铝合金在海水中的腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金具有优异的耐蚀性能,在海洋开发中占有不可替代的地位,然而海水中含有大量的腐蚀性氯离子,铝合金在海水中因氧化膜的破裂而极易发生局部腐蚀,因此,研究深海环境下铝合金的腐蚀行为对海洋工程显得非常重要。本论文采用动电位扫描、电化学阻抗谱(electrochemical impedance spectroscopy,EIS)等电化学技术结合扫描电子显微镜(SEM)、三维视屏等材料研究手段对1060、5083两种铝合金在不同状态的海水中的腐蚀行为进行了研究。主要研究结果为以下几个方面:
     1.研究了5083铝合金在不同温度和不同溶解氧的海水中的腐蚀行为,以及1060和5083两种铝合金在实海中连续挂样一年的月平均腐蚀速率。当溶解氧为6.5 mg/L时,随着温度的降低,5083铝合金自腐蚀电位和点蚀电位正移,维钝电流密度减小;在溶解氧浓度为2 mg/L的状态下,随着温度的降低,5083铝合金自腐蚀电位负移,点蚀电位正移,维钝电流密度增大。随着温度的降低,电化学阻抗谱中容抗弧直径逐渐增大,阻抗模值增大。低温时,阻抗谱为一容抗弧,温度升高时,低频出现Warburg阻抗。腐蚀微观形貌分析结果表明铝合金在高温高氧状态下主要以均匀腐蚀为主,而在低温低氧状态下发生了明显点蚀。在实海中,温度是影响1060和5083铝合金在海水中腐蚀速率的主要因素,两种铝合金的腐蚀规律相似,5083铝合金腐蚀速率稍高于1060。
     2.研究了5083铝合金在低温低氧下不同pH的海水中的腐蚀行为。随着pH值的升高,5083铝合金自腐蚀电位负移,维钝电流密度增大,钝化区范围扩大,但点蚀电位变化不大。交流阻抗谱结果表明:随着pH值的升高,容抗弧直径逐渐减小,阻抗模值减小,这说明铝合金在碱性海水中腐蚀速度增大,当pH值为7.2、7.7、8.2时,低频出现Warburg阻抗,阴极过程受扩散控制。pH值越低,5083铝合金表面越容易发生点蚀,随着pH值的升高,5083铝合金以均匀腐蚀为主。
     3.研究了5083铝合金在低温低氧环境下孔蚀发展过程,发现随着浸泡时间的延长,5083铝合金自腐蚀电位和点蚀电位正移,钝化区范围扩大,而维钝电流密度先减小,而后基本稳定,阻抗模值先增大,后减小。同时,5083铝合金电极在浸泡0-12 h后,铝合金表面氧化膜较为完整,处于点蚀诱发期,浸泡至12-48 h后,有大量的点蚀坑生成,处于点蚀发展期,浸泡至48-96 h时,蚀坑数量减少,处于腐蚀过渡期,96 h以后,试样表面生成了一层氧化膜,铝合金发生均匀腐蚀,处于腐蚀后期。
Aluminum alloys are commonly used in marine application with excellent corrosion resistance. Since seawater is recognized to be very corrosive for metals, the oxide film breaks down at specific points leading to the formation of pits on the aluminum surface. It is necessary to study the corrosion and its protection of aluminum alloy in deep-sea and-corrosion rate of aluminum alloys in different kinds of seawater is an important corrosion parameter which is widely used in marine engineering. In this paper, potentiodynamic scanning, electrochemical impedance spectroscopy(EIS) electrochemical techniques and scanning electron microscopy(SEM),3D screen materials research tools were used to study the corrosion behaviors of aluminum alloys 1060 and 5083 in different kinds of seawater. The research results of this paper are as follows:
     1. The effect of temperature and dissolved oxygen on the corrosion behavior of aluminum alloy 5083 in seawater and the change of average monthly corrosion rate of aluminum alloys 1060 and 5083 in real sea were studied. When the dissolved oxygen was 6.5mg/L with decrease of the temperature, the corrosion potential of aluminum alloy 5083 and pitting potential shifted positively, passive current density decreased; when the dissolved oxygen was 2mg/L with decreased of the temperature, the corrosion potential of aluminum alloy 5083 shifted negatively, the pitting potential shifted positively, and passive current density increased. With decreasing temperature, capacitance arc diameter increased, so the impedance modulus increased. Impedance spectroscopy showed a capacitance arc in low temperature, low-frequency Warburg impedance appeared in high temperature. The morphology of the alloy 5083 showed that the alloy 5083 suffered obvious pitting corrosion in seawater at low temperature and low content of dissolved oxygen, while the oxide films were prone to form on the alloy 5083 at high temperature and dissoved oxygen. Temperature was the main factor affecting corrosion rate of aluminum alloy 1060 and 5083 in real sea, corrosion rate of the two aluminum alloys had similar a law, but the corrosion rate of aluminum alloy 5083 was higher than that of aluminum alloy 1060.
     2. The effect of pH on the corrosion behavior of aluminum alloy 5083 in seawater at low temperature and dissolved oxygen was studied. The corrosion potential of aluminum alloy 5083 shifted negatively, passive current density increased and the passivation region broadened, but the pitting potential changed little with the increase of pH value. The result obtained from AC impedance test indicated that capacitance arc diameter decreased, the impedance modulus decreased with the he increase of pH value, showing the fastest corrosion rate of aluminum alloy 5083 in alkaline seawater. When the pH value was 7.2,7.7,8.2, Warburg impedance appeared at low frequency, and the cathode process was controlled by diffusion. The lower the pH value, the more easily occurred pitting corrosion, with the pH value increased, aluminum alloy 5083 mainly occurred uniform corrosion.
     3. The pitting process of aluminum alloy 5083 in seawater at low temperature and dissolved oxygen was studied. We found the corrosion potential and the pitting potential of aluminum alloy 5083 shifted positively with the immersion time prolonging, the passivation-region-broadened,but passive current density decreased firstly, and then became stably, the impedance modulus increased firstly, and then decreased. We also found when the aluminum alloy 5083 was immersed 0-12h, the oxide film was complete, this period was at pitting initiation. After being immersed 12-48h, a large number of pits generated, this period was at pitting development. After 48-96h, the number of pits decreased, this period was at corrosion middle stage. After 96h, the sample surface generated oxide film, the aluminum alloy 5083 mainly occurred uniform corrosion, this period was at corrosion later stage.
引文
[1]王凤平.大气腐蚀研究动态与进展.腐蚀科学与防护技术,2000,12(2):104-107
    [2]化学工业部化工机械研究院主编.腐蚀与防护手册-腐蚀理论实验及检测.化学工业出版社,1989,164-174
    [3]黄桂桥.铝合金在海洋环境中的腐蚀研究(Ⅱ)——海水全浸区16年暴露试验总结.腐蚀与防护,2002,23(2):47-50
    [4]魏开金,刘大扬,李文军等.铝合金暴露四年的腐蚀行为.材料开发与应用,1993,8(5):37-43
    [5]王曰义.铝合金在流动海水中的腐蚀行为.装备环境工程,2005,2(6):72-76
    [6]Bessone J B, Salinas D R, Mayer C E, et al. An EIS study of aluminium barrier-type oxide films formed in different media. Electrochim Acta,1992,37(12):2283-2290
    [7]Munoz A G., Bessone J B. Pitting of aluminium in non-aqueous chloride media. Corrosion Science,1999,41(7):1447-1463
    [8]Shaw B A, Davis G D, Fritz T L, et al. The Influence of Tungsten Alloying Additions on the Passivity of Aluminum. Journal of The Electrochemical Society,1991,138(11): 3288-3295
    [9]Davis G D, Moshier W C, Long G G, et al. Passive Film Structure of Supersaturated Al-Mo Alloys. Journal of The Electrochemical Society,1991,138(11):3194-3199
    [10]Z.Szklarska-Smialowska. Pitting corrosion of aluminum. Corrosion Science,1999,41 (9):1743-1767
    [11]Carrol W, Breslin C. Stability of passive films formed on aluminum in aqueous halide solutions. British Corrosion Journal,1991,26(4):255-259
    [12]Horst R. Corrosion evaluation of aluminum easy-open ends on tinplate cans. Mater Perform,1977,16(3):23-28
    [13]Liao C M, Olive J M, Gao M, et al. In-Situ Monitoring of Pitting Corrosion in Aluminum Alloy 2024.Corrosion,1998,54(6):451-458
    [14]Liao C M, Wei R P. Galvanic coupling of model alloys to aluminum-a foundation for understanding particle-induced pitting in aluminum alloys. Electrochimica Acta,1999, 45(6):881-888
    [15]Alavi A, Cottis R A. The determination of pH, potential and chloride concentration in corroding crevices on 304 stainless steel and 7475 aluminium alloy. Corrosion Science, 1987,27(5):443-451
    [16]Nisancioglu K. Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron. Journal of The Electrochemical Society,1990,137(1):69-77
    [17]Buchheit R G, Martinez M A, Montes L P. Evidence for Cu Ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring-Disk Collection Experiments. Journal of The Electrochemical Society,2000,147(1):119-124
    [18]郭瑞金,火时中.小孔腐蚀诱发过程的研究.中国腐蚀与防护学报,1986,6(2):113-122
    [19]魏宝明.金属腐蚀学原理论及应用.北京:化学工业出版社,1984,148-153
    [20]肖纪美,曹楚南.材料腐蚀学原理.北京:化学工业出版社,2002,47-52
    [21]曹楚南,金属腐蚀.北京:清华大学出版社,2002,65-90
    [22]杨德钧,沈桌身.金属腐蚀学.北京:冶金工业出版社,1999,122-132
    [23]Venkatesan R. Studies on corrosion of some structural materials in deep sea environment. India:Department of metallurgy India institute of science.2000,51-68
    [24]舒马赫编.海水腐蚀手册.李大超,杨荫译.北京:国防工业出版社,1985,583-926
    [25]Alior W H. Evaluation of aluminum after one-year deep sea exposure. Journal of Hydronautics,1968,2(1):26-33
    [26]Dexter S C. Effect of Variations in seawater upon the corrosion of aluminum. Corrosion, 1980,36(8):423-432
    [27]Beccaria A M, Poggi G. The effect of hydrostatic pressure on the corrosion behavior of aluminum and nickel in sea water. Corrosion and prevention control,1987,34(2):51-57
    [28]黄桂桥.铝合金在海洋环境中的腐蚀研究(Ⅰ)——海水潮汐区16年暴露试验总结.腐蚀与防护,2002,23(1):18-20
    [29]Groover R E. Electrochemical potentials of high purity metals in sea water[J]. Corrosion. 1972,28(3):101-104
    [30]Ijsseling F P. General Guidelines for Corrosion Testing of Materials for Marine Applications. British Corrosion Journal,1989,24,(1):55-78
    [31]N.石乌拉诺夫斯基.金属在海洋不同深度处的腐蚀.杜桂枝译.材料开发与应用,1980,(12):42-45
    [32]Bazzi L, Salghi R, Alami Z E, et al. Comparative study of corrosion resistance for 6063 and 3003 aluminium alloys in chloride medium. Revue De Metallurgie-Cahiers D Informations Techniques,2003,100(12):1227-1235
    [33]Melchers R E. Influence of temperature on seawater immersion corrosion of aluminium. British Corrosion Journal,2001,36(3):201-204
    [34]Dexter S C, Culberson C. Global variability of natural sea water. Materials Performance, 1980,19(9):16-28
    [35]Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061. Corrosion Science,2008,50(7):1841-1847
    [36]Birbilis N, Buchheit R G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH. Journal of the Electrochemical Society,2008,115(30):117-126
    [37]Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al. Corrosion of ferrous alloys in deep sea environments. British Corrosion Journal,2002,37(4):257-266
    [38]Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water. British Corrosion journal,1994,29(1):65-69
    [39]Beccaria A M, Poggi G. Effect of some surface treatments on kinetics of aluminium corrosion in NaCl solutions at various hydrostatic pressures. British Corrosion Journal, 1986,21(1):19-22
    [40]Muller I L, Galvele J R. Pitting potential of high purity binary aluminium alloys-I. Al-Cu alloys. Pitting and intergranular corrosion. Corrosion Science,1977,17(3):179-193
    [41]Diard J P, Gorrec B L, Montella C. Corrosion rate measurements by non-linear electrochemical impedance spectroscopy. Corrosion Science,1998,40(2-3):495-508
    [42]Gonzalez J E G, Santana F J H, Mirza-Rosca J C. Effect of bacterial biofilm on 316SS corrosion in natural seawater by EIS. Corrosion Science,1988,40(12):2141-2145
    [43]Olesn E, Szybalski W. Aerobic microbiological corrosion of water pipes. Corrosion,1950, 6(12):405-414
    [44]Kutznetsov V V, Verzhbitskaya L V. On the role of microorganisms in iron corrosion in water. Microbiologiya,1961,18(30):511-514
    [45]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2004,340-356
    [46]Iverson W P. Direct evidence for the cathodic depolarization theory of bacterial. Corrosion.science,1966,151(3713):986-989
    [47]Foley R T. Localized corrosion of aluminum alloys-a review. Corrosion,1986,42(5): 277-286
    [48]Ashok K. The pitting potentials of metals:The case of titanium. Corrosion Science,1973, 13(10):805-806
    [49]Foley R T, Nguyen T H. The Chemical Nature of Aluminum Corrosion. Journal of The Electrochemical Society,1982,129(3):464-467
    [50]张波,韩冰.LF4铝合金在海水中的腐蚀性能研究.海洋科学,2005,29(7):4-7
    [51]扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护,2004,25(2):57-62
    [52]杨仲年,张昭,苏景新等.耐候钢在2.0%NaCl中性溶液中的腐蚀过程.金属学报,2005,41(8):860-864
    [53]李劲风,张昭,程英亮等.NaCl溶液中Al-Li合金腐蚀过程的电化学特征.金属学报,2002,38(7):760-765
    [54]Gusmano G, Montesperelli G,, Pacetti S, et al. Electrochemical noise resistance as a tool for corrosion tate prediction. Corrosion,1997,53(11):860-868
    [55]乔利杰,高克玮,褚武扬.数学统计方法在应力腐蚀噪声中的应用.中国腐蚀与防护学报,1998,18(4):263-268
    [56]胡会利,李宁,程瑾宁.电化学噪声在腐蚀领域中的研究进展.腐蚀科学与防护技术,2007,19(2):114-118
    [57]Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion. Corrosion,1996,52(10):753-759
    [58]郭为民,李文军,陈光章.材料深海环境腐蚀试验.装备环境工程,2006,3(1):10-15
    [59]Jafarzadeh K, Shahrabi T, Hosseini M G..EIS study on pitting corrosion of AA5083-H321 aluminum-magnesium alloy in stagnant 3.5% NaCl solution. Journal of Materials Science & Technology,2008,24(2):215-219.
    [60]Aballe A, Bethencourt M, Botana F J, et al. Influence of the degree of polishing of alloy AA 5083 on its behaviour against localised alkaline corrosion. Corrosion Science,2004, 46(8):1909-1920
    [61]John J. Evaluation of metals in deep ocean environments. Materials protection,1966, 5(8):49-59
    [62]赵赛玉译.海水温度对铝浸泡腐蚀速度的影响.国外舰船工程,2005,(4):1-4
    [63]Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater. Materials & Design,2008,29(4):801-805
    [64]GB5776-1989.金属材料在表面海水中常规暴露腐蚀试验方法
    [65]Yasakau Kiryl A, Zheludkevich Mikhail L, Sviatlana V Lamaka, et al. Role of intermetallic phases in localized corrosion of AA5083. Electrochimica Acta,2007, 52(27):7651-7659
    [66]Birbilis N, Buchheit R G An experimental survey of electrochemical characteristics for intermetallic phases in aluminum alloys. Journal of the Electrochemical Society,2005, 152(4):140-151
    [67]Silva W J, Bustamante A G, Codaro E N. Morphological analysis of pits formed on Al 2024-T3 in chloride aqueous solution. Applied Surface Science,2004,236(1-4): 356-365
    [68]Vilche J R, Varela F E, Acuna G, et al. A survey of Argentinean atmospheric corrosion: Ⅰ-Aluminium and zinc samples. Corrosion Science,1995,37(6):941-961
    [69]Blanc Ch, Mankowski G. Pit propagation rate on the 2024 and 6056 aluminium alloys. Corrosion Science,1998,40(2-3):411-429
    [70]Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-,NO3- and SO42- ions on anodic dissolution of pure aluminum in alkaline solution. Corrosion.Science,1999,41(4): 653-667
    [71]Scully J R, Frankel G S, Newman R C. Critical Factors in Localized Corrosion. Journal of the Electrochemical Society,1992,139(9):144-156
    [72]Buzza D W, Alkire R C. Growth of Corrosion Pits on Pure Aluminum in 1M NaCl. Journal of the Electrochemical Society,1995,142(4):1104-1111
    [73]Galvele J R and Micheli S M de De. Mechanism of intergranular corrosion of Al-Cu alloys. Corrosion Science,1970,10(11):795-807
    [74]Hong T, Nagumo M. Effect of surface roughness on early stages of pitting corrosion of type 301 stainless steel. Corrosion Science,1997,39(9):1665-1697
    [75]Hong T, Nagumo M. The effect of SO42- concentration in NaCl solution on the early stages of pitting corrosion of type 340 stainless steel. Corrosion Science,1997,39(5): 961-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700