7A04铝合金轮辋挤压成形工艺与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对钢制轮辋存在的超重和综合力学性能不高的问题,进行了7A04铝合金轮辋成形工艺的研究,分析了变形次数对7A04铝合金性能的影响。
     首先,应用有限元数值模拟技术,分析了7A04铝合金轮辋反挤压成形过程以及变形速度、摩擦系数等工艺参数对成形过程的影响。数值模拟表明:7A04铝合金在460℃和10mm/s的条件下进行挤压时具有很好的流动性和低的变形抗力;在其它条件相同的情况下,摩擦系数的增加使变形的不均匀程度增大。
     在数值模拟的基础上,提出了一种降低成形力、提高产品质量的铝合金轮辋成形方法,采用空心坯料挤压、逐次成形,显著降低了成形力,在6300KN压力机上实现了20英寸轮辋的成形;采用大变形、等温多次成形,提高了产品的综合力学性能,与钢制轮辋相比,抗拉强度与屈服强度由400Mpa和235Mpa提高至570Mpa和510Mpa左右。实践应用表明:与钢制轮辋相比减重约55.6%,有效的实现了减重与力学性能的提高,达到了预期效果。
     分析了变形次数对7A04铝合金力学性能与微观组织的影响规律,确定了7A04铝合金适合的变形次数。实验表明:在实验范围内,随着变形次数的增加,强度逐渐升高,当变形次数为四次时,达到最大,继续增加变形次数强度降低。因此采用四次变形可达到最大的极限强度和屈服强度,为7A04铝合金的塑性加工提供了理论依据。在此基础上,针对现工艺存在的材料利用率低的问题进一步优化,为该产品的大批量生产做好准备。
This paper was directed against the overweight and the lower comprehensive mechanical properties of steeliness wheel felloe, studied the forming process of 7A04 aluminum alloy wheel felloe, and analyzed the effects of deformation times on properties of 7A04 aluminum alloy wheel felloe.
     Firstly, using numerical simulation of finite element, the backward extrusion process of 7A04 aluminum alloy and effects of deformation speed and friction coefficient on forming were analyzed. The numerical simulation showed that the aluminum alloy had good flow and low extrusion pressure under the conditions of 460℃and 10mm/s; In the same conditions, with the friction coefficient increasing, the inhomogeneous deformation increased .
     On the basis of numerical simulation, a forming method of 7A04 aluminum alloy which reduced the forming pressure and improved the product quality was presented. This method used hollow blank extrusion to form gradually, obviously reduced the forming pressure, and realized 20 inch wheel felloe formation on the 6300KN press; also it used the big deformation and isothermal deformation for many times, and improved the product comprehensive mechanical properties. Comparing with the steeliness wheel felloe, the tensile strength and the yield strength were improved by 400Mpa and 235Mpa to about 570Mpa and 510Mpa. The practical application showed that comparing with the steeliness wheel felloe, the weight reduced approximately 55.6%. This method realized effectively the reduction and the improvement of mechanical properties, and achieved the expectation goal..
     The effects of deformation times on mechanical properties and microstructure of 7A04 aluminum alloy were analyzed, and the appropriate deformation times of 7A04 aluminum alloy was determined. The experiment showed that in the scope of experiment, along with the increasing of deformation times , the intensity improved gradually, when the deformation times was four , the intensity achieved biggest, continued to increase the deformation times intensity to reduce. Therefore using four deformation times was possible to achieve the biggest tensile strength and yield strength, this provided basical theory for plastic processing of aluminum alloy. Based on this analysis, aimed at the problem of the lower of material utilization for present process, optimized the process, and prepared for this product in enormous quantities.
引文
[1]张匀,刘玉林,赵洪思.铝金的特点及应用[J].金属学报,1991,21(4):217.
    [2]刘延辉,李宝成.铝和铝合金的特点及铝合金的强化[J].黑龙江科技信息,2007(4):18-19.
    [3]刘静安.浅谈中国铝及铝合金材料产业发展战略[J].铝加工,2005(5)1-6.
    [4]Narges Shahmanesh.Lightening the material[J].Au-tomotive Engineering,2003(9):70-77.
    [5]赵鸿.铝在在汽车上的应用[J].汽车工艺与材料,1997(1):19-24.
    [6]邵光杰,张恒华,许珞萍.汽车用铝合金材料及热处理进展[J].金属热处理,2004,29(1):29-31.
    [7] Donlon W T, Paige C, Morris C J, etc. Effects of cast-ing defects & microstructure on mechanical properties of diecast AM50 magnesium and 356 aluminum [C]. Proceedings of the TMS Materials Week 95 Symposium, 1995(10):17-27.
    [8]谷亦杰,林建国,张永刚等.回归再时效处理对7075铝合金的影响[J].金属热处理,2001,26(1):31-35.
    [9]胡治流,曹乃光,沈燕.LY铝合金FTMT强化工艺的探讨[J].中国有色金属学报,1995,5(1):72-75.
    [10] SiegertK, LeiberR. Thixoforming of aluminum[C]. SEA Special Publications. 1998, 1350 (2):39-46.
    [11]陈昌麒.超高强度铝合金的发展.中国有色金属学报,2002(3):22-27.
    [12]宋仁国.高强度铝合金的研究现状及发展趋势.材料导报,2000,14(1):20-21.
    [13] Lengsfeld P. Micreslructure and mechanical behavior of spray deposited Zn n-tMified 7XXX series Al alloys [J] .International Journal of RpiaSohdifiration, 1995, 8(4) : 237-265
    [14] A. Heinz, A. Haszler. Recent development in Alumium alloys for aerospace applications. Mater. Sci.Eng, 2000, A280:102.
    [15]马场义雄,(孙本良译).超硬铝(EDS)及飞机铝合金发展动向[J].Aluminum FabricationTechnology,1990,(4):21-31.
    [16] JamesT. Staley, etc. Aluminumalloys for aerostructures [J]. Advance Materials & Processes ,1991, (10) : 17-20.
    [17] D. A. Lukasak etc. Strong aluminum alloy shaves airframe weight[J]. Advanced Materials&Processes, 1991, (10):46-49.
    [18] Srivatsan T. S. etc. Microstructure, tensile deformation and fracture behaviour of aluminum alloy 7055[J]. Journal of Materials Sci.,1997, 32:2883-2894.
    [19]Srivatsan T. S. etc. The tensile response and facture behaviour of an AI-Zn-Mg-Cu alloy influence of temperature [J] . journal of Materials Engineering and Performance, 1997, 6(3): 349-358.
    [20]张永安,韦强.喷射成形制备高性能铝合金材料[J].机械工程材料,2001,25(4)22-25.
    [21]王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版,2000:94-95.
    [22]尹志民,陈小群.微量元素在2091铝合金中的存在形式和作用机制.全国铝锂合金会议文集[c].长沙:中南工业大学出版社,1992.
    [23] Macchi C E, Somoza A, Dupasquier A, etal. Acta Mater, 2003 (2): 51.
    [24] Kusui, J, Fujii, K. , Yokoe, K, Yokote, T. , Osam ura, k. , K ubota. 0. and 0 kuda. H.Mater. SciForum vols. 217—222 (1996) : 18-23.
    [25] Macchi C E, Somoza A, Dupasquier A, etal. Mater SciForum, 2002, 396—402: 833.
    [26]彭志辉.材料导报,1997,11(6):16.
    [27]谢燮摇(译),轻合金加工技术,1984,(2):61.
    [28].R.Poganitsch等.高强AI-zn-Mg-cu合金的金属问化合物.轻合金加工技术,1984(9):40.
    [29].E,A.TxaeHx(前苏联)等,高强变形铝合金,任继嘉译,张录泉校.轻合金加工技术.1986,No (2): 33.
    [30]张录泉.7xxx系合金的双级时效.轻合金加工技术,1986(12):16.
    [31]徐维新.现代汽车新技术[M].上海:上海科学技术出版社,1999.
    [32]唐富贵.铜合金实体保持架超塑等温挤压cAPP系统.河南科技大学硕士学位论文.
    [33]冷艳.铝棒材等温挤压技术的研究.北方工业大学硕士学位论文.
    [34]赖华清,范宏训.汽车铝合金轮毂成形工艺[J].金属成形工艺,2002(6):38-40.
    [35]胡九锡等.热挤压工艺及模具设计[M].北京:机械工业出版社,1986:17-19.
    [36]孙有余等.锻模设计手册[M] 北京:机械工业出版社,1990:750-753.
    [37]洪慎章.冷挤压实用技术[M] 北京:机械工业出版社,2004:159-160.
    [38]吴朋越,苏娟华.铜合金压气缸热挤压工艺和模具.模具制造, 2003,21(4):46-48.
    [39]洪慎章,曾振鹏.方柱塞冷镦挤工艺及模具设计[J].金属成形工艺, 2002(4):20.
    [40]温景林,丁桦等.有色金属挤压与拉拔技术.北京化学工业出版社.
    [41]李更新,周伯楚,吴朋越.氧气喷头热挤压工艺及模具设计[J].模具技术,2003(2):36-38.
    [42]洪深泽.挤压工艺及模具设计[M].北京:机械工业出版社,1996.
    [43]王德林.AZ31镁合金轮毂温成形工艺研究. 中北大学硕士学位论文.
    [44]赵鸿.铝在汽车上的应用.汽车工料,1997年汽车工艺与材料第1期.
    [45]陈世平.汽车轻量化及其材料.汽车工艺与材料,1995第四期.
    [46]孟模.锻造次数对7A04铝合金力学性能及组织影响.中北大学学士论文.
    [47]钱应平,刘小鹏.Lc4铝合金呆扳手成形热力学参数的确定.金属成形工艺,2003,21(5):89-90.
    [48]王德云.超硬铝Lc4合金热处理工艺研究[J].兵器材料科学与工程,1991(2):42-46.
    [49]西北工业大学有色金属锻造编写组.有色金属锻造.国防工业出版社,1979,95-96.
    [50]苏娟华,郜建新,周伯楚.zFl6高压开关触头座的热挤压工艺开发[J].特种铸造及有色合金,2007, 23(4): 274-276.
    [51] Yada H. Accelerated cooling of rolled steels. Conf. of. Metallurgists, PergamonPress, Canada: 105-120.
    [52]Kopp R, Karnhausen K, Souza M M. Numerical simulation method fordesigning thermomecha-nical treatment. Illustrated by Bar Rolling, Scand. J. Metall. , 1991; V20: 351.
    [53] Shen G S, Semiatin S L, Shivpuri R. Modeling microstructural development during the forging of waspaloy. Metallurgical and Materials Transactions A, 1995; V26A: 1796
    [54] Sellars C M, Whiteman J A. Computer modeling of hot working processes. Mater. Sci. & Tech., 1955; V1: 325.
    [55]钱应平,刘小鹏.Lc4铝合金呆扳手成形热力学参数的确定[J].金属成形工艺,2003,21(6):89-90.
    [56]孙永恒,吴代斌.国产7075铝合金的锻造工艺研究[J].中国机械工程,13(2),10-11.
    [57]肖亚庆.铝加工实用技术.冶金工业出版社.北京.2005.
    [58]金属材料力学性能试验.理化检验一物理分册.1994,30(5): 59-61.
    [59]上海长方光学仪器有限公司.金相分析技术.http://WWW.chfang.com/produce/metal/jxjs-3.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700