累积叠轧焊法制备铝基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用累积叠轧焊法制备铝基复合材料,该方法不同于粉末冶金、气相沉积、搅拌铸造和原位生成等传统制备铝基复合材料的方法,不需要考虑强化相与铝基体的润湿角、熔点差和密度差等问题。同时累积叠轧焊法还是一种大塑性变形方法,利用该种方法在制备颗粒强化铝基复合材料时,也将超细晶组织和大量位错引入到了铝基体中。制备出的铝基复合材料的强化机制不仅有第二相强化,还存在细晶强化和位错强化。
     利用累积叠轧焊法制备出了WC颗粒强化铝基复合材料,对比超细晶纯铝,该复合材料具有较高的硬度、拉伸强度和耐磨损性能。采用shear lag模型对制备出的Al/WC复合材料的屈服强度进行理论计算,发现计算结果与实验所得结果十分吻合。提出累积叠轧焊法制备的无机非金属颗粒强化铝基复合材料的强化机制有大塑性变形导致的细晶强化和位错强化;第二相颗粒引起的基体热膨胀位错强化、细晶强化、Orowan强化、二次位错强化和GNBs强化。
     采用累积叠轧焊法制备出了金属W颗粒强化铝基复合材料。电子扫描图片显示该种铝基复合材料的W颗粒均匀地分布在铝基体中;X射线衍射显示复合材料中只有Al和W两相;能谱显示Al基体与W颗粒的界面结合良好。最终制备出的Al/4.2vol%W复合材料的抗拉强度达到160MPa。Al/4.2vol%W复合材料的电阻率为2.77μ·cm,仅比退火态纯铝高出4%左右,金属强化颗粒使得该种铝基复合材料具有优异的导电性能。
     通过累积叠轧焊法和真空热处理制备出一种由金属间化合物Al3Mg2片段强化的铝基复合材料。随叠轧道次的增加,强化相Al3Mg2在Al基体中分布越来越均匀。Al/Al3Mg2复合材料的抗拉强度与拉伸塑性均随叠轧道次的增加而增加,最终材料的最大抗拉强度达到168MPa。
     通过累积叠轧焊和真空固溶处理制备出一种新型Al/Zn复合材料,该种复合材料的基体中均匀分布着Al-Zn固溶区域,且Al-Zn固溶区域与纯Al基体区域间无明显界面。显微硬度结果表明Al-Zn固溶区域为Al/Zn复合材料的强化区域。该种复合材料在拉伸的过程中,强化区域随Al基体一同发生塑性变形,传统铝基复合材料拉伸过程中存在的局部应力过大现象可以被消除,同时消除了拉伸裂纹优先成核源和优先扩展路径,进而避免了铝基复合材料的过早拉伸失效。与累积叠轧焊制备的超细晶结构纯Al相比,该种Al基复合材料在不降低塑性的前提下明显地提高了基体材料的抗拉强度。
Accumulative roll bonding (ARB) is used as a new method to fabricatealuminium-based metal matrix composites (AMMCs). The ARB method can solve theproblems such as non-uniform distribution, poor wettability of reinforcement, porosity,and poor economical efficiency in the traditional methods. ARB is one of the severeplastic deformation techniques used to fabricate ultrafine-grained materials. So, themechanical properties of AMMCs which fabricated by ARB process is influenced by thehard phase, the boundary hardening and dislocation hardening.
     Al/WC composites with high hardness, good mechanical properties, and wearresistance were produced by ARB process. The yield strength of the composites wasdetermined by tensile tests and compared with the calculated yield strength. The resultsindicated that there is a good agreement between the calculated yield strength andexperimental value. The strengthening mechanisms of those Al/WC composites areboundary hardening and dislocation hardening which introduced by severe plasticdeformation process and thermal expansion dislocation hardening, small subgrainhardening, Orowan hardening, secondary dislocation hardening, and geometricallynecessary dispersion hardening which introduced by WC phase.
     AMMCs reinforced with pure W particulates are manufactured through ARB. X-raydiffraction analysis reveals no Al-W intermetallics in the composites. The microstructureof the composites shows excellent W particle distribution in the matrixes. Tensile,hardness, and electrical conductance properties of the composites are determined. Theresults show that the introduction of4.2vol%W particles to Al matrix via ARB processleads to significantly enhanced mechanical properties and excellent electrical conductivity.
     Al/Al3Mg2composites were produced by ARB and vacuum annealing. Thereinforced phase in the composites is a type of Al-Mg intermetallic compound.Investigations regarding the hardness and tensile properties of the composites showed thatthe Vickers microhardness, tensile strength, and elongation of the Al/Al3Mg2compositesincreased with the number of ARB cycles. Compared with the annealed and ARB monolithic1060-Al, the Al/Al3Mg2composites showed excellent mechanical propertiesand low density.
     Al/Zn composites were fabricated using1060-Al plates and Zn particles by ARB andheat treatment. X-ray diffraction analysis reveals that most of the Zn phase in the finalAl/Zn composite disappeared in the Al matrix. Scanning electron microscopy andenergy-dispersive X-ray spectroscopy analyses revealed excellent solid solution regionsdistribution in the final Al/Zn composite. The final Al/Zn composite showed higherhardness values of the solid solution regions than the Al matrix. Compared with ARBedmonolithic1060-Al, the Al/Zn composites had higher strength without sacrificingductility.
引文
1.王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔摈工业大学出版,1998: pl.
    2. Liu C.Y., Wang Q., Jia Y.Z., et. Evaluation of mechanical properties of1060-Al reinforced withWC particles via warm accumulative roll bonding process[J]. Materials&Design.2013,43:367-372.
    3. Liu C.Y., Wang Q., Jia Y.Z., et. Microstructures and mechanical properties of Mg/Mg andMg/Al/Mg laminated composites prepared via warm roll bonding[J]. Materials Science&Engineering A.2012,556:1-8.
    4.黄从树,李彦锋.碳纳米管增强高聚物功能复合材料研究进展[J].材料科学与工程学报.2008,26(1):152-155.
    5. Forquin P., Arias A., Zaera R. Role of porosity in controlling the mechanical and impactbehaviours of cement-based materials[J]. International Journal of Impact Engineering.2008,35:133-146.
    6. Leijten J., Bersee H.E.N., Bergsma O.K. Experimental study of the low-velocity impact behaviourof primary sandwich structures in aircraft[J]. Composites: Part A.2009,40:164-175.
    7. Froyen L.,Verlinden B. Aluminium Matrix Composites Materials[R]. European: EuropeanAluminium Association.1994: p5.
    8. Yin Z., Tao S., Zhou X., et. Microstructure and mechanical properties of Al2O3-Al compositecoatings deposited by plasma spraying[J]. Applied Surface Science.2008,254(6):1636-1643.
    9. Yin Z., Tao S., Zhou X., et. Tribological properties of plasma sprayed Al2O3/Al compositecoatings[J]. Wear.2007,263:1430-1437.
    10. Ha C.G., Jung Y.G., Paik U. Effect of microstructure on fracture behavior of Al2O3/Al compositeby reactive metal penetration[J]. Journal of Alloys and Compounds.2000,306:292-299.
    11. Deb A.K., Chatterjee P., Gupta S.P.S. An X-ray diffraction study on dislocation microstructure ofas-prepared Al-Al2O3composites[J]. Acta Materialia.2004,52(9):2755-2764.
    12. Yin Z., Tao S., Zhou X., et. Preparation and characterization of plasma-sprayed Al/Al2O3composite coating[J]. Materials Science and Engineering: A.2008,480(1):580-584.
    13. Benko E., Morgiel J., Czeppe T. BN sintered with Al: Microstructure and hardness[J]. CeramicsInternational.1997,23(1):89-91.
    14. Xia Z.P., Li Z.Q., Lu C.J., et. Structural evolution of Al/BN mixture during mechanical alloying[J].Journal of Alloys and Compounds.2005,399:139-143.
    15. Lee B.S., Kang S. Low-temperature processing of B4C-Al composites via infiltration technique[J].Materials Chemistry and Physics.2001,67:249-255.
    16. Guo J., Amira S., Gougeon P., et. Effect of the surface preparation techniques on the EBSDanalysis of a friction stir welded AA1100-B4C metal matrix composite[J]. MaterialsCharacterization.2011,62(9):865-877.
    17.李刚,王美玲,王贯春,等. B4C/Al中子吸收板腐蚀过程中的起泡研究[J].表面技术.2012,41(4):35-38.
    18.张星星,余新泉,张友法,等.保温处理对B4C/Al复合材料组织和性能的影响[J].特种铸造及有色合金.2010,30(3):262-263.
    19.彭可武,马贺利,陈韧,等. B4C/Al复合材料的相及其显微组织的研究[J].材料热处理技术.2010,39(12):96-102.
    20. Palanikumar K., Karthikeyan R. Assessment of factors influencing surface roughness on themachining of Al/SiC particulate composites[J]. Materials&Design.2007,28(5):1584-1591.
    21. Reddy N.S.K., Sup S.K., Yang M. Experimental study of surface integrity during end milling ofAl/SiC particulate metal-matrix composites[J]. Journal of Materials Processing Technology.2008,201:574-579.
    22. Ma T., Yamaura H., Koss D.A., et. Dry sliding wear behavior of cast SiC-reinforced Al MMCs[J].Materials Science and Engineering: A.2003,360:116-125.
    23. Song M. Effects of volume fraction of SiC particles on mechanical properties of SiC/Alcomposites [J]. Transactions of Nonferrous Metals Society of China.2009,19(6):1400-1404.
    24. Vugt L., Froyen L. Gravity and temperature effects on particle distribution in Al–Si/SiCcomposites[J]. Journal of Materials Processing Technology.2000,104:133-144.
    25. Xu F.M., Zhu S.J., Zhao J., et. Fatigue crack growth in SiC particulates reinforced Al matrixgraded composite[J]. Materials Science and Engineering: A.2003,360:191-196.
    26. Li X.W., Tian J.F., Han N.L., et. Quantitative study of correlation between fracture surfaceroughness and fatigue properties of SiC/Al composites[J]. Materials Letters.1996,29:235-240.
    27. Mohan B., Rajadurai A., Satyanarayana K.G. Effect of SiC and rotation of electrode on electricdischarge machining of Al–SiC composite[J]. Journal of Materials Processing Technology.2002,124(3):297-304.
    28. Ji F., Ma M.Z., Song A.J., et. Creep behavior of in situ TiCP/2618aluminum matrix composite[J].Materials Science and Engineering:A.2009,506:58-62.
    29. Ding H., Liu X. Influence of Si on stability of TiC in Al melts[J]. Transactions of NonferrousMetals Society of China.2011,21(7):1465-1472.
    30. Hashimoto S., Yamaguchi A., Koshino M. Fabrication and characterization of TiC/Alcomposites[J]. Materials Science and Engineering: A.1999,265:71-76.
    31. Karantzalis A.E., Wyatt S., Kennedy A.R. The mechanical properties of Al-TiC metal matrixcomposites fabricated by a flux-casting technique[J]. Materials Science and Engineering: A.1997,237:200-206.
    32. Jiang W.H., Song G.H., Han X.L., et. Synthesis of TiC/Al composites in liquid aluminium[J].Materials Letters.1997,32:63-65.
    33. Zeng X.W., Zhang W.G., Wei N., et. Preparation of in situ TiCP/LY12composite and itsmicrostructure and mechanical properties[J]. Materials Science and Engineering: A.2007,443:224-228.
    34. Zhang W.G., Song A.J., Liu R.P., et. Microstructure and mechanical properties of TiCP/LD7composite prepared by SHS/HE[J]. Materials Science and Engineering: A.2008,474:225-229.
    35.嵇峰,宋爱君,张卫国,等.原位自生TiCp/LD7复合材料高温蠕变应力指数及激活能[J].特种铸造及有色合金.2008,28(4):306-308.
    36.嵇峰,宋爱君,张卫国,等.原位自生20vol.%TiCP/LD7Al基复合材料蠕变的应力指数和门槛应力[J].物理学报.2010,59(3):2114-2119.
    37.马明臻,曾松岩,张二林,等.自生TiCP/2024复合材料熔体挤压组织与力学性能[J].材料工程.1999,3:15-18.
    38.马明臻,曾松岩.反应合成TiCP/LY12复合材料的显微组织及界面结构[J].有色金属学报.2001,11:139-142.
    39.于熙泓,焦育宁,李建国,等.原位复合Al/TiC梯度复合材料理论分析与实验验证[J].材料工程.1997,3:26-29.
    40.马明臻,曾松岩,张二林,等.真空热爆加压法制备高颗粒含量TiCP/2024复合材料[J].宇航材料工艺.2000,1:59-64.
    41. Kaftelen H., ve o lu M.L., Henein H., et. ZrC particle reinforced Al–4wt.%Cu alloycomposites fabricated by mechanical alloying and vacuum hot pressing: Microstructuralevaluation and mechanical properties[J]. Materials Science and Engineering: A.2010,527:5930-5938.
    42. Mandal A., Chakraborty M., Murty B.S. Effect of TiB2particles on sliding wear behaviour ofAl–4Cu alloy[J]. Wear.2007,262:160-166.
    43. Yue N.L., Lu L., Lai M.O. Application of thermodynamic calculation in the in-situ process ofAl/TiB2[J]. Composite Structures.1999,47:691-694.
    44. Tee K.L., Lu L., Lai M.O. Synthesis of in situ Al-TiB2composites using stir cast route[J].Composite Structures.1999,47:589-593.
    45. Mandal A., Maiti R., Chakraborty M., et. Effect of TiB2particles on aging response of Al–4Cualloy[J]. Materials Science and Engineering: A.2004,386:296-300.
    46. Anandkumar R., Almeida A., Vilar R. Wear behavior of Al–12Si/TiB2coatings produced by lasercladding[J]. Surface and Coatings Technology.2011,205:3824-3832.
    47. Clyne T.W., Bader M.G., Cappleman G.R., et. The use of a δ-alumina fibre for metal-matrixcomposites[J]. Journal of Materials Science.1985,20:85-96.
    48. Friend C.M. The effect of matrix properties on reinforcement in short alumina fibre–aluminiummetal matrix composites[J]. Journal of Materials Science.1987,22:3005-3010.
    49. Friend CM. The effect of temperature on the tensile strength of short δ-alumina fibre/aluminiumalloy metal matrix composites[J]. Scripta Metallurgica.1989,23:33-37.
    50. Wu P.L., Tian Z., Wang L.D., et. Effect of changing rate of residual stress on thermal expansionbehavior of magnesium borate whisker-reinforced aluminum composite[J]. Thermochimica Acta.2007,455:7-10.
    51. Fei W.D., Li Y.B. Effect of NiO coating of whisker on tensile strength of aluminum boratewhisker-reinforced aluminum composite[J]. Materials Science and Engineering: A,2004,379:27-32.
    52. Yu Z., Zhao N., Liu, E., et. Fabrication of aluminum matrix composites with enhanced mechanicalproperties reinforced by in situ generated MgAl2O4whiskers[J]. Composites Part A.2012,43(4):631-634.
    53. McCullough C., Deve H.E., Channel T.E. Mechanical response of continuous fiber-reinforcedAl2O3Al composites produced by pressure infiltration casting[J]. Materials Science andEngineering: A.1994,189:147-154.
    54. Zok F.W. Fracture and fatigue of continuous fiber-reinforced metal matrix compositescomprehensive[J]. Composite Materials.2000,3:189-220.
    55. Prasad B.K. Investigation into sliding wear performance of zinc-based alloy reinforcedwith SiCparticles in dry and lubricated conditions[J]. Wear.2007,262:262-273.
    56. Bermudez M.D., Martinez-Nicolas G., Carrion F.J., et. Dry and lubricated wear resistance ofmechanically-alloyed aluminum-basesintered composites[J]. Wear.2001,248:178-186.
    57. Miyajima T., Iwai Y. Effects of reinforcements on sliding wear behavior of aluminummatrixcomposites[J]. Wear.20030,255:606-616.
    58. Sharma S.C. The sliding wear behavior of Al6061-garnet particulate composites[J]. Wear.2001,249:1036-1045.
    59. Clyne T.W., Withers P.J. An introduction to metal matrix composites[M]. Cambridge: UniversityPress,1993.
    60. Wu J.M., Li Z.Z. Contributions of the particulate reinforcement to dry sliding wear resistance ofrapidly solidified Al-Ti alloys[J]. Wear.2000,244:147-153.
    61. Deuis R.L., Subramaniun C., Yellup J.M. Abrasive wear of aluminium composites-a review[J].Wear.1996,201:132-144.
    62. Sawla S., Das S. Combined effect of reinforcement and heat treatment on the two body abrasivewear of al-alloy and aluminum particle composites[J]. Wear.2004,257:555-561.
    63.陈康华,谢盛辉,刘红卫,等. SiCp/Al复合材料的铝浴自蔓延反应制备及其热学性能[J].中国有色金属学报.2000,6:23-25.
    64. Klimowicz T.F., Vecchio K.S. In fundamental relationships between microstructures andmechanical Properties[R]. Warendale: The Metallurgical Society of AIME.1989,255-267.
    65. Kondo K., Kubo T., Masuyama M. Creep behavior of unidirectional composites[R].Computational Mechanics.1994,14:16-27.
    66.吴义泉,张玉峰,郭景绅.原位生长晶须增强陶瓷基复合材料研究进展[J].材料导报.2000,14(12):20-22.
    67. Liao J., Tan M.J., Sridhar I. Creep behavior of spray-deposited Al Li/SiCpcomposite[J]. MaterialsScience and Engineering: A.2010,527:4906-4913.
    68. Shin C.S., Huang J.C. Effect of temper, specimen orientation and test temperature on the tensileand fatigue properties of SiC particles reinforced PM6061Al alloy[J]. International Journal ofFatigue.2010,32(10):1573-1581.
    69. Kaptay G., Bárczy P., Szigeti F., et. Interface phenomena in processing of ceramic reinforcedamorphous metal composites[J]. Journal of Non-Crystalline Solids.1996,205-207:742-747.
    70. Rahimian M., Parvin N., Ehsani N. The effect of production parameters on microstructure andwear resistance of powder metallurgy Al-Al2O3composite[J]. Materials&Design.2011,32(2):1031-1038.
    71. Rahimian M., Parvin N., Ehsani N., et. The effect of sintering temperature and the amount ofreinforcement on the properties of Al-Al2O3composite[J]. Materials&Design.2009,30(8):3333-3337.
    72. Chianeh V.A., Hosseini H.R.M., Nofar M. Micro structural features and mechanical properties ofAl–Al3Ti composite fabricated by in-situ powder metallurgy route[J]. Journal of Alloys andCompounds.2009,473:127-132.
    73. Han K.R., Lim C.S., Hong M.J., et. Surface modification of silicon nitride powder with alumina[J].Journal of the American Ceramic Society.1996,76(2):574-577.
    74. Fuke I., Prabhu V., Baek S. Computational Model for Predicting Coating Thickness in ElectronBeam Physical Vapor Deposition[J]. Journal of Manufacturing Processes.2005,7(2):140-152.
    75. Gudmundsson J.T. The high power impulse magnetron sputtering discharge as an ionized physicalvapor deposition tool[J]. Vacuum.2010,84(12):1360-1364.
    76. Helmersson U., Lattemann M., Bohlmark J., et. Ionized physical vapor deposition (IPVD): Areview of technology and applications[J]. Thin Solid Films.2006,513:1-24.
    77. Ensinger W., Klein J., Usedom P., et. Characteristic features of an apparatus for plasmaimmersion ion implantation and physical vapour deposition[J]. Surface and Coatings Technology.1997,93:175-180.
    78. Yang Y.G., Zhou X.W., Johnson R.A., et. Monte Carlo simulation of hyperthermal physical vapordeposition[J]. Acta Materialia.2001,49(16):3321-3332.
    79. Dinaharan I., Murugan N., Parameswaran Siva. Influence of in situ formed ZrB2particles onmicrostructure and mechanical properties of AA6061metal matrix composites[J]. MaterialsScience and Engineering: A.2011,528:5733-5740.
    80. Yu P., Qian M. Metal injection moulding of in-situ formed AlN hollow sphere reinforced Almatrix syntactic foam parts[J]. Materials Chemistry and Physics.2012,137(2):435-438.
    81. Dadbakhsh S., Hao L. Effect of Al alloys on selective laser melting behaviour and microstructureof in situ formed particle reinforced composites[J]. Journal of Alloys and Compounds.2012,541:328-334.
    82. Dirras G., Gubicza J., Tingaud D., et. Microstructure of Al–Al2O3nanocomposite formed by insitu phase transformation during Al nanopowder consolidation[J]. Materials Chemistry andPhysics.2011,129(3):846-852.
    83. Kumar S., Sarma V. S., Murty B.S. Influence of in situ formed TiB2particles on the abrasive wearbehaviour of Al-4Cu alloy[J]. Materials Science and Engineering: A.2007,465:160-164.
    84. Roy D., Singh S.S., Basu B., et. Studies on wear behavior of nano-intermetallic reinforced Al-baseamorphous/nanocrystalline matrix in situ composite[J]. Wear.2009,266:1113-1118.
    85. Konopka K., Szafran M. Fabrication of Al2O3-Al composites by infiltration method and theircharacteristic[J]. Journal of Materials Processing Technology.2006,175:266-270.
    86. Montoya-Dávila M., Pech-Canul M.I., Pech-Canul M.A. Effect of SiCp multimodal distributionon pitting behavior of Al/SiCp composites prepared by reactive infiltration[J]. Powder Technology.2009,195(3):196-202.
    87. Parras-Medécigo E, Pech-Canul M.I, Rodr guez-Reyes M., et. Effect of processing parameters onthe production of bilayer-graded Al/SiCp composites by pressureless infiltration[J]. MaterialsLetters.2002,56(4):460-464.
    88. Tian J., Pi ero E., Narciso J., et. Effects of temperature on pressure infiltration of liquid Al andAl–12wt.%Si alloy into packed SiC particles[J]. Scripta Materialia.2005,53(12):1483-1488.
    89. Akhtar F., Guo S. Development of Si3N4/Al composite by pressureless melt infiltration[J].Transactions of Nonferrous Metals Society of China.2006,16(3):629-632.
    90. Wu C.M.L., Han G.W. Synthesis of an Al2O3/Al co-continuous composite by reactive meltinfiltration[J]. Materials Characterization.2007,58(5):416-422.
    91. Rao B. S., Jayaram V. Pressureless infiltration of Al–Mg based alloys into Al2O3preforms:mechanisms and phenomenology[J]. Acta Materialia.2001,49(13):2373-2385.
    92. Tao X.F., Zhao Y.Y. Compressive failure of Al alloy matrix syntactic foams manufactured bymelt infiltration[J]. Materials Science and Engineering: A.2012,549:228-232.
    93. Liu J., Binner J., Higginson R. Dry sliding wear behaviour of co-continuous ceramicfoam/aluminium alloy interpenetrating composites produced by pressureless infiltration[J]. Wear.2012,276:94-104.
    94. Lee B.S., Kang S. Low-temperature processing of B4C-Al composites via infiltration technique[J].Materials Chemistry and Physics.2001,67:249-255.
    95. Lee K.B., Sim H.S., Cho S.Y., et. Reaction products of Al-Mg/B4C composite fabricated bypressureless infiltration technique[J]. Materials Science and Engineering: A.2001,302(2):227-234.
    96. Rodríguez-Reyes M., Pech-Canul M.I., Rendón-Angeles J.C., et. Limiting the development ofAl4C3to prevent degradation of Al/SiCp composites processed by pressureless infiltration[J].Composites Science and Technology.2006,66:1056-1062.
    97. Su B., Yan H.G., Chen G., et. Study on the preparation of the SiCp/Al-20Si-3Cu functionallygraded material using spray deposition[J]. Materials Science and Engineering: A.2010,527:6660-6665.
    98. Yang B., Wang F., Zhang J.S. Microstructural characterization of in situ TiC/Al andTiC/Al–20Si–5Fe–3Cu–1Mg composites prepared by spray deposition[J]. Acta Materialia.2003,51(17):4977-4989.
    99. Li W., Chen Z.H., Chen D., et. Low-cycle fatigue behavior of SiCp/Al–Si composites produced byspray deposition[J]. Materials Science and Engineering: A.2010,527:7631-7637.
    100. Zhang S., Chen Y., Li Q. Research on microstructure and properties of aluminum-matrixcomposite fabricated by spray deposition[J]. Journal of Materials Processing Technology.2003,137:168-172.
    101. Chen Z., Teng J., Chen G., et. Effect of the silicon content and thermomechanical treatment on thedry sliding wear behavior of spray-deposited Al–Si/SiCp composites[J]. Wear.2007,262:362-368.
    102. Wang F., Liu H., Ma Y., et. Effect of Si content on the dry sliding wear properties ofspray-deposited Al–Si alloy[J]. Materials&Design.2004,25(2):163-166.
    103. Dadbakhsh S., Hao L., Jerrard P.G.E., et. Experimental investigation on selective laser meltingbehaviour and processing windows of in situ reacted Al/Fe2O3powder mixture[J]. PowderTechnology.2012,231:112-121.
    104. Ramesh C.S., Ahamed A. Friction and wear behaviour of cast Al6063based in situ metal matrixcomposites[J]. Wear.2011,271:1928-1939.
    105. Zhao D.G., Liu X.F., Pan Y.C., et. Microstructure and mechanical properties of in situ synthesized(TiB2+Al2O3)/Al-Cu composites[J]. Journal of Materials Processing Technology.2007,237-241.
    106.崔海超,芦凤桂,唐新华,等.原位生成铝基复合材料的激光焊接[J].焊接学报.2010,31(8):68-72.
    107.阴瑜娟,赵玉厚,夏永喜.原位生成铝基复合材料增强相的研究现状[J].热加工工艺.2006,35(17):70-73.
    108.李光强,张林楠,彭其春,等.原位还原法制备Al/Al2O3复合材料的力学性质及反应动力学[J].2003,2(3):193-199.
    109.马明臻,曾松岩,周彼德,等.铝含量对自生TiCp/2024复合材料的影响[J].1999,8:12-14.
    110.马明臻,姬舒平,韦天华,等.自生TiCp/LD7复合材料的阻尼性能[J].云南大学学报(自然科学版).2002,24(1):274-276.
    111. Saito Y., Tsuji N., Utsunomiya H., et. Ultra-fine grained bulk aluminum produced byaccumulative roll-bonding (ARB) process[J]. Scripta Materals.1998,39:1221-1227.
    112. Liu J., Li M., Sheu S., et. Macro-and micro-surface engineering to improve hot roll bonding ofaluminum plate and sheet[J]. Materials Science and Engineering A.2008,479:45-57.
    113. Eizadjou M., Manesh H.D., Janghorban K. Mechanism of warm and cold roll bonding ofaluminum alloy strips[J]. Materals and Design.2009,30:4156-4161.
    114. Jamaati R., Toroghinejad M.R. The role of surface preparation parameters on cold roll bonding ofaluminum strips[J]. Journal of Materals Engineering Performs.2011,20:191-197.
    115. Kim S.H., Kim H.W., Euh K., et. Effect of wire brushing on warm roll bonding of6XXX/5XXX/6XXX aluminum alloy clad sheets[J]. Materals and Design.2012,35:290-295.
    116. Yan H.Z. Key factors for warm rolled bond of611l-aluminium strip[J]. Transactions ofNonferrous Metals Society of China.2006,16:84-90.
    117. Huang X., Hansen N., Tsuji N. Hardening by annealing and softening by deformation innanostructured metals[J]. Science.2006,312:249-251.
    118. Huang X., Tsuji N., Hansen N. Microstructural evolution during accumulative roll-bonding ofcommercial purity aluminum[J]. Materials Science and Engineering A.2003,340:265-271.
    119. Chekhonin P., Beausir B., Scharnweber J. Confined recrystallization of high-purity aluminiumduring accumulative roll bonding of aluminium laminates[J]. Acta Materialia.2012,60(11):4661-4671.
    120. Pirgazi H., Akbarzadeh A., Petrov R., et. Microstructure evolution and mechanical properties ofAA1100aluminum sheet processed by accumulative roll bonding[J]. Materials Science andEngineering A.2008,497:132-138.
    121. Kwan C., Wang Z., Kang S.B. Mechanical behavior and microstructural evolution upon annealingof the accumulative roll-bonding (ARB) processed Al alloy1100[J]. Materials Science andEngineering A.2008,480:148-159.
    122. Eizadjou M., Manesh H.D., Janghorban K. Microstructure and mechanical properties of ultra-finegrains (UFGs) aluminum strips produced by ARB process[J]. Journal of Alloys and Compounds.2009,474:406-415.
    123. N. Tsuji, T. Toyoda, Y. Minamino., et. Microstructural change of ultrafine-grained aluminumduring highspeed plastic deformation[J]. Materials Science and Engineering A.2003,350:108-116.
    124. Pirgazi H., Akbarzadeh A., Petrov R., et. Texture evolution of AA3003aluminum alloy sheetproduced by accumulative roll bonding[J]. Materials Science and Engineering A.2008,492:110-117.
    125. Xing Z.P., Kang S.B., Kim H.W. Structure and properties of AA3003alloy produced byaccumulative roll bonding process[J]. Journal of Materials Science.2002,37:717-722.
    126. Xing Z.P., Kang S.B., Kim H.W. Structure stability of AA3003alloy with ultra-fine grain size [J].Journal of Materials Science.2004,39:1259-1265.
    127. Song H.R., Kim Y.S., Nam W.J. Mechanical Properties of Ultrafine Grained5052Al AlloyProduced by Accumulative Roll-Bonding and Cryogenic Rolling[J]. Metals andMaterialsInternational,2006,12(1):7-12.
    128. S. Roy, Satyaveer S.D., Suwas S., et. Microstructure and texture evolution during accumulativeroll bonding of aluminium alloy AA5086[J]. Materials Science and Engineering A.2011,528:8469-8478.
    129. Sheikh H., Paimozd E. Effect of hot accumulative roll bonding process on the mechanicalproperties of AA5083[J]. Open Journal of Metal.2011,1:12-15.
    130. Kim W.J., Wang J.Y., Choi S.O., et. Synthesis of ultra high strength Al–Mg–Si alloy sheets bydifferential speed rolling[J]. Materials Science and Engineering A.2009,520:23-28.
    131. Park K.T., Kwon H.J., Kim W.J., et. Microstructural characteristics and thermal stability ofultrafine grained6061Al alloy fabricated by accumulative roll bonding process[J]. MaterialsScience and Engineering A.2001,316:145-152.
    132. Lee S.H., Saito Y., Sakai T., et. Microstructures and mechanical properties of6061aluminumalloy processed by accumulative roll-bonding[J]. Materials Science and Engineering A.2002,325:228-235.
    133. Rezaei M.R., Toroghinejad M.R., Ashrafizadeh F. Effects of ARB and ageing processes onmechanical properties and microstructure of6061aluminum alloy[J]. Journal of MaterialsProcessing Technology.2011,211(6):1184-1190.
    134. Monazzah A. H., Bagheri R., Reihani S.M.S. Investigating the effect of rolling strain on fracturebehavior of roll bonded Al6061laminates under quasi-static and dynamic loading[J]. MaterialsScience and Engineering A.2012,558:82-89.
    135. Hidalgo P., Cepeda-Jiménez C.M., Ruano O.A., et. Influence of the Processing Temperature onthe Microstructure, Texture, and Hardness of the7075Aluminum Alloy Fabricated byAccumulative Roll Bonding[J]. Metallurgical and Materials Transactions A.2010,41:758-767.
    136. Hidalgo-Manrique P., Cepeda-Jiménez C.M., Ruano O.A., et. Effect of warm accumulative rollbonding on the evolution of microstructure, texture and creep properties in the7075aluminiumalloy[J]. Materials Science and Engineering A.2012,556:287-294.
    137. Karlík M., Homola P., Slámová M. Accumulative roll-bonding: first experience with a twin-rollcast AA8006alloy[J]. Journal of Alloys and Compounds.2004,378:322-325.
    138. Kim H.W., Kang S.B., Tsuji N., et. Deformation Textures of AA8011aluminum alloy sheetsseverely deformed by accumulative roll bonding[J]. Metallurgical and Materials Transactions A.2005,36:3151-3163.
    139. Jamaati R., Amirkhanlou S., Toroghinejad M.R., et. Significant improvement of semi-solidmicrostructure and mechanical properties of A356alloy by ARB process[J]. Materials Science andEngineering A.2011,528:2495-2501.
    140. Tsuji N., Ito Y., Saito Y., et. Strength and ductility of ultrafine grained aluminum and ironproduced by ARB and annealing[J]. Scripta Materialia.2002,47:893-899.
    141. Krallics G., Lenard J.G. An examination of the accumulative roll-bonding process[J]. Journal ofMaterials Processing Technology.2004,152:154-161.
    142. Riastuti R., Bastian MR., Priadi, D. Grain Refinement Through Warm Rolling of Wedge-shapedLow Carbon Steel[J]. Advanced Materials Research.2012,383:5869-5873.
    143. Kolahi A., Akbarzadeh A., Barnett M.R. Electron back scattered diffraction (EBSD)characterization of warm rolled and accumulative roll bonding (ARB) processed ferrite[J]. Journalof Materials Processing Technology.2009,209:1436-1444.
    144. Chang H., Zheng M.Y., Wu K., et. Microstructure and mechanical properties of the accumulativeroll bonded (ARBed) pure magnesium sheet[J]. Materials Science and Engineering A.2010,527:7176-7183.
    145. Zhan M., Zhang W., Zhang D. Production of Mg-Al-Zn magnesium alloy sheets withultrafine-grain microstructure by accumulative roll-bonding[J]. Transaction of Nonferrous MetalsSociety of China.2011,21:991-997.
    146. Roostaei A.A., Zarei-Hanzaki A., Parsa H.R., et. An investigation into the mechanical behaviorand microstructural evolution of the accumulative roll bonded AZ31Mg alloy upon annealing[J].Materials&Design.2011,32(5):2963-2968.
    147. Zhan M., Li Y., Chen W. Improving mechanical properties of Mg-Al-Zn alloy sheets throughaccumulative roll-bonding[J]. Transaction of Nonferrous Metals Society of China.2008,18:309-314.
    148. Wang Q. F., Xiao X. P., Hu J., et. An ultrafine-grained AZ31magnesium alloy sheet withenhanced superplasticity prepared by accumulative roll bonding[J]. Proceedings of Sino-SwedishStructural Materials Symposium.2007, pp:167-172.
    149. Zhan M.Y., Li Y.Y., Chen W.P., et. Microstructure and mechanical properties of Mg–Al–Zn alloysheets severely deformed by accumulative roll-bonding[J]. Journal of Materials Science.2007,42:9256-9261.
    150. Roostaei A.A., Zarei-Hanzaki A., Parsa M.H., et. An analysis to plastic deformation behavior ofAZ31alloys during accumulative roll bonding process[J]. Journal of Materials Science.2010,45:4494-4500.
    151. Valle J.A.d., Pérez-Prado M.T., Ruano O.A. Accumulative roll bonding of a Mg-based AZ61alloy[J]. Materials Science and Engineering A.2005,410:353-357.
    152. Pérez-Prado M.T., Valle J.A.d., Ruano O.A. Grain refinement of Mg-Al-Zn alloys viaaccumulative roll bonding[J]. Scripta Materialia.2004,51:1093-1094.
    153. Li X., Al-Samman T., Gottstein G. Microstructure development and texture evolution of ME20sheets processed by accumulative roll bonding[J]. Materials Letters.2011,65(12):1907-1910.
    154. Terada D., Inoue S., Tsuji N. Microstructure and mechanical properties of commercial puritytitanium severely deformed by ARB process[J]. Journal of Materials Science.2007,42:1673-1681.
    155. Milner J.L., Abu-Farha F., Bunget C., et. Grain Refinement and Mechanical Properties of CP-TiProcessed by Warm Accumulative Roll Bonding[J]. Materials Science and Engineering A.2013,561:109-117.
    156. Kent D., Wang G., Yu Z., et. Strength enhancement of a biomedical titanium alloy through amodified accumulative roll bonding technique[J]. Journal of the Mechanical Behavior ofBiomedical Materials.2011,4:405-416.
    157. Lim C.Y., Han S.Z., Lee S.H. Formation of Nano-Sized Grains in Cu and Cu-Fe-P Alloys byAccumulative Roll Bonding Process[J]. Metals and Materials International.nternational.2006,12(3):225-230.
    158. Kwan C.C.F., Wang Z. Cyclic deformation behavior of ultra-fine grained copper processed byaccumulative roll-bonding[J]. Procedia Engineering.2009,2:101-110.
    159. Kunimine T., Fujii T., Onaka S., et. Effects of Si addition on mechanical properties of copperseverely deformed by accumulative roll-bonding[J]. Journal of Materials Science.2011,46:4290-4295.
    160. Lee S.H., Yoon D.J., Utsunomiya H. Microstructural Evolution during AccumulativeRoll-Bonding Process of a High Performance Copper Alloy[J]. Advanced Materials Research.2012,378:597-600.
    161. Jiang L., Ruano O.A., Kassner M.E., et. The Fabrication of Bulk Ultrafine-Grained Zirconium byAccumulative Roll Bonding[J]. Current Refractory Metals Research.2007, pp:42-45.
    162. Marathe G., Hebert R.J. Hardness measurements of accumulative roll-bonded Mo foils[J]. Journalof Materials Science.2010,45:4770-4777.
    163. Miyajima Y., Mitsuhara M., Hata S., et. Quantification of internal dislocation density usingscanning transmission electron microscopy in ultrafine grained pure aluminium fabricated bysevere plastic deformation[J]. Materials Science and Engineering A.2010,528:776-779.
    164. Talachi A.K., Eizadjou M., Manesh H.D., et. Wear characteristics of severely deformed aluminumsheets by accumulative roll bonding (ARB) process[J]. Materials Characterization.2011,62:12-21.
    165. Movchan BA, Lemkey FD. Mechanical properties of fine-crystalline two-phase materials[J].Materials Science and Engineering A.1997,224:136-45.
    166. Haus l T., H ppel H.W., G ken M. Tailoring materials properties of UFG aluminium alloys byaccumulative roll bonded sandwich-like sheets[J]. Journal of Materials Science.2010,45:4733-4738.
    167. Su L., Lu C., Tieu A.K. et. Ultrafine grained AA1050/AA6061composite produced byaccumulative roll bonding[J]. Materials Science and Engineering A.2013,559:345-351.
    168. Chen M.C., Hsieh C.C., Wu W. Microstructural Characterization of Al/Mg Alloy InterdiffusionMechanism during Accumulative Roll Bonding[J]. Metals and Materials International2007,13(3):201-205.
    169. Chang H., Zheng M.Y., Xu C.,et. Microstructure and mechanical properties of the Mg/Almultilayer fabricated by accumulative roll bonding (ARB) at ambient temperature[J]. MaterialsScience and Engineering A.2013,543:249-256.
    170. Wu K., Chang H., Maawad E., et. Microstructure and mechanical properties of the Mg/Allaminated composite fabricated by accumulative roll bonding (ARB)[J]. Materials Science andEngineering A.2010,527:3073-3078.
    171. Liu H.S., Zhang B., Zhang G.P. Microstructures and Mechanical Properties of Al/Mg AlloyMultilayered Composites Produced by Accumulative Roll Bonding[J]. Journal of MaterialsScience and Technology.2011,27(1):15-21.
    172. Chang H., Zheng M.Y., Gan W.M. et. Texture evolution of the Mg/Al laminated compositefabricated by the accumulative roll bonding[J]. Scripta Materials.2009,61:717-720.
    173. Chen M.C., Hsieh H.C., Wu W. The evolution of microstructures and mechanical propertiesduring accumulative roll bonding of Al/Mg composite[J]. Journal of Alloys and Compounds.2006,416:169-172.
    174. Mozaffari A., Hosseini M., Manesh H. D. Al/Ni metal intermetallic composite produced byaccumulative roll bonding and reaction annealing[J]. Journal of Alloys and Compounds.2011,509:9938-9945.
    175. Mozaffari A., Manesh H. D., Janghorban K. Evaluation of mechanical properties and structure ofmultilayered Al/Ni composites produced by accumulative roll bonding (ARB) process[J]. Journalof Alloys and Compounds.2010,489:103-109.
    176. Min G., Lee J.M., Kang S.B., et. Evolution of microstructure for multilayered Al/Ni compositesby accumulative roll bonding process[J]. Materials Letters2006,60:3255-3259.
    177. Buchner M., Buchner B., Buchmayr B., et. Investigation of different parameters on roll bondingquality of aluminium and steel sheets[J]. International Journal of Materials Form.2008,1:1279-1282.
    178. Luo J.G., Acoff V.L. Processing gamma-based TiAl sheet materials by cyclic cold roll bondingand annealing of elemental titanium and aluminum foils[J]. Materials Science and Engineering A.2006,433:334-342.
    179. Zhang R., Acoff V.L. Processing sheet materials by accumulative roll bonding and reactionannealing from Ti/Al/Nb elemental foils[J]. Materials Science and Engineering A.2007,463:67-73.
    180. Yang D., Hodgson P., Wen C. The kinetics of two-stage formation of TiAl3in multilayered Ti/Alfoils prepared by accumulative roll bonding[J]. Intermetallics.2009,17:727-732.
    181. Chaudhari G.P., Acoff V.L. Titanium aluminide sheets made using roll bonding and reactionannealing[J]. Intermetallics.2010,18:472-478.
    182. Yang D., Cizek P., Hodgson P.,et. Ultrafine equiaxed-grain Ti/Al composite produced byaccumulative roll bonding[J]. Scripta Materialia.2010,62:321-324.
    183. Dehsorkhi R.N., Qods F., Tajally M. Application of continual annealing and roll bonding (CAR)process for manufacturing Al-Zn multilayered composites[J]. Materials Science and Engineering:A.2012,549:206-212.
    184. Dehsorkhi R.N., Qods F., Tajally M. Investigation on microstructure and mechanical properties ofAl-Zn composite during accumulative roll bonding (ARB) process[J]. Materials Science andEngineering: A.2011,530:63-72.
    185. Eizadjou M., Talachi A.K., Manesh H.D., et. Investigation of structure and mechanical propertiesof multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process[J].Composites Science and Technology.2008,68:2003-2009.
    186. Tayyebi M., Eghbali B. Study on the microstructure and mechanical properties of multilayerCu/Ni composite processed by accumulative roll bonding[J]. Materials Science and Engineering:A.2013,559:759-764.
    187. Carpenter J.S., Vogel S.C., LeDonne J.E., et. Bulk texture evolution of Cu–Nb nanolamellarcomposites during accumulative roll bonding[J]. Acta Materialia.2012,60:1576-1586.
    188. Sun Y.F., Tsuji N., Fujii H., et. Cu/Zr nanoscaled multi-stacks fabricated by accumulative rollbonding[J]. Journal of Alloys and Compounds.2010,504:443-447.
    189. Ali Shabani, Mohammad Reza Toroghinejad, Ali ShafyeiFabrication of Al/Ni/Cu composite byaccumulative roll bonding and electroplating processes and investigation of its microstructure andmechanical properties[J]. Materials Science and Engineering: A.2012,558:386-393.
    190. Kitazono K., Sato E., Kuribayashi K. Novel manufacturing process of closed-cell aluminum foamby accumulative roll-bonding[J]. Scripta Materials.2004,50:495-498.
    191. Kitazono K., Kikuchi Y., Sato E., et. Anisotropic compressive behavior of Al–Mg alloy foamsmanufactured through accumulative roll-bonding process[J]. Materials Letters.2007,61:1771-1774.
    192. Lu C., Tieu K., Wexler D. Significant enhancement of bond strength in the accumulative rollbonding process using nano-sized SiO2particles[J]. Journal of Materials Processing Technology.2009,209:4830-4834.
    193. Rezayat M., Akbarzadeh A., Owhadi A. Production of high strength Al–Al2O3composite byaccumulative roll bonding[J]. Composites Part A.2012,43(1):261-267.
    194. Jamaati R., Toroghinejad M.R. Manufacturing of high-strength aluminum/alumina composite byaccumulative roll bonding[J]. Materials Science and Engineering: A.2010,527:4146-4151.
    195. Jamaati R., Toroghinejad M.R. High-strength and highly-uniform composite produced byanodizing and accumulative roll bonding processes[J]. Materials and Design.2010,31:4816-4822.
    196. Alizadeh M., Paydar M.H., Jazi F.S. Structural evaluation and mechanical properties ofnanostructured Al/B4C composite fabricated by ARB process[J]. Composites Part B.2013,44(1):339-343.
    197. Alizadeh M., Paydar M.H. High-strength nanostructured Al/B4C composite processed bycross-roll accumulative roll bonding[J]. Materials Science and Engineering: A.2012,538:14-19.
    198. Alizadeh M. Comparison of nanostructured Al/B4C composite produced by ARB and Al/B4Ccomposite produced by RRB process[J]. Materials Science and Engineering: A.2010,528:578-582.
    199. Alizadeh M. Processing of Al/B4C composites by cross-roll accumulative roll bonding[J].Materials Letters.2010,64:2641-2643.
    200. Yazdani A., Salahinejad E. Evolution of reinforcement distribution in Al–B4C composites duringaccumulative roll bonding[J]. Materials and Design.2011,32:3137-3142.
    201. Yazdani A., Salahinejad E., Moradgholi J. A new consideration on reinforcement distribution inthe different planes of nanostructured metal matrix composite sheets prepared by accumulativeroll bonding (ARB)[J]. Journal of Alloys and Compounds.2011,509(39):9562-9564.
    202. Alizadeh M. Strengthening mechanisms in particulate Al/B4C composites produced by repeatedroll bonding process[J]. Journal of Alloys and Compounds.2011,509:2243-2247.
    203. Darmiani E., Danaee I., Golozar M.A., et. Corrosion investigation of Al-SiC nano-compositefabricated by accumulative roll bonding (ARB) process[J]. Journal of Alloys and Compounds.2013,552:31-39.
    204. Alizadeh M., Paydar M.H., Terada D., et. Effect of SiC particles on the microstructure evolutionand mechanical properties of aluminum during ARB process[J]. Materials Science andEngineering: A.2012,540:13-23.
    205. Alizadeh M., Paydar M.H. Fabrication of Al/SiCPcomposite strips by repeated roll-bonding (RRB)process[J]. Journal of Alloys and Compounds.2009,477:811-816.
    206. Alizadeh M., Paydar M.H. Fabrication of nanostructure Al/SiCPcomposite by accumulativeroll-bonding (ARB) process[J]. Journal of Alloys and Compounds.2010,492:231-235.
    207. Schmidt C.W., Knieke C., Maier V., et. Accelerated grain refinement during accumulative rollbonding by nanoparticle reinforcement[J]. Scripta Materialia.2011,64:245-248.
    208. Wu Y.Y., Liu X.F., Ma G.L., et. High energy milling method to prepare Al/WC compositecoatings in Al–Si alloys[J]. Journal of Alloys and Compounds.2010,497:139-141.
    209. Konca E., Cheng Y.T., Weiner A.M., et. Effect of test atmosphere on the tribological behaviour ofthe non-hydrogenated diamond-like carbon coatings against319aluminum alloy and tungstencarbide[J]. Surface Coating Technology.2005,200:1783-1791.
    210. Mindivan H. Wear behavior of plasma and HVOF sprayed WC-12Co+6%ETFE coatings onAA2024-T6aluminum alloy[J]. Surface Coating Technology.2010,204:1870-1874.
    211. Staia M.H., Cruz M., Dahotre N.B. Wear resistance of a laser alloyed A-356aluminum/WCcomposite[J]. Wear.2001,251:1459-1468.
    212. Jendrzejewski R., Acker K.V., Vanhoyweghen D., et. Metal matrix composite production bymeans of laser dispersing of SiC and WC powder in Al alloy[J]. Apply Surface Science.2009,255:5584-5587.
    213. Chong P.H., Man H.C., Yue T.M. Microstructure and wear properties of laser surface-claddedMo–WC MMC on AA6061aluminum alloy[J]. Surface Coating Technology.2001,145:51-59.
    214. Zhu Y.T., Liao X.Z., Nanostructured metals retaining ductility[J]. Nature Materials.2004,3:351-352.
    215. Cox H.L., The elasticity and strength of paper and other fibrous materials[J]. British Journal ofApplied Physics.1952,3:72-79.
    216. Nardone V.C., Prewo K.M., On the strength of discontinuous silicon carbide reinforced aluminumcomposites[J]. Scripta Metallurgica.1986,20:43-48.
    217. Ge D., Gu M.Mechanical properties of hybrid reinforced aluminum based composites[J].Materials Letters.2001,49:334-339.
    218. Arsenault R.J., Shi N., Dislocation generation due to differences between the coefficients ofthermal expansion[J]. Materials Science and Engineering.1986,81:175-187.
    219. Miller W.S., Humphreys F.J., Strengthening mechanisms in particulate metal matrix composites[J].Scripta Metallurgica Materialia.1991,25:33-38.
    220. Liu H.S., Zhang B., Zhang G.P. Microstructures and Mechanical Properties of Al/Mg AlloyMultilayered Composites Produced by Accumulative Roll Bonding[J]. Journal of MaterialsScience and Technology.2011,27:15-21.
    221. Bae J.H., Rao A.K.P., Kim K.H., et. Cladding of Mg alloy with Al by twin-roll casting[J]. ScriptaMaterialia2011,64:836-839.
    222. Straumal B., Valiev R., Kogtenkova O., et. Thermal evolution and grain boundary phasetransformations in severely deformed nanograined Al-Zn alloys[J]. Acta Materialia.2008,56:6123-6131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700