黄磷炉渣提取白炭黑和磷酸氢钙的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄磷炉渣是电炉法生产黄磷时产出的固体废弃物,工业上每生产1吨黄磷将产出8~10吨炉渣。根据我国黄磷的生产现状,目前我国黄磷企业实际年产出黄磷炉渣600~750万吨,其中云南省年产出黄磷炉渣300~400万吨。目前,黄磷炉渣主要用于生产农用硅钙肥、水泥、混凝土、磷渣砖及瓷质砖,产品品质较低,且用量有限,大部分以废渣堆积,既浪费资源,又污染环境。
     黄磷炉渣富含CaO和SiO_2及少量铁、铝、镁和其它元素,可用于生产含钙和含硅产品。本论文通过采用磷酸浸出黄磷炉渣,以磷酸二氢钙和磷酸氢钙的形式分离渣中钙元素及其它杂质元素后,通过精制、煅烧等工艺制备出优质的白炭黑产品,同时利用浸出液得到磷酸氢钙产品,开发了一条处理黄磷炉渣的新工艺。
     黄磷炉渣中硅、钙主要以CaO·SiO_2、3CaO·2SiO_2和2CaO·SiO_2等形式存在,热力学研究表明,在采用磷酸进行浸出时,这些化合物能与磷酸自发反应,分别生成水合二氧化硅和磷酸二氢钙、磷酸氢钙,同时黄磷炉渣中含有的杂质元素如Fe(以磷铁形式存在的铁除外)、Al、Mg等也将与磷酸反应生成相应的磷酸盐,根据这些磷酸盐在水中及磷酸溶液中溶解度的变化规律,通过采用过量的磷酸使用量以使黄磷炉渣磷酸浸出完毕后浸出液中含有足够的游离磷酸,可提高磷酸二氢钙和磷酸氢钙及杂质元素磷酸盐在浸出液中的溶解度,保证它们溶解在浸出液中,而硅则以水合二氧化硅沉淀析出,实现硅钙分离的目的,同时得到白炭黑和磷酸二氢钙或磷酸氢钙产品。
     实验研究表明:采用磷酸浸出黄磷炉渣,以磷酸二氢钙和磷酸氢钙分离钙等元素后,浸出渣经洗涤、干燥、煅烧,可得到SiO_2含量达到95%以上的白炭黑样品。磷酸浸出黄磷炉渣的最佳工艺条件为:磷酸用量80ml,反应温度为自然升降温,反应时间0.5小时,液固比5:1,搅拌速度400rpm。黄磷炉渣磷酸浸出过程可用有固相产物生成的粒径不变的收缩未反应核模型描述,磷酸浸出过程的表观速率受液膜层的扩散过程控制,在303.15K时的液膜扩散系数为1.68×10~(-4)m~2/s。
     由于黄磷炉渣中含有的C、以磷铁形式存在的铁不与磷酸反应,在采用磷酸浸出黄磷炉渣时它们将残留在浸出渣中,同时磷酸浸出时生成的杂质磷酸盐也将有一部分残留在浸出渣中,因而浸出渣含有较多的杂质,所以通过磷酸浸出得到的白炭黑样品外观呈灰白略带淡红色,白度仅达到61.51%,需进行进一步处理。根据热力学分析,采用硝酸溶液进行精制处理,渣中含有的杂质元素C、Fe(以FePO_4形式存在的铁除外)、Al、Ca、Mg等均能与硝酸反应,分别生成二氧化碳和相应的可溶性硝酸盐,与浸出渣分离。实验研究表明:由黄磷炉渣经磷酸浸出得到的粗制白炭黑产品,采用硝酸溶液精制,精制除铁率可达到99%,精制白炭黑产品中铁含量可降至0.02%左右,产品白度达到90%以上。精制的最佳工艺条件为:初制白炭黑原料15克时,硝酸浓度8%,反应时间2.0小时,反应温度70℃,液固比4:1,搅拌速度300rpm。精制除铁过程可用有固相产物生成(惰性物料层)的粒径不变的收缩未反应核模型描述,精制过程的速率受界面化学反应过程控制,精制化学反应的表观活化能E_a=30.662kJ/mol,化学反应级数为0.6746。
     以黄磷炉渣为原料,采用磷酸浸出,以磷酸二氢钙和磷酸氢钙分离钙元素后,经精制、洗涤、干燥等工艺处理后,得到的白炭黑产品其它各项指标均能达到白炭黑产品的质量要求,但其外观仍然呈现灰白色,白度仅达到67.83%,但样品通过700℃煅烧0.5小时后可得到符合HG/T3061-1999标准的A级白炭黑产品。该产品经X-射线衍射和电镜分析确定为无定形二氧化硅、样品平均粒径66~68μm,粒径在2~200μm之间的二氧化硅占90%以上,二氧化硅含量达到97%,白度88%,比表面积205cm~2/g,DBP吸油值2.01ml/g,Fe、Cu、Mn等杂质含量均能达到白炭黑产品的质量要求。
     黄磷炉渣采用磷酸浸出分离得到的浸出液,含有大量的磷酸二氢钙、磷酸氢钙、16~18%的游离磷酸及炉渣带入的杂质元素氟。为了有效的利用浸出液中的游离磷酸和得到含氟合格的磷酸氢钙产品,本研究采用真空蒸发、浓缩结晶、分离,母液返回浸出阶段循环利用,结晶体二次重溶制备磷酸氢钙的工艺处理磷酸浸出液。为了充分利用渣中的钙元素制备磷酸氢钙产品,将磷酸浸出液和滤渣一洗液混合后进行浓缩结晶,经分离磷酸二氢钙和磷酸氢钙混合晶体后,母液返回浸出阶段用于黄磷炉渣的浸出,当混合液真空浓缩至原液量的50%时,母液返回黄磷炉渣浸出,与直接浸出比较,可使工业磷酸用量降低37.5%,有效利用浸出液中的游离磷酸,使工业磷酸的用量明显降低。
     磷酸浸出液和一洗液的混合液经真空浓缩得到磷酸二氢钙和磷酸氢钙混合晶体后,经二次溶解、一步中和,可得到含氟量为0.08~0.10%的饲料级磷酸氢钙产品。产品质量中的钙、磷、氟均达到HG2636-2000饲料级磷酸氢钙产品的质量要求。
     本论文采用磷酸浸出黄磷炉渣,经精制、洗涤、干燥、煅烧及浸出液结晶循环利用等工艺处理,同时得到市场容量极大的白炭黑和磷酸氢钙产品,论文在产品开发思路和工艺技术方面具有创新性。项目属固体废弃物资源循环再利用技术,可充分利用废弃物资源,达到可持续发展的目的,解决黄磷生产企业的废物处理问题,具有明显的社会效益和经济效益。
The yellow phosphorus slag is a solid waste of producing yellow phosphorus in electrical furnace,There are 8-10 t slag produced when 1t yellow phosphorus is produced in industry.According to the present status of producing yellow phosphorus in China,Chinese yellow phosphorus plants may discharge 6-7.5 million tons yellow phosphorus slag per year,in which there are 3-4 million tons yearly in Yunnan.At present,yellow phosphorus slag is mainly used in producing silicon-calcium fertilizer,cement,concrete,phosphorus slag brick and so on.But both the value of the product are lower and the utilizing rate of the slag are limited, the majority of them are accumulated and it cause resources waste and environment pollution.
     Yellow phosphorus slag contains a lot of CaO,SiO_2 and a few of Fe,Al,Mg and other elements,it may be applied to producing Ca and Si product.The paper studies technology of producing the high quality precipitated silica and CaHPO_4·2H_2O,in which yellow phosphorus slag is leached by phosphoric acid, calcium and the other element impurities is separated in form of Ca(H_2PO_3)_2, CaHPO_4 and impurity phosphates,then purified and calcined.The new technology of processing yellow phosphorus slag is obtained.
     The silicon and calcium exist mainly in form of CaO·SiO_2,3CaO·2SiO_2 and 2CaO·SiO_2 and so on in yellow phosphorus slag.The thermodynamics study presents that the react between these compounds and phosphoric acid can carries on spontaneously when yellow phosphorus slag is leached by phosphoric acid and form SiO_2·nH_2O,Ca(H_2PO_3)_2 and CaHPO_4 respectively,the impurity element such as Fe (exception phosphorus-iron),Al,Mg and so on in the yellow phosphorus slag react also with phosphoric acid to form their phosphate simultaneously.According to solubility of these phosphate in water and phosphoric acid solution,the solubility of Ca(H_2PO_3)_2 and CaHPO_4 and the impurity element phosphate in the lixivium may are enhanced when the excessive phosphoric acid are used in the course of leaching and maintains enough amount of phosphoric acid in the lixivium and can guaranteed them dissolving in the lixivium,so the silicon is separated in form of SiO_2·nH_2O precipitation from the lixivium.The SiO_2·nH_2O and Ca(H_2PO_3)_2·H_2O or CaHPO_4· 2H_2O can be obtained simultaneously by separation silicon and calcium in yellow phosphorus slag
     The experimental study indicated that the precipitated silica with SiO_2 95%can be obtained after yellow phosphorus slag is leached by phosphoric acid solution and the calcium is separated in form of Ca(H_2PO_3)_2 and CaHPO_4,then leached dregs are washed,dried and calcined.The optimum technical conditions of leaching yellow phosphorus slag with phosphoric acid are:phosphoric acid 80ml,natural reaction temperature,reaction time 0.5 hours,fluid solid ratio 5:1 and stirring speed 400rpm. The leaching process of yellow phosphorus slag with phosphoric acid may be described by the unreacted shrink core model with solid resultant and the invariable particle size and the apparent rate of leaching process is controlled by diffusion process in liquid film.Its diffusion coefficient in liquid film is 1.68×10~(-4)m~2/s at 303.15K
     Because C and the Fe in form of phosphorus-iron in the yellow phosphorus slag do not react with the phosphoric acid,they will remain in the leaching dregs when yellow phosphorus slag is leached by the phosphoric acid,and some of the impurity phosphate formed will also remain in the leaching dregs simultaneously,thus the leaching dregs contain many impurities.The appearance of precipitated silica sample obtained by leaching yellow phosphorus slag with the phosphoric acid is grayish white with slight red and white degree reach only 61.51%,so it must be treated further.According to the thermodynamic analysis,when the leaching dregs are purified by the nitric acid solution the impurity element C,Fe(exception FePO_4),Al,Ca,Mg and so on contained in the dregs can react with the nitric acid into the carbon dioxide and the corresponding soluble nitrate respectively and are separated from the leaching dregs.The experimental study indicats that when precipitated silica prepared from yellow phosphorus slag by the phosphoric acid leaching is purified by nitric acid solution,Fe content in the precipitated silica purified can decrease to about 0.02%,the removal rate of iron reach 99%and white degree is above 90%.The optimum purification technical conditions are:the nitric acid concentration 8%,reaction time 2.0 hours,reaction temperature 70℃,fluid solid ratio 4:1,stirring speed 300 rpm.The purification process may be described by the unreacted shrink core model with solid resultant(inert material)and the invariable particle size and the purification process rate is controlled by chemical reaction step on interface.Its apparent activation energy Ea is 30.662kJ/mol and its reaction order is 0.6746.
     After yellow phosphorus slag is leached by phosphoric acid solution and the calcium is separated in form of Ca(H_2PO_3)_2 and CaHPO_4,then leaching dregs are purified,washed,dried,the other item of the precipitated silica product obtained can all reach the quality requirement of the precipitated silica product,but its appearance is still grayish white and white degree reach only 67.83%.But the precipitated silica products reach A grade of the HG/T3061—1999 standard when the sample is calcined 0.5 hours at 700℃.The product is amorphous silicon dioxide, average grain diameter is 66~68μm,the silicon dioxide of particle size 2~200μm account for above 90%by X-ray diffraction and electron microscope analysis. The silicon dioxide content of the product is 97%,white degree 88%,specific surface area 205cm~2/g,DBP absorbability value 2.01ml/g and the content of Fe,Cu, Mn can achieve the quality requirement of the precipitated silica product.
     The lixivium obtained from leaching yellow phosphorus slag by phosphoric acid contains a lot of Ca(H_2PO_3)_2,CaHPO_4,phosphoric acid and impurity element fluorine.In order to use phosphoric acid in the lixivium effectively and obtain qualified CaHPO_4·2H_2O product,the lixivium is treated by the vacuum evaporation,the concentration crystallizing,separation,circulation use of the mother liquor by returning to leaching stage.In order to preparation CaHPO_4·2H_2O product by using the calcium element fully,the mixture of the lixivium and first wash solution is concentrated by vacuum and then crystallized and separated,the mother liquor is used in leaching the yellow phosphorus slag by returning to leaching stage.When intermixture solution is concentrated to 50%of original liquid volume and is used in leaching the yellow phosphorus slag by returning to leaching stage,amount of using the industry phosphoric acid may be decreased 37.5% compared with the direct leaching,the industry phosphoric acid used is reduced obviously.
     The feed grade-CaHPO_4·2H_2O with F 0.08~0.10%can be obtained after the mixture of the lixivium and first wash solution is concentrated by vacuum and crystallized and separated,then the mixture crystal of Ca(HPO_4)_2·H_2O and CaHPO_4·2H_2O obtained is dissolved again,neutralize.The content of Ca,P,F in the product can reach quality requirement of HG2636-2000 feed grade-calcium hydrogen pyrophosphate
     The paper researches a technology which yellow phosphorus slag is leached by phosphoric acid solution,then leaching dregs are purified,washed,dried,calcined and the mixture of the lixivium and first wash solution is used circularly and obtain precipitated silica and calcium hydrogen pyrophosphate simultaneously,so the paper has the innovation in the application of yellow phosphorus slag and the processing technology.The project is a technology which use the solid waste resources circularly,may use the waste resources fully,achieved the goal of the continuable development and solve waste treatment question of yellow phosphorus enterprise,so it will has the obvious social efficiency and the economic efficiency.
引文
[1]刘冬梅,方坤河,吴凤燕,磷渣开发利用的研究,矿业快报,2005(3):21-25;
    [2]陈善继,我国黄磷产业现状及发展方向综述,硫磷设计与粉体工程,2006(4):10-20;
    [3]江善襄,方天翰,戴元法等,磷酸、磷肥和复混肥料.北京:化学工业出版社,1999:561-612;
    [4]Q.Lin,J.X.Cao,C.B.Fu,et al.Development of Glass Ceramic by Sintering and Crystallization of Glass from Phosphorus Slag,Key Engineering Materials,2007,336/338(3):1892-1894;
    [5]C.J.Shi;A.F.Jimenez,Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements,Journal of Hazardous Materials,2006,137(3):1656-1663;
    [6]Leuven RSEW.,Willems FHG.,Cumulative metal leaching from utilisation of secondary building materials in river engineering,Water Science and Technology,2004,49(3):197-203
    [7]Y.X.Shi,I.Matsui,N.Q.Feng,Effect of compound mineral powders on workability and rheological property of HPC,Cement and Concrete Research,2002,32(1):71-78;
    [8]O.E.Lebedeva,O.I.Kotsubinskaya,A.G.Sarmurzina,et al.Preparation of porous glasses from phosphorus slag,Journal of Non-Crystalline Solids,2000,277(1,2000):10-14;
    [9]C.J.Shi,J.S.Qian,High performance cementing materials from industrial slags-a review,Resources,Conservation and Recycling,2000,29(3,2000):195-207;
    [10]N.Q.Feng,Y.X Shi.,J.T.Ding,Properties of Concrete with Ground Ultrafine Phosphorus Slag,Cement,Concrete,and Aggregates,2000,22(2):128-132;
    [11]N.V.Tolstoguzov,O.I.Nokhrina,V.F.Gumennyi,Development of a Low-waste Technology for Processing Ferromanganese concretions and Leanmanganese Ores,Steel in Translation,1995,25(7):18-21;
    [12]E.R.van der Graaf,R.J.de Meijer,An assessment of the radiological consequences of using phosphorus slag in concrete foundation poles,In:International Symposium on the Natural Radiation Environment(NRE-Ⅶ), Rhodes(GR):2002:1009-1016;
    [13]J.L.Alvarez,R.Geddes,J.E.Rice,et al.Elemental phosphorus slag exposure study in Southeastern Idaho,In:USA 5th International Conference on High Levels of Natural Radiation and RadonAreas,Munich,Germany,2000:131-138:
    [14]Y.X.Shi,M.Isamu,N.Q.Feng,EFFECT OF COMPOUND POWDERS ON RHEOLOGICAL PROPERTY OF FRESH CONCRETE,In:The 5th International Symposium on Cement and Concrete,Shanghai,China,2002(1):476-483:
    [15]Y.X.Shi,S.H.Yang,Z.N.Song,Effect of Characteristics of Fine Powers on Rheological Properties of HPC,In:Proceedings of International Conference on Engineering and TechnologicalSciences 2000 Session 5:Civil Engineering in the 21st Century,Beijing,China,2000:1044-1049:
    [16]#12
    [17]全国磷酸盐协作组,再谈黄磷炉渣制硅肥的双重效益,磷酸盐工业,2000(2):12-14;
    [18]何才富,孙锡发,刘正德等,黄磷炉渣硅钙肥对主要作物的抗病效应,四川农业科技,1996(5):29-30;
    [19]孙泽江,袁德厚,熊春蓉,黄磷炉渣中硅的有效性及其相关条件研究,西南农业大学学报,1992,14(3):198-201;
    [20]何才富,孙锡发,瞿光贵,四川省硅钙肥研究与应用,土壤农化通报,1996,11(1):16-19;
    [21]王宏伟,利用黄磷炉渣生产硅钙肥,河南化工,1992(10):21-22;
    [22]张继文,浅谈黄磷炉渣代替铁矿渣在旋窑水泥生产中的运用及经济效益,新世纪水泥导报,1999,5(1):23-24;
    [23]李东旭,毛良善,吴学权等,外加剂对高掺量磷渣水泥的强度和孔结构性能的影响,南京化工大学学报,1998(2):44-48;
    [24]毛良喜 张建雄 李东旭等 525磷渣硅酸盐水泥的研究 建筑材料学报,1998,1(2):118-122;
    [25]万永敏,张少明,无激发剂高掺量磷渣硅酸盐水泥的试验研究,水泥工程, 1994(4):30-31;
    [26]方荣立,金成昌,磷渣道路水泥的研制及其性能研究,水泥工程,1998(2):31-34;
    [27]毛良喜,王越,李东旭,少熟料磷渣水泥的研究,水泥工程,1999(3):23-26;
    [28]朱教群,梅柄初,磷渣在水泥工业中的应用,中国水泥,2002(11):21-23;
    [29]徐大友,杨光祥,利用磷渣烧三高熟料,四川水泥,2000(6):12-15;
    [30]吴定春,磷渣配料提高熟料的质量,水泥,2001(9):16;
    [31]霍冀川,卢忠远,吕淑珍,磷渣代替晶种配料煅烧水泥熟料,水泥技术,1998(1):39-40;
    [32]应小洋,吴小勇,郝学宏,磷渣混凝土的研究及应用,浙江建筑,2006,23(1):50-53;
    [33]冷发光,磷渣掺合料对水泥混凝土性能影响的试验研究,四川水力发电,2001,20(4):75-77,84;
    [34]曹建新,陈前林,林倩,磷渣在粘土烧结砖中的应用研究,新型建筑材料,2002(7):11-13;
    [35]朱萍,高掺量磷渣烧结砖及其生产方法,贵州建材,2002(4):19-23;
    [36]黄惠宁,蒋伯昌,水淬磷渣釉面砖的显微结构与特性研究,陶瓷,2000,146(4):33-36;
    [37]殷海荣,王瑞生,利用水淬磷渣研制陶瓷墙地砖,陶瓷工程,1998,32(4):21-22;
    [38]刘世荣,肖金凯,低温烧结成瓷试验中黄磷渣的热转变,矿物学报,1998,18(2):209-218;
    [39]裘慧广,沈强,王传彬等,微晶玻璃的种类、制备及其应用,中国建材科技,2005,14(1):15-19;
    [40]蒋燕麟,刘心宇,林培豪,电子元器件用微晶玻璃的研究进展,电工材料,2005(1):39-43;
    [41]P.F.James,Glass ceramics:new compositions and uses,Journal of Non-Crystalline Solids,1995,181(1-2):1-15;
    [42]I.Yao,Ferroelectric and ferromagnetic microcrystalline glass ceramics,Ferroelectrics,2001,261(1-4):3-13;
    [43]N.M.Bobkova,N.I.Zayats,T.V.Kolontaeva,et al.Porous Glass Ceramic Bioimplants,Glass and Ceramics,2000,57(11-12):412-414;
    [44]C.K.Chang,D.L.Mao,J.S.Wu,Characteristics of crystals precipitated in sintered apatite/wollastonite glass ceramics,Ceramics international,2000,26(7):779-785;
    [45]Y.Zhang,J.D.Santos,Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications,Journal of Non-Crystalline solids,2000,272(1):14-21;
    [46]刘金彩,曾利群,建筑微晶玻璃的应用与发展,山东建材,2005(1):30-32;
    [47]A.A.Ismatov,K.A.Abdullaev,Glasses and glass-ceramics on the basis of industrial wastes,Steklo i Keramika,1992(1):2-3;
    [48]刘明志,王艳芳,新型建筑微晶玻璃装饰板的生产及应用前景,国外建材科技,1998,19(2):48-51,78;
    [49]曹建新,付成兵,张煜等,利用黄磷炉渣制造微晶玻璃的实验研究,贵州工业大学学报(自然科学版),2003,32(1):33-36;
    [50]王长文,时东霞,磷渣微晶玻璃的研究,玻璃,1992(6):7-13;
    [51]姚鼎文,王长文,蒋明慧等,工业熔融炉渣直接制造矿渣微晶玻璃,CN1065646:1992
    [52]唐汉清,王风兰,张伦,利用黄磷炉渣制取白炭黑的研究,石家庄化工,1993(3):11-13;
    [53]董葆华,黄磷炉渣制取白炭黑,CN1058381:1992;
    [54]王泓,王如阳,文闻,利用磷渣制白炭黑,化工环保,2000,20(5):22-25:
    [55]王光国,杨本意,气相白炭黑及其应用简介,,有机硅氟资讯,2003(1):28-29;
    [56]T.Jesionowski,Characterization of silicas precipitated from solution of sodium metasilicate and hydrochloric acid in emulsion medium,Powder Technology,2002(127):56-65;
    [57]T.Jesionowski,A.Krysztafkiewicz,Comparison of the techniques used to modify amorphous hydrated silicas,J.Non-Cryst.Solids,2000,277(1):45-57;
    [58]A.Krysztafkiewicz,T.Jesionowski,S.Binkowski,Precipitated silicas modified with 3-aminopropyltriethoxysilane,Colloids Surf.,A 2000,173(1~3):73-84;
    [59]T.Jesionowski,Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium,Colloids Surf.,A 2001,190(1~2):153-165;
    [60]T.Jesionowski,A.Krysztafkiewicz,Influence of silane coupling agents on surface properties of precipitated silicas,Appl.Surf.Sci.,2001,172(1~2): 18-32;
    [61] S. Binkowski, T. Jesionowski, A. Krysztafkiewicz, Preparation of pigments on modified precipitated silicas, Dyes Pigm., 2000, 47(3): 247-257;
    [62] T. Jesionowski, A. Krysztafkiewicz, Preparation of the hydrophilic /hydrophobic silica particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207(1-3) : 49-58;
    [63] W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62-69;
    [64] A. van Blaaderen, A.P.M. Kentgens, Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes, J.Non-Cryst. Solids, 1992, 149 (3): 161-178;
    [65] A. Van Blaaderen, A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir, 1992,8(12): 2921-2931;
    [66] M.A. Butler, P.F. James, J.D. Jacson, An emulsion method for producing fine,low density, high surface area silica powder from alkoxides, J. Mater. Sci.,1996 31(7): 1675-1680;
    [67] B. R. Midmore, Preparation of a novel silica-stabilized oil/water emulsion Colloids Surf., A 1998, 132(2-3): 257-265;
    [68] H. Barthel, M. Heinemann, M. Stintz, et al. Particle Sizes of Fumed Silica,Chem. Eng. Technol., 1998, 21(9): 745-752;
    [69] G. Lagaly, M. Reese, S. Abend, Smectites as colloidal stabilizers of emulsions:I. Preparation and properties of emulsions with smectites and nonionic surfactants, Appl. Clay Sci., 1999, 14(1-3): 83-103;
    [70] L. M. Gan, K. Zhang, C. H. Chew, Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions, Colloids Surf., A 1996, 110(2): 199-206;
    [71] J. Esquena, R. Pons, N. Azemar, et al. Preparation of monodisperse silica particles in emulsion media, Colloids Surf., A 1997, 123-124: 575-586;
    [72] F. J. Arriagada, K. O. Asare, Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation,Colloids Surf., A 1999, 154(3): 311-326;
    
    [73]杨波,何慧,周扬波等,气相法白炭黑研究进展,无机硅化合物,2006(1) :3-9;
    [74]黄永炎,气相法白炭黑的制法、特性和硅橡胶制品中的应用,甘肃化工,1996(4):8-13;
    [75]J.H.Johnston,R.T.Harper,N.Wiseman,The Controlled Precipitation and Use of Amorphous Silica from Geothermal Fluid or Aqueous Media Having a Silicic Acid Concentration,NZ 232170/228472,1990;
    [76]R.T.Harper,J.H.Johnston,,S.G.Keyte,et al.The use of geothermal silica to improve newsprint quality at Tasman Pulp & Paper Co.Ltd.:Development of the technology to extract a silicaller from geothermal water,In:The 46th APPITA Conference,Launceton,Tasmania,Australia,1992;
    [77]R.T.Harper,J.H.Johnston,I.A.Thain,An Integrated Approach to Realise Greater Value From High Temperature Geothermal Resources,A New Zealand Example:Proceeding of World Geothermal Congress,Italy,1995,2853-2858;
    [78]J.H.Johnston,R.T.Harper,The Controlled Precipitation of Amorphous Silica from Geothermal Fluid or Other Aqueous Media Containing Silicic Acid,Amorphous Particulate Silica Products Produced Therefrom,and Uses of Such Products,NZ245,823,1996;
    [79]J.H.Johnston,R.T.Harper,N.Wiseman,Controlled Precipitation of Amorphous Silica from Geothermal Fluid or Other Aqueous Media Containing Silicic Acid,US 5,595,717,1997;
    [80]J.K.Kim,J.K.Park,H.K.Kim,Recovery of Silica and Sodium Fluoride from Hexafluorosilicic Acid and SodiumSilicate,Materials Science Forum,2007,544/545:613-616;
    [81]J.K.Kim,J.K.Park,H.K.Kim,Recovery of Silica and Sodium Fluoride from Hexafluorosilicic Acid and SodiumSilicate,Materials Science Forum,2007544/545:877-880;
    [82]吴雪文,张海波,韩团辉等,传统沉淀法制白炭黑的研究进展,无机盐工业,2006,38(4):9-10,45;
    [83]云泽拥,宁延生,朱春雨等,影响白炭黑产品稳定性控制因素分析,硅铝化合物,2005(3):12-15;
    [84]陈荣,陈奇,沉淀法白炭黑合成工艺研究,硅铝化合物,2005(3):16-18;
    [85]雷清如,游波,水玻璃制备活性白炭黑,硅铝化合物,2002(2):11-14;
    [86]许莹,沈毅,盐酸沉淀法制备纳米白炭黑,应用化工,2004,33(4):30-31;
    [87]许莹,沈毅,制备纳米白炭黑工艺参数控制,无机硅化合物,2006(1):18-20;
    [88]荣天铎,梁国法,李留虎等,以氯化铵和水玻璃生产白炭黑的研究,河南化工,2003(3):18-19;
    [89]卢芳仪,卢爱军,由硫酸铵制白炭黑的研究,化学工程师,1994(1):10-12;
    [90]王志成,平琳,张慧勤,沉淀法纳米白炭黑的研制,现代塑料加工应用,2005,17(2):44-45;
    [91]张庆军,莫文玲,王占乐,沉淀法制备纳米白炭黑的结构及性质的研究,硅酸盐通报,2005(4):118-121;
    [92]姚英,何凯,利用石灰窑气生产白炭黑,硅铝化合物,2004(4):12-15;
    [93]曾之平,陈文豪,陈云峰等,综合利用联碱厂废液副产白炭黑工艺研究,纯碱工业,2000(1):7-9;
    [94]谢永福,杜芳林,李宝杰,利用KNO_3生产中的废酸制备活性白炭黑,化学工业与工程,1996,13(2):50-53;
    [95]张兴法,用高岭土生产白炭黑的试验研究,安徽化工,1994(4):30-33;
    [96]张其春,叶巧明,高岭土煅烧制白炭黑,应用化学,1999,16(5):91-93;
    [97]刘欣梅,潘正鸿,李国等,用煤系高岭土制取白炭黑的研究,石油大学学报(自然科学版),2005,29(2):121-124;
    [98]赵增立,高峰,张济宇等,煤系高岭岩酸法制取白炭黑,煤化工,1999(1):29-33;
    [99]唐风翔,张济宇,高硅铝比高岭土制取白炭黑的工艺研究,福州大学学报(自然科学版),2001,29(2):109-111,91;
    [100]翟玉祥,用粉煤灰制取白炭黑的工艺方法,黑龙江电力技术,1995,17(3):148-151;
    [101]王平,李辽沙,粉煤灰制备白炭黑的探索性研究,中国资源综合利用,2004(7):25-27;
    [102]胡将军,陈定,碱熔法从粉煤灰中制取白炭黑的研究,适用技术市场,1995(5):14-15,24;
    [103]余海荣,由粉煤灰制取铝铁混凝剂和白炭黑,电力环境保护,1992,8(2):55-57;
    [104]冯臻,以煤矸石为原料制备铝盐和白炭黑,煤炭加工与综合利用,2005(5):32-33;
    [105]张德祥,陈秀,陈晓玲等,用淮南煤矸石制取白炭黑的初步研究,燃料流通科技,1995(4):22-25;
    [106]李多松,姚红仙,用煤矸石制取白炭黑的研究,煤炭加工与综合利用,1997(4):33-35;
    [107]孙育成,膨润土制备白炭黑,硅铝化合物,2005(4):12-13;
    [108]邬洪源,黄海涛,赵桦萍,硫酸沉淀法从膨润土中提取白炭黑的研究,高师理科学刊,1999,19(3):41-43;
    [109]张秀英,钙基膨润土制备白炭黑的研究,矿产保扣与利用,2005(6):21-24;
    [110]侯太鹏,刘英魁,用膨润土制备白炭黑试验研究,非金属矿,2000,23(1):26-28;
    [111]李珍,陈克勤,大箕铺硅灰石酸法制备白炭黑工艺研究,矿产保护与利用,1999(1):18-20;
    [112]胡志刚,代淑娟,利用硅灰石制取白炭黑试验研究,有色矿冶,2004,20(5):18-21;
    [113]徐旺生,由天然硅灰石制备白炭黑的工艺研究,湖北化工,1994(3):31-32;
    [114]刘志芳,冷光荣,吴太白等,利用硅灰石制备超细白炭黑工艺实践,中国非金属矿工业导刊,2004(6):25-26,29;
    [115]崔天顺,吴宏海,王虹,硅藻土合成白炭黑工艺研究,非金属矿,2004,27(6):34-36;
    [116]陈种菊,杨昆山,张芳,从硅藻土制取白炭黑的研究,四川化工,1997(1):8~9;
    [117]赵华文,黄志桂,酸浸硅藻土制取白炭黑的研究,化学世界,1997(7):348-351;
    [118]郇恒勤,利用蛇纹石尾矿生产硫酸镁和沉淀白炭黑的试验,江苏地质科技情报,1995(5):4-5;
    [119]吕宪俊,唐建英,利用蛇纹石制取氧化镁和白炭黑,化工矿山技术,1997,26(1):40-42;
    [120]刘晓明,薛彦辉,张桂斋,低温分解钾长石副产物制备白炭黑,硅铝化合物,2005(1):19-21;
    [121]胡艳海,路海源,马立军等,利用蛋白石制取自炭黑工艺研究,非金属矿,1999 22(2):16-17;
    [122]刘晓萍,刘晓红,氟硅酸制氟化钠和白炭黑,化学工业与工程,2005,22(2):154-156;
    [123]李远志,罗光富,杨昌英等,利用磷肥厂副产四氟化硅一步直接生产纳米二氧化硅,三峡大学学报(自然科学版),2002,24(5):474-476;
    [124]王文新,梁志宏,冰晶石生产中副产白炭黑的工艺改进,山西化工,1992 (1):16-17;
    [125]刘晓红,卢芳仪,邱祖民等,用磷肥工业副产氟硅酸制氟化钠和白炭黑,化工环保,2001,21(3):182-183;
    [126]王仲军,利用紫木节制备聚合氯化铝和白炭黑,河北理工学院学报,2001,23(1):62-64,74;
    [127]沙兆林,姚红,高炉废渣制备白炭黑工艺探究,南通工学院学报,1997,13(2):34-37,33;
    [128]陈文利,欧阳贻德,姚本林等,工业废弃物锆硅渣生产白炭黑,武汉化工学院学报,2002 24(4):25-26;
    [129]潘群雄,王建,蒋自红,锆硅渣制备白炭黑研究。非金属矿,2005,28(1):37-39;
    [130]金鹏,李正山,徐德芳,酸法锂渣制取白炭黑研究,四川环境,1995,14(4):1-6;
    [131]张琴芳,王世亨,张锦文等,从酸锂渣中制取活性白炭黑,新疆有色金属,1995(3):22-24;
    [132]黄文足,李莹,郑晓虹等,硫酸铝渣制备纳米白炭黑的研究,矿产保护与利用,2004(2):17-21;
    [133]黄仁和,何维军,利用硫酸铝废渣生产水玻璃和透明白炭黑,煤炭加工与综合利用,1996(5):35-37;
    [134]宣爱国,徐旺生,温石棉矿渣制备白炭黑和轻质碳酸镁的工艺研究,湖北化工,1997,(3):19-21;
    [135]阎永胜,李淮,李春香等,用硫铁矿焙烧废渣制铁铝净水剂和白炭黑工艺的研究,无机盐工业,1993(4):39-41;
    [136]谭欣,王福良,王荣生等,油页岩脱油残渣制备白炭黑的试验研究,矿冶,2004,13(1):59-63;
    [137]S.Huang,S.Jing,J.J.Wang,et al.Silica white obtained from rice husk in a fluidizedbed,Powder Technology,2001,117(3):232-238;
    [138]A.Chakraverty,P.Mishra,H.D.Banerjee,Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica,J.Mater.Sci.,1988,23(1):21-24;
    [139]T.H.Liou,F.W.Chang,J.J.Lo,Pyrolysis Kinetics of Acid-Leached Rice Husk,Ind.Eng.Chem.Res.,1997,36(3):568-573;
    [140]N.K.Sharma,W.S.Williams,Formation and Structure of Silicon Carbide Whiskers from Rice Hulls,J.Am.Ceram.Soc.,1984,67(11):715-720;
    [141]C.Real,M.D.Alcala,J.M.Criado,Preparation of Silica from Rice Husks,J.Am.Ceram.Soc.,1996,79(8):2012-2016;
    [142]N.Ikram,M.Akhter,X-ray diffraction analysis of silicon prepared from rice husk ash,J.Mater.Sci.,1988,23(7):2379-2381;
    [143]阮长青,马军喜,崔素萍等,稻壳沉淀法制备白炭黑工艺的研究,黑龙江八一农垦大学学报,2005,17(2):63-66;
    [144]王卫星,曾幸荣,刘安华等,由稻壳制备纳米结构SiO_2,合成材料老化与应用,2004,33(4):1-3;
    [145]李炳炎,白炭黑市场需求预测与投资建议,炭黑工业,2004(5):15-23;
    [146]A.Krysztafkiewicz,S.Binkowski,I.Wysocka,Pigments on amorphous silica carriers,Powder Technology,2003,132(2-3):190-195;
    [147]A.Krysztafkiewicz,S.Binkowski,T.Jesionowski,Adsorption of dyes on a silica surface,Applied Surface Science,2002,199(1-4):31-39;
    [148]N.KANAME(JP),M.NOBUHIRO(JP),H.TERUAKI(JP),et al.Azoic pigments having a silica core,US 4 566 908,1986;
    [149]M.NOBUHIRO(JP),M.KOUJI(JP),H.TERUAKI(JP),et al.Toner for electrophotography comprising azoic pigment having silica core,US 4 576 8881986;
    [150]W.FRANCOISE M(CA),K.BARKEV(CA),Ink jet inks containing colored silica particles,US4 877 451,1989;
    [151]F.M.Winnik,B.Keoshkerian,J.R.Fuller,et al.New water-dispersible silica-based pigments:synthesis and characterization,Dyes and Pigments,1990 14(2):101-112;
    [152]H.Giesche,E.Matijevic,Well-defined pigments:Ⅰ.Monodispersed silica-acid dyes systems,Dyes Pigm.,1991,17(4):323-340;
    [153]W.P.Hsu,R.Yu,E.Matijevic,Well-defined colloidal pigments,ⅱ:monodispersed inorganic spherical particles containing organic dyes,Dyes Pigm.,1992,19(3):179-201;
    [154]郭隽奎,沉淀法白炭黑世界市场需求将以4%的速率增长,炭黑工业,2005(4):36-37;
    [155]天津化工研究院等,无机盐工业手册(下册).北京:化学工业出版社,1981:1-6;
    [156]R.B.伯尔特,J.C.巴尔伯编,刘自强,蔡孝载,刘家和译,电炉法生产元素磷.北京:化学工业出版社,1965:8;
    [157]刘自润,综合利用磷渣的探析(连载一),四川水泥,2004(3):41-43;
    [158]倪静安,张敬乾,商少明,无机及分析化学,北京:化学工业出版社,1998:395-401
    [159]德国钢铁工程师协会编,王俭 彭育强 毛裕文译,渣图集,北京:冶金工业出版社,1989:64-87;
    [160]J.R.Van Wazer,Phosphorus and Its compounds:Volume Ⅰ Chemistry,Interscience Publisher,Inc.,1958:93-177;
    [161]吴佩芝,湿法磷酸,北京:化学工业出版社,1987:83-97;
    [162]杨显万,何蔼平,袁宝州,高温水溶液热力学计算手册,北京:冶金工业出版社,1983;
    [163]叶大伦,胡建华,实用无机物热力学数据手册(第2版),北京:冶金工业出版社,2002;
    [164]伊赫桑·巴伦,纯物质热化学数据手册(上、下卷),北京:科学出版社,2003;
    [165]A.Roine,HSC Chemistry 5.11,Outokumpu Research Oy,Pori.,Finland,2002;
    [166]张俊,磷精细化学品生产工艺,昆明:云南科技出版社,1998:123;
    [167]陈嘉甫,谭光熏,磷酸盐的生产与应用,成都:成都科技大学出版社,1989:112-148;
    [168]苏裕光,王向荣,无机化工生产相图分析(二)化学肥料,北京:化学工业出版社,1992:86-112;
    [169]刘光启,马连湘,刘杰,化学化工物性数据手册,北京:化学工业出版社,2002:370-385;
    [170]P.B.Marcel,Atlas of Electrochemical Equilibria in Aqueous Solutions,National association of corrosion engineers,Houston,Texas,USA,1974;
    [171]M.A.Blesa,P.J.Morando,A.E.Regazzoni,Chemical Dissolution of Metal Oxides.CRC Press,Inc.,1994:269-308;
    [172]P.S.Sidhu,R.J.Gilkes,R.M.Cornell,et al.Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids,Clays Clay Miner.,1981,29:269-276.
    [173]李玉凤,张锦瑞,煤矸石盐酸浸出脱铁过程的动力学研究,选煤技术,2005(5)11-14;
    [174]庞思明,陶东平,文明芬,一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学,有色金属,1999(3):49-52;
    [175]杨保俊,于少明,单承湘,蛇纹石硫酸浸出过程动力学,硅酸盐学报, 1999(1):65-69;
    [176]K.N.Han,T.Rubcumintara,M.C.Fuerstenau,Leaching behaviour of ilmenite with sulphuric acid,Metall.Trans.,1987,18B:325-330;
    [177]V.R.Ambikadevi,M.Lalithambika,Effect of organic acids on ferric iron removal from iron-stained kaolinite,Appl.Clay Sci.,2000,16(3-4):133-145;
    [178]S.Banwart,S.Davies,W.Stumm,The role of oxalate in accelerating the reductive dissolution of hematite(α-Fe2O3)by ascorbate,Colloids Surf.,1989,39(2):303-309.
    [179]S.O.Lee,W.T.Kim,J.K.Oh,et al.Iron removal of clay mineral with oxalic acid,J.Min.Metall.Inst.Jpn.,1997,113(11):847-851;
    [180]M.Taxiarchou,D.Panias,I.Douni,et al.Removal of iron from silica sand by leaching with oxalic acid,Hydrometallurgy,1997,46(1-2):215-227;
    [181]M.Taxiarchou,D.Panias,I.Douni,et al.Dissolution of hematite in acidic oxalate solutions,Hydrometallurgy,1997,44(3):287-299;
    [182]F.Vaglio,B.Passariello,M.Barbaro,et al.Drum leaching tests in the iron removal from quartz using oxalic acid and sulphuric acids,Int.J.Miner.Process,1998(3-4),54:183-200;
    [183]F.Veglio,B.Passaricllo,C.Abbruzzese,Iron removal process for high-purity silica sands production by oxalic acid leaching.Ind.Eng.Chem.Res,1999,38(11):4443-4448;
    [184]D.Panias,M.Taxiarchou,I.Paspaliaris,et al.Mechanisms of Dissolution of Iron oxides in Aqueous Oxalic Acid Solutions,Hydrometallurgy,1996,42(2):257-265;
    [185]S.O.Lee,T.Tran,Y.Y.Park,et al.Study on the kinetics of iron oxide leaching by oxalic acid,Int.J.Miner.Process,2006,80(2-4):144-152;
    [186]S.K.Mandal,P.C.Banerjee,Iron leaching from China clay with oxalic acid:effect of different physico-chemical parameters,Int.J.Miner.Process,2004,74(3-4):263-270;
    [187]李军亮,周吉奎,曹慧君等,生物浸出脱除铝土矿选矿尾矿中铁矿物的实验研究,矿业研究与丌发,2006,26(2):55-57;
    [188]张振义,马青,含铁石英砂的生物浸出,国外选矿快报,1997(3):19-22;
    [189]罗道成,刘俊峰,回收粉煤灰中未燃炭和降低碳含量的浮选研究,煤化工,2004(3):20-23;
    [190]胡忠于,陈安国,降低粉煤灰中碳含量的全浮选试验研究,湖南工程学 院学报,2004,14(2):74-77;
    [191]王进,从滑石中除去石墨杂质的试验研究,非金属矿,1989(2):28-30,41;
    [192]许珂敬,刘风春,扬新春,浮选法从海阳滑石矿中去除石墨杂质,非金属矿,1991(4):31-32;
    [193]马世昌,基础化学反应,西安:陕西科学技术出版社,2003:135;
    [194]莫鼎成,冶金动力学,长沙:中南工业大学出版社,1987:283-312;
    [195]罗康碧,罗明河,李沪萍,反应工程原理,北京:科学出版社,2005:297;
    [196]R.H.Perry,D.W.Green,Perry's Chemical Engineerings'Handbook(佩里化学工程师手册)(Seventh Edition)上册,北京:中国科学出版社,2001:2-11;
    [197]晏明朗,冯秀珍,饲料级磷酸氢钙市场预测和技术开发,磷肥与复肥,2003,18(4):34-36;
    [198]杜丽梅,曹极飞,魏忠雄,饲料级磷酸氢钙发展现状及市场前景,云南化工,2002,29(4):36-38。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700