定常流场下非牛顿流体在波壁管内的减阻特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,非牛顿流体的相关研究已经取得了非常重要的进展,尤其在生物领域研究更为深入。添加了聚合物和表面活性剂的非牛顿流体在水处理、石油开采以及生物化工等方面有着极为广泛的应用。国内外很多学者对二维、三维流路中的非牛顿流体进行研究,但对易于产生流动分离、强化热质传递的正弦波壁管的研究还未见报道,本文主要研究了定常流场下非牛顿流体在波壁管内的流动特性,重点研究了它的减阻特性,关注了非牛顿流体与牛顿流体的转捩点的变化,并辅以适当的数值模拟和可视化结果予以说明,具体内容如下:
     第一章回顾了国内外的研究进展,总结了二维和三维流路内的非牛顿流体特性。现有研究结果表明,二维流路的研究比较早,也相对成熟,实验结果与数值结果比较吻合,三维圆管的研究早在50年代就被Toms发现:加入聚合物、添加剂能有效地降低流体的流动阻力,提高了管道间的传热效率,但是转悷点却明显延迟。目前对具有较高的质热传递速率的波壁管的研究却鲜见报道,这促使本研究进行相关探讨。
     第二章介绍了本研究所采用的实验设备和测试方。测试段选取D_(max)/D_(min)=3.3和D_(max)/D_(min)=2两种波壁管路,采用旋转粘度计和玻璃管粘度计测量了包括剪切粘度、剪切应力、表观粘度等在内PAM的基本物性。用自行设计的自循环实验系统对PAM聚合物溶液在波壁管内的流动特性进行了研究,并用铝尘法完成了波壁管路内的流动可视化。
     第三章给出了实验结果并进行相关讨论。首先,分析了PAM聚合物溶液的流变特性曲线。其次,通过测试系统实验得到了PAM聚合物溶液在波壁管内的f-Re曲线,发现了PAM在波壁管内的减阻现象,通过不同浓度PAM溶液的比较,发现了其最佳的减阻浓度,并且过渡流对应的转捩点也发生了提前,同时利用可视化技术验证了转捩点提前的结论。运用FLUENT进行数值模拟,得到了流体的速度和压力分布,摩擦曲线与实验值很接近。
     第四章总结了本研究的成果,第五章指明了将来的研究方向。
The investigation of Non-Newtonian fluid in the industry has improved greatly with the development of science and technique, especially in the field of biology. The additive polymers and surfactants have extensive use in disposing water, petroleum industry and biochemical plant aspect. Lots of researches focus on the flow characteristic of non-Newtonian fluid in 2-D and 3-D pipes, but relatively a little in a wavy-walled tube which is apt to bring the separation flow and enhance the mass and heat transfer. The paper mainly investigates the flow characteristic of non-Newtonian fluid in a wavy-walled tube, especially the drag reduction. At the same time, the proper numerical simulation and flow visualization are compared with experimental result. The details follow:
     In chapter 1, the studies that the flow characteristic of non-Newtonian fluid in pipes have been reviewed. It is shown the experimental results in channel are coincident with the numerical simulation. In 50's, Toms found that dissolving a small amount of polymers in water can drastically reduce the pressure drop in the straight pipe and improve heat transfer, but the transitional point delays compared with water. The researches of non-Newtonian fluid in wavy-walled tube which enhances the mass and heat transfer haven't been under way.
     In chapter 2, the experimental facility and measurement techniques used in the study are introduced. Two kinds of wavy-walled tubes are selected in test section. The basic physical characteristics such as shear viscosity and shear stress are educed by a revolving viscosimeter. The flow characteristic of non-Newtonian fluid in wavy-walled tube is studied by a circulating system and the flow patterns are visualized by the aluminum dust method.
     In chapter 3, the experimental results are discussed. First of all, rheology of PAM is analyzed. Next, the f-Re curve of PAM polymer solution in wavy-walled tube is attained and the drag reduction phenomenon is observed. The best drag reduction effect is received via various concentration PAM while the transitional flow moves up as the drag reduction compared with the Newtonian fluid. The velocity and pressure distributions of PAM are acquired by using FLUENT6.0 and ihef-Re curve is similar to experimental result.
     Chapter 4,5 indicates the possible extensions of the present work.
引文
[1]朱蒙生,蔡伟华,曹慧哲,邹平华.添加剂粘性减阻在暖通空调系统中的应用[M].煤气与热力,2008(8):24-26.
    [2]朱向哲,苗一.非牛顿流体在双螺杆反应器中流动特性的三维流场分析[J].石油化工设备,2005(34):23-27.
    [3]毛欣,聂雅玲.聚丙烯酰胺的应用[J].天津化工,2007,21,(6):39-41.
    [4]张学佳,纪巍等.聚丙烯酰胺应用进展[J].化工中间体,2008(5):34-39.
    [5]张根广,张鸣远.血液及血液替代流体流变特性实验研究[J].实验流体力学,2007(21):21-24.
    [6]Nishimura T,Kajimoto Y,Kawamura Y.Mass transfer enhancement in channels with a wavy wall[J].Chem.Eng.Japan,1986,19:142-144.
    [7]Nishimura T,Murakami S,Arakawa S,et al.Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow[J].Int.J.Heat Mass transfer,1990,33(5):835-845.
    [8]Nishimura T,Ohori Y,Kajimoto Y,et al.Mass transfer characteristics in a channel with symmetric wavy wall for steady flow[J].J.Chem.Eng.Japan,1985(18):550-555.
    [9]Nishimura T,Kunitsugu K.Three-dimensionality of grooved channel flows at intermediate Reynolds numbers[J].Experiments in Fluids,2001(31):34-44.
    [10]Nishimura T,Bian Y N,Matsumoto Y,et al.Fluid flow and mass transfer characteristics in a sinusoidal wavy-walled tube at moderate Reynolds numbers for steady flow[J].Heat and Mass Transfer,2003(39):239-248.
    [11]Yongning Bian.Fluid flow and mass transfer in a wavy-walled tube for steady and pulsatile flow[D].Japan,2002.
    [12]林芸,方道斌.聚丙烯酰胺水溶液粘度依时性及其稳定剂[J].分析化学,1995,23(9):1073-1076.
    [13]杜涛.聚丙烯酰胺的降解研究进展[J].技术进展,2008(2):53-54.
    [14]江体乾.化工流变学[M].上海:华东理工大学出版社,2004.
    [15]徐桂云,李浴.非牛顿流体实验的开发[J].力学与实践,2005(27):80-83.
    [16]Toms.BA(1949) Proc Int Congr Rheol Ⅱ[M],135 North Holland Publishing Co.Amsterdem.
    [17]冯旭.非牛顿流体减阻[D].北京:北京科技大学硕士论文,2006.
    [18]B.Lu,X.Li,J.L.Zakin,Y.Talenon[J].Journal of Non-Newtonian Fluid Mechanics.1997,73:59--72.
    [19]J.L.Lumley.Drag reduction by additives,Ann.Rev[J].Fluid Mech.1(1960)
    [20]S.L.Ng,R.P.Mun,D.V.Boger et al..Extensional viscosity measurement of dilute solutions of various polumers[J].J.Non-Newtonian Fluid Mech.1996,65:291.
    [21]J.M.J.Dentoonder,F.T.M.Nieuwstadt,G.D.C.Kuiken.The role of elongational viscosity in the mechanism of drag reduction by polymer additives[C].Appl.Sci.Res.1995,54.
    [22]董方正,顾卫国,等.表面活性剂减阻流体传热与阻力关系试验研究[J].水动力学研究与进展,2006(21):494-498.
    [23]肖青,王昂.非牛顿流体在周期性突扩突缩通道内的流动阻力特性[J].化学工程,1996(6):42-46.
    [24]P.S.Virk,H.S.Mickley,K.A.Smith.The ultimate asymptote and mean flow structure in Toms'phenomenon[J].Trans.ASME J.Appl.Mech.1970,488.
    [25]杨小玉,徐佳莹,等.非牛顿流体在渐缩渐扩通道内充分发展段的换热规律[J].哈尔滨工业大学学报,1999,31(增刊):67-70.
    [26]J.J.Wei,Y.Kawaguchi,F.C.Li,B.Yu,J.L.Zakin.Drag reduction and heat transfer characteristics of a novel zwitterionic surfactant solution[J].International Journal of Heat Mass Transfer,2009(52):3547-3554.
    [27]F.Durst,R.Haas,W.Interthal.Laminar and turbulent flows of dilute polymer solutions:a physical model[J].Rheologica Acta,1982,21:572.
    [28]李沛文,川口靖夫,矢部彰,等.界面活性剂添加物对湍流阻力抑制的实验研究[J].西安交通大学学报,2001,35(1):37-42.
    [29]王海林,李忠,朱均.减阻流体聚合物的流体动力学研究[J].西安交通大学学报,1999,33(8):48-51.
    [30]王党生,隋卫平,等.PAM水溶液-盐体系粘度的研究[J].实验室研究与探索,2005,24(9):35-37.
    [31]张丽娟,任国友,等.粘弹性流体在油藏孔隙模型中的流动阻力特性[J].大庆石油学院学报,2004,28(1):17-20.
    [32]M.P.Escudier,F.Presti,S.Smith.Drag reduction in the turbulent pipe flow of polymers[J].J.Non-Newtonian Fluid Mech.1999,81:197-213.
    [33]G.E.Gadd.Turbulence damping and drag reduction[J].J.Non-Newtonian Fluid Mech.1995,59:93.
    [34]张根广,张鸣远等.黄原胶溶液减阻特性实验[J].西安交通大学学报,2007,41(9):1092-1095.
    [35]D.W.Dodge,A.B.Metzner.Turbulent flow of non-Newtonian systems[C].AIChEJ,1959,5:189.
    [36]W.Interthal and H.Wilski.Drag reduction experiments with very large pipes[J].Colloid & Polymer Science,1985,263:217-229.
    [37]Virk Ps[J].AIChEJ,1975,21:625.
    [38]Schliting H.Grenzschichttheorie[J].Verlag G Braun,Karlsruhe S,1965,556.
    [39]严建华,徐学谘,刘均洪.高粘幂律非牛顿流体在管内流动和传热的计算[J].水动力学研究与进展,1992,7(3):315-318.
    [40]Ahmed Kamel,Subhash.N.Shah.Effects of salinity and temperature on drag reduction characteristics of polymers in straight circular pipes[J].Journal of Petroleum Science and Engineering,2009,67:23-33.
    [41]贾宝菊.波壁管内的脉动流动及其传质特性的实验和数值模拟[D].博士学位论文,2009.
    [42]孙宇.定常流场下波壁流路内的流体流动及质量传递特性[D].硕士学位论文,2005.
    [43]卞永宁.定常与脉动流场下波壁管路内的流体流动和质量传递[D].博士学位论文,2002.
    [44]孙红英,陈红祥等.聚丙烯酰胺溶液的影响因素[J].精细石油化工进展,2005,6(9):1-3.
    [45]P.K.PTASINSKI,F.T.M.NIEUWSTADT.Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag Reduction[J].Flow,Turbulence and Combustion,2001,66:159-182.
    [46]夏德宏等.高粘度流体的低阻力管道输送机理[J].钢铁,1996,31.
    [47]A.Japper-Jaafar,M.P.Escudier.Turbulent pipe flow of a drag reducting rigid "rod-like"polymer solution[J].Journal of Non-Newtonian Fluid Mechanics,2008,10:1016-1055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700