表面活性剂对微细粒一水硬铝石与气泡相互作用的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了表面活性剂对微细粒一水硬铝石颗粒(-10μm)与气泡相互作用的影响。
     论文首先探究了一种测量气泡尺寸的方法:采用电解水法产生气泡,电解浮选装置与显微图像采集装置连接,浮选过程经高速摄影仪(high speed charge-coupled device, CCD)采集并记录后,照片经过SigmascanPro 3.5处理转化成数字信息。这些数字信息再经过数据筛选和MATLAB处理后,形成能反映气泡性能的统计性数据。
     应用上述方法,本文详细考察了表面活性剂种类和浓度对浮选气泡大小的影响,及其对气泡与一水硬铝石颗粒相互作用的影响。实验结果表明:
     分散剂六偏磷酸钠和碳酸钠的添加和浓度的改变对气泡大小没有影响。分散剂用量很低时,矿粒呈虚的网状絮团形式出现,并且与气泡粘附上升。随着分散剂浓度的增加,矿浆中的絮团逐渐减少,絮团与气泡的粘附也越来越少。分散剂浓度达到40 mg/L后,矿浆中矿粒分散均匀,此时矿粒不与气泡粘附。当分散剂浓度大于此值后,分散剂浓度的增加对矿浆分散的改变不明显。
     两种起泡剂二丙二醇甲醚(dipropylene glycol monomethyl ether, DPM)和口三丙二醇丁醚(tripropylene glycol n-butyl ethel, TPnB)的实验结果均显示:随着起泡剂浓度的增加,气泡尺寸迅速减小;当起泡剂浓度达到一定值后,气泡尺寸趋于恒定,与起泡剂浓度无关。起泡剂用量很低时,气泡基本不与矿粒粘附;随着起泡剂浓度的增加,气泡上粘附的矿量逐渐增多。当起泡剂浓度达到一定值后,气泡上粘附的矿量达到最大。
     捕收剂油酸钠和十二烷基二甲基苄基氯化铵(1227)的实验结果表明:随着捕收剂浓度的增加,气泡尺寸有所减小,但与起泡剂相比其对气泡尺寸变化的影响较小。随着捕收剂浓度的增加,气泡上粘附的矿量先增加后减小,直至气泡与矿粒完全不粘附;在捕收剂浓度达到一定值后,气泡开始产生结串现象,相应气泡串的上升速度也明显降低。
This paper investigated the interaction between unltrafine diaspore particles and bubbles in flotation process with the presence of surfactants. A self-designed electrolytic cell was chosen as the reaction environment with sodium chloride (NaCl) as the electrolyte. Constant current which was supplied by a self-designed power supplier guaranteed the total original gas volume. Even aperture of the cathode material guaranteed the original bubble size.
     Firstly, this paper successfully explored a method to measure bubble size in flotation process. Bubble generating equipment was connected with a high speed charge-coupled device (CCD), which was used to capture and record flotation process. The obtained pictures were processed by software Sigmascan Pro.3.5 to thanslate the picture information into data information, than after data cleaning, MATLAB was used to find the statistical results of bubble size distribution.
     In experiments, this paper focused on the study of effect of surfactants kinds and concentration on bubble size, and influence of surfactants to interaction between bubbles and dispore particles. Results were obtained as follows:
     The effects of dispersants sodium hexametaphosphate and sodium carbonate were measured at the same condition. It was indicated that the presence of dispersants did not have evident effect on bubble size. Investigation of interaction between bubbles and particles denoted that dispersants dispersed pulp effectively. Dispersion effect was the best when dispersant dosage was 40 mg/L, above which the increment of the dispersant concentration showed negligible effect on pulp dispersion.
     The effects of frothers dipropylene glycol monomethyl ether (DPM) and tripropylene glycol n-butyl ethel (TPnB) were measured at the same condition. It was shown that bubble size decreased with the increment of the frother concentration when which was low. When the concentration reached some inflexion, bubble size reached the lowest point, after which bubble size remained the same, regardless of the increment of the frother concentration.2×10-4 mol/L and 5×10-2 mol/L were found to be the inflexions of their change to bubble size. Experimental results of interactions between bubbles and diaspore particles revealed that the mineral quantity attached on bubbles increased with the increment of the frother concentration.
     The effects of collectors sodium oleate and dodecyl dimethyl benzyl ammonium chloride(1227) were measured at the same condition. It was noticed that the presence and concentration increment of collectors decreased bubble size, but not as obviously as frothers did. The investigation of interaction between bubbles and particles indicated that with the increment of collector concentration, the amount of the minerals attaching to bubbles firstly increased then declined after the dosage reached some point. And it also showed that when collector dosage was high, bubble agglutination increased, meanwhile the rising speed of bubbles declined.
引文
[1]冯其明,穆枭,张国范,等.铝土矿浮选泡沫消泡研究[J].中南大学学报(自然科学版),2005,(06):97-105
    [2]李太昌,潘海娥.铝土矿选矿尾矿资源化利用途径探讨[J].矿产保护与利用,2007,(01):32~39
    [3]梁倩,黄键,白鹏程.铝土矿选矿物料中常量及微量元素变化的探讨[J].轻金属,2008,(04):53~60
    [4]孙德四,钟婵鹃,肖国光.铝土矿预脱硅研究进展[J].江西科学,2008,(02):113-121
    [5]刘建远,李长根.铝土矿选矿[J]3国外金属矿选矿,2008,(02):15-20
    [6]陈湘清,陈兴华,马俊伟.低品位铝土矿选矿脱硅试验研究[J].轻金属,2006,(10):63~71
    [7]凌石生,章晓林,尚旭.铝土矿物理选矿脱硅研究概述[J].国外金属矿选矿,2006,(07):33~41
    [8]肖婉琴,程新朝,杨慧芬.铝土矿反浮选脱硅研究的进展[J].国外金属矿选矿,2005,(12):77~83
    [9]刘水红,方启学.铝土矿选矿脱硅技术研究现状述评[J].矿冶工程,2004,(04):145-153
    [10]Derjaguin B V, Dukhin S S. Theory of flotation of small and medium size particles [J]. Progess in surface science,1993, (03):241-266
    [11]Yoon R H. Proceedings XVI IMPC,1991,17
    [12]Luttrell G H. Proceedings XIV IMPC,1988,17-91
    [13]Dai Zongfu, Fornasiero D, Ralzston J. Particle-bubble collision models a review [J]. Advances in Colloid and Interface Science,2000, (05):231-256
    [14]Shahbazi B, Rezai B, Javad K S. The effect of hydrodynamic parameters on probability of bubble-particle collision and attachment[J]. Minerals Engineering, 2009,22(1):57-63
    [15]Cho Y S, Laskowski J S. Bubble coalescence and its effect on dynamic foam stability[J]. Canadian Journal of Chemical Engineering,2002,80(2):299-305
    [16]Schulze H J, Radoev B, Geidel, etal. Investigation of the collision process between particles and gas bubbles in flotation -a theoretical analysis [J]. Int.J. Mineral.Process,1989, (27):263-278
    [17]Nguyen Van A. On the sliding time in flotation [J]. Int. J.Miner.Process,1993,37 (01):21-25
    [18]Dobby G S, Finch J A. A model of particle sliding time in flotation [J]. Journal of Colloid and Inferface Science,1986,109(02):493-498
    [19]Ralston J, Formasiero D, Hayes R, etal. Bubble particle attachment and detach-ment in flotation [J]. Int. Journal of Miner Processing,1999,56(01):133-164
    [20]郭瑾珑,王毅力,李大鹏.气浮过程中的界面相互作用.环境科学学报,2003,23(02):194~200
    [21]梁迎春,邵会波,郑传明,等.电浮选方法在净化镍离子中的应用研究[J].化学通报,2005,(04):291~295
    [22]陈延禧,沈曼丽,陈燕英,等.用激光衍射法研究电解气泡的大小及分布[J].化学学报,1992,(10):50~55
    [23]何策,康宜华,李雪辉.喷射式气浮法钻井污水处理技术试验研究[J].石油技术,2001,29(3):11~17
    [24]靳明伟,丁建宁,凌智勇.超微细气泡水体修复技术[J].功能材料与器件学报,2008,14(01):19~23
    [25]石晟玮,蒋兴舟,石敏.舰船尾流气泡运动特性研究[J].武汉理工大学学报,2007,31(05):764~767
    [26]陈金銮,万晶,施汉昌.电解浮选用于活性污泥固液分离的研究[J].环境科学,2006,27(11):2333~2338
    [27]李天成,辛峰,李鑫钢,等.电导法测定气-液鼓泡床反应器内的气泡直径[J].天津大学学报,2002,35(02):231-234
    [28]张建生,吕青,孙传东,等.高速摄影技术对水中气泡运动规律的研究[J].光子学报,2000,29(10):952-955
    [29]罗德里盖斯,周延禧,王皓.气泡尺寸分布检测新方法[J].国外金属矿选矿,2004,(10):39~43
    [30]陈嘉翔.脱墨浮选槽中空气流速、空气比率和气泡大小的在线测定[J].试验研究,2007,26(01):26-28
    [31]朱友益,张强,赵耿.一种测试浮选柱中气泡尺寸及含气率的方法[J].国外金属矿选矿,1996,(11):30-35
    [32]顾少雄.测定浮选机充气性能的方法.选煤技术,1978,06:22-25
    [33]李建民,宋元军,王蕴芬.动态气泡直径的远场干涉测量方法[J].光子学报,2008,37(06):1229-1232
    [34]周云龙,李洪伟,范振儒.基于PTV法对油气水三相流流场的测定[J].化工学报,2008,59(10):2505-2510
    [35]朱龙,乐秀毓.在散气泡沫浮选中表面活性剂最大加入量的计算.工业水处理,1988,(02):87~91
    [36]Azgomi F, Gomez C O, Finch J A. Frother persistence:A measure using gas holdup[J]. Minerals Engineering,2009,22(10):874-878
    [37]El-shall H, Abdel-khalek N A, Svoronos S. Collector-frother interaction in column flotation of Florida phosphate [J]. International Journal of Mineral Processing,2000,58(1-4):187-199
    [38]Mary F,李长根,雨田.浮选起泡剂的基本性质及其对浮选的影响.国外金属矿选矿,2007,(04):177-183
    [39]王德燕,童雄,雨田.起泡剂对气泡大小的影响[J].国外金属矿选矿,2006,(03):12~16
    [40]周高云.浮选起泡剂对气泡大小和泡沫稳定性的影响[J].国外金属矿选矿,2002,07(09):44~49
    [41]李长根.浮选起泡剂的基本性质及其对浮选的影响[J].国外金属矿选矿2007,01(04):93~99
    [42]朱龙.在散气泡沫浮选中表面活性剂最大加入量的计算[J].工业水处理,1988,05(02):102~109
    [43]赵志英.起泡剂浮选作用及其机理的新进展[J].有色金属(选矿部分),1993,(04):55~61
    [44]Quinn J J, Kracht W, Gomez C O, et al. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties [J]. Minerals Engineering,2007, 20(14):1296-1302
    [45]周凌锋,张强.气泡尺寸变化对微细粒浮选效果的研究[J].有色金属(选矿部分),2005,(03):44~49
    [46]梁迎春,邵会波,郑传明.电浮选方法在净化镍离子中的应用研究[J].化学通报,2005,(04):291~295
    [47]Leon E B, Hernandez J L, Valdez L E, et al. Image processing to generate a virtual scene [C]. Veracruz, Mexico:Inst. of Elec. and Elec. Eng. Computer Society,2006.
    [48]Perez-gonzalez F, Heileman G L, Abdallah C T. Benford's law in image processing[C]. San Antonio, TX, United states:Inst. of Elec. and Elec. Eng. Computer Society,2006
    [49]Usamentiaga R, Garcia D F, Mijares A, et al. Real-time thermographic image acquisition and segmentation algorithms for continuous material[C]. USA: SPIE-Int. Soc. Opt. Eng,2004
    [50]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man and Cybernetics,1979, SMC-9(1):62-66
    [51]Rudolphy L, Grau R A, Heiskanen K. On-line sensor for measuring gas velocities in laboratory-scale flotation cells[C]. Brisbane, QLD, Australia:Australasian Institute of Mining and Metallurgy,2005:573-580
    [52]Martinez-ortiz C A, Eric R B, Lopez G C. Design of an image classification system for jaguar (Panthera onca) and puma (Puma concolor) track recognition[C]. Athens, Greece:WSEAS Press,2009,167-171
    [53]Gonzalez-hidalgo M, Torres A M, Sastre J T. Noisy image edge detection using an uninorm fuzzy morphological gradient[C]. Pisa, Italy:IEEE Computer Society, 2009,1335-1340
    [54]Antelo J, Ambrosio G, Gonzalez J, et al. Ship detection and recognition in high-resolution satellite images[C]. Piscataway, NJ, USA:IEEE,2009,514-517
    [55]Gonzalez-mora J, Guil N, Zapata E L, et al. Efficient image alignment using linear appearance models[C]. Piscataway, NJ, USA:IEEE,2009,2230-2237
    [56]Saldana-gonzalez G, Salazar-ibarguen H, Martinez B O, et al.2D image reconstruction with a FPGA-based architecture in a gamma camera application[C]. Cholula Puebla, Mexico:IEEE Computer Society,2010:102-105
    [57]Melo F, Laskowski J S. Fundamental properties of flotation frothers and their effect on flotation[C]. Elsevier Ltd,2006:766-773
    [58]张国范,冯其明,卢毅屏.六偏磷酸钠在铝土矿浮选中的作用[J].中南大学大学学报,2001,32(02):127-131
    [59]王毓华,陈兴华,胡业民.碳酸钠对细粒铝硅酸盐矿物分散行为的影响[J].中国矿业大学学报,2007,36(03):292~297
    [60]黄传兵,王毓华,兰叶.有机絮凝剂HSPA分选一水硬铝石型铝土矿的机理.中国有色金属学报,2006,16(07):1250-1256
    [61]戴敬龙,解广元,刘珊珊.浮选气泡尺寸影响因素分析.煤处理技术,2007,(05):7~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700