel , F H Samuel. Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys [J] .Journal of materials science ,2003 ,38 :1255-1267.
    [41]韩奎,毛协民,欧阳志英,等.稀土元素在铸铝熔体除气净化过程中的行为[J].特种铸造及有色合金, 2004,(2):61-63.
    [42]姜兆梦,兰民国,高泽生.Al-Sr合金变质处理的研究和应用[J].轻合金加工技术,1993,21 (10) :13-15.
    [43]鲁薇华,王汝耀.锶变质铝-硅合金的组织、性能及其变质工艺[J].铸造,1997,(9):44-49.
    [44]章爱生,严明明,杨青.钇基重稀土对AlSi7Mg0.3合金组织和性能的影响[J].热加工工艺,2005,(2):47-48.
    [45]董光明,孙国雄,廖恒成.锶在铸造铝硅合金中的变质行为[J].特种铸造及有色合金,2005,25(3):166-149.
    [46] Lu L, Dahle A K. Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys [J] . Metallurgical and Materials Transactions A, 2005, 36A (3):819-835.
    [47]唐多光.铸造铝合金精炼变质的好材料-稀土合金[J].特种铸造及有色合金,1995,(5):42-44.
    [48]赖华清,徐翔,范宏训.稀土在铸造铝合金中的作用[J].热加工工艺,2001,(5):37-39.
    [49] Murty B S,Kori S A,Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].Internation Material Reviews,2002,47(3):3-29.
    [50] Kori S A,Murty B S,Chakraborty M. Development of an efficient grain refiner for Al-7Si alloy [J].Mater.Sci.Technal.,2000,A280(1):58-61.
    [51] Mohanty P S,Gruzleski J E.Grain refinement mechanisms of hypoeutectic Al-Si alloy [J].Acta Meter.,1996,44 (9):3749-3760.
    [52] Kobayashi T.Strength and fracture of aluminium alloys[J].Mater. Sci. Eng.,2000,A280(1):8-16.
    [53] Caceres C H,Griffiths J R.Damage by the cracking of silicon particles in an Al-7Si-0.4Mg casting alloy [J].Acta mater,1996,44(1):25-33.
    [54]李华基,刘昌明,谭会辛,等.稀土和锶变质的Al-Si-Mg合金[J].重庆大学学报(自然科学版) , 2000, 23( 4) : 26-29.
    [55]段海丽,张恒华,邵光杰,等.镧对A356铝合金变质及其机制的研究[J].中国稀土学报.5005, (23): 94-98.
    [56]周晓霞,张仁元,刘银峁.稀土元素在铝合金中的作用和应用[J].新技术与新工艺,材料与表面处理, 2003,(4): 43-45.
    [57]李千,罗吉荣,宋象军,等.高温铝液的Sr-Re复合变质研究[J].特种铸造及有色合金, 2001,(5):16-18.
    [58]韩奎,毛协民,欧阳志英,等.稀土元素在铸铝熔体除气净化过程中的行为[J].特种铸造及有色合金, 2004,(2):61-63.
    [59] Hengcheng Liao,Yu Sun , Guoxiong Sun.Correlation between mechanical properties and amount of dendritic a-A1 Phase in as-cast neat-eutectic A1-11.6%Si alloys modified with strontium[J].Materials. Science and Engineering,2002:62--66.
    [60]郑志强,陈克燕.稀土铝合金结晶过程的研究[J].材料与冶金学报,2004,3(3):202-205.
    [61] E.Gruzleski. M elt O x idation Behavior and Inclusion Content in Unmodified and Sr modified A356 Alloys-Their Role in Pore Nucleation[J]. AFS Transactions,1996,(22):763-767.
    [62] Foundry handbook Vof 6(铸造手册.第6卷),Casting Nonfermus Alloy[M].Beijing Machiney tndusty Press 1994.
    [63]王庆良,王大庆.稀土钇AlZnMgCu合金组织及性能的影响[J].中国矿业大学学报,1999, 28(4):382-385.
    [64] E. Gruzleski. Effects of Casting and M elt V ariables on Porosity in Directional Solidified Al-Si Alloys[J] . AFS Transactions, 1994,(102):307-312.
    [65]元效刚,边秀芳,王玉厚.Al-Ti-B和Al-5% Sr中间合金对轮毂铝合金的晶粒细化与变质作用[J].铸造,2000, 49: 321-326.
    [66] Ravi C, Wolverton C. First principle study of crystal structure andstability of Al2Mg2Si alloy[J]. Acta Mater, 2004, 52 (10): 4213-4227.
    [67] Andersen S J, Marioara C D,Froseth A, et al. Crystal structure ofprecipitate in the Mg2Si alloy system and its relation to the andphases[J].Mater Sci Eng A, 2005,390(6): 127-138.
    [68] H.M. Guo, X.Js.Yang,rheocasting of A356 Alloy by low superheat pouring wyth a hearing field[J]. Ac to Me to 11. Sin. 2006,19 (9): 328-334.
    [69] A.Gaber, M.A. Gaffar. Precipitation Kinetics of Al-1.12 Mg2Si-0.35Si andA1-1.07 Mg2Si-0.33 Cu alloys[J]. Journal of Alloys and CoMPounds. 2007,429 (7):167-175.
    [70] S.W. Youn, C.G. Kang.Characterization of age-hardening behavior ofeutectic surface on rheo-cast A356-TS alloy by usingnano/micro-indentation, scratching and atomic force microscopy[J]. Materials Chemistry and Physics.2006,100 (5):117-123.
    [71]杨彬,高平等.稀土加入量对A356合金力学性能的影响[J],热加工工艺,2005,23 (7): 68-69.
    [72]廖恒成,丁毅,孙国雄. Sr变质对近共晶A1-Si合金力学性能与枝晶α-Al特征参数的相关性.铸造,2002.51(9) : 541-545 .
    [75]戴洪尚,刘志勇,王明星等.固溶处理对电解制备的A356合金硅颗粒的影响[J].中国有色金属学报,2004, 14 (7) :1201-1205.
    [73] Wang QG..Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/A357[J].Metallurgical and Materials Transactions A, 2003,34A:2887-2899.
    [74] Yucel Birol.Pre-aging to improve bake hardening in a twin-rollcastAl-Mg-Si alloy. Materials Science and Engineering 2005, A391:175-180.
    [75]袁晓光,任露泉,董晓亮.时效对微晶Al-Si系合金α-A1相晶格常数的影响[J].辽宁工程技术大学学报(自然科学版).1999.18 (3) :269-273.
    [76]宛农,董建新,谢锡善.AlSi7Mg系铝合金组织的热力学分析[J].特种铸造及有色合金,2005,25(6):378-380.
    [77] Stevec.Hansen.Antimony modification of aluminum-silicon alloys[D]. US: University of Wisconsin-Madison, 2000.
    [78]戴洪尚,刘志勇,王明星,等.固溶处理对电解制备的A356合金硅颗粒的影响[J] .中国有色金属学报, 2004(7):1201-1205.
    [79]上官晓峰,董大军,史蒲英. A356.0断裂机理研究[J].铸造技术, 2006, 27(12): 1352.
    [80] Kw ai S Chan,Peggy Jones,W angQigui Fatigue crack growth and fracture ture paths in sand castB319 and A356 aluminum alloys[J]. M aterials Science and Engineering A,2003, 341:18-34.
    [81] Knuutinen A, Nogita K,McDonald S.D,Dahle A. K,Modification of Al-Si alloys with Ba, Ca, Y and Yb, J Light Met , 2001, (1): 229.
    [82]倪红军,孙宝德,蒋海燕等.稀土熔剂对A356铝合金的作用[J]中国有色金属学报,2001,11( 4):547- 551.
    [83]杜维玺等.稀土加入量对Al- Si合金组织性能的影响[J].金属科学与工艺1984(1):35- 43.
    [84]宋谋胜,刘忠侠,李继文等.加钛方式与钛含量对A356合金组织和性能的影响[J]中国有色金属学报,2004,14(10):1729-1735.
    [85]李千,罗吉荣,宋象军等.高温铝液的Sr-Re复合变质研究[J].特种铸造及有色合金, 2001,(5):16-18.
    [86]欧阳志英,毛协民,红梅.Sr和稀土对铝合金表面氧化膜保护效果的影响[J].铸造, 2006, 55(10): 1071-1074.
    [87]杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,33(1):69.
    [88]杨莉莉,张虎,曾松岩.几种典型细化剂对A356合金的细化作用[J].特种铸造及有色合金,2006,26( 6) : 375-377.
    [89]余忠土等.热处理对铝合金半固态成形件组织性能的影响[C].全国材料理化测试与产品质量控制学术研讨会,上海:2002.
    [90]王平,路贵民,崔建忠.液相线铸造A356铝合金结晶过程初探[J].轻合金加工技术, 2001, (12):14-16.
    [91] Cardoso E, Atkinson H V, Jones H. Microstructural evolution of A356 during NRC processing [C].Proc of the 8th Int Conf on Semi-solid Processing ofAlloys and Composites, Limassol, Cyprus, 2004:296- 307.
    [92]张世兴,邓鹏辉,吴海宏.不同热处理制度对7A09铝合金显微组织和性能的影响[J].轻合金加工技术,2009,(1):50-53.
    [93]陶静梅.A1-Si系合金的熔体温度处理及其凝固过程研究[D].重庆:重庆大学材料科学与工程学院,2004,1-9.
    [94]叶春生,宋俊杰,张新平等.不同成分铝硅合金熔体混合对初生硅相细化的研究[J].铸造,2001,51(03):145-147.
    [95] Xu C L, Jiang Q C, Yang Y F, Wang H Y, Wang J G. Effect of Nd on Primary Silicon and Eutectic Silicon in Hypereutectic Al-Si alloy[J].Journal of Alloys and Compounds, 2006, 422: L1-L4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700