等径角挤压法细化大尺寸铝棒材晶粒尺寸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等径角挤压(ECAP)是一种利用纯剪切变形实现材料晶粒细化的大塑性变形加工方法,是目前获得块状超细晶材料的重要方法之一,已引起了国内外材料界的极大关注。到目前为止,用ECAP法制备出的主要为φ10mm左右的小尺寸试样材料,由于制备尺寸的限制,使得ECAP技术在工业上的推广应用大大受阻。
     本文利用自行设计的ECAP模具,在室温下对φ30mm的大尺寸纯铝棒材进行了四道次挤压试验,对ECAP变形过程中挤压力的变化规律、组织演变规律、挤压后材料的力学性能、变形的均匀性及其影响因素等进行了研究,并对ECAP变形过程中纯铝的细化机理和等径角挤压法的产业化问题进行了探讨。
     结果表明:含残余试样等径角挤压载荷随位移的变化可分为快速增加、快速下降、缓慢增加、缓慢下降和载荷值有所回升等五个阶段;采用等径角挤压技术,可以显著改善工业纯铝的力学性能。按照Bc路径,经四次ECAP挤压后,纯铝的晶粒尺寸由原来的40~50μm细化到5μm左右;用金相显微镜对纯铝微观结构的观测分析表明,在纯铝的ECAP变形过程中,模具转角处的剪切变形作用,应变量的大量累积以及由此引入的一系列位错运动是其晶粒细化的主要原因。用硬度法对ECAP变形的均匀性分析表明,在等径角挤压过程中,试样头部和尾部的变形极不均匀,试样顶部与中部区域的变形相近,试样底部的变形与试样顶部和中心的差异较大;残余试样的存在,对新试样起到了反向挤压力的作用,使新试样内部的变形及其应力分布更为均匀。
Equal Channel Angular Pressing (ECAP) is one kind of severe plastic deformation method, which can refine grain size by introducing the simple shear deformation into the workpice and has been proved to be an effective method for obtaining various bulk ultrafine-grained materials. It has been attracting more and more attention in material field. At present, ECAP technique is mainly used to process sample of small-size about 10mm in diameter. Due to the limitation of fabrication size, its application in industries has been greatly impeded.
     In this paper, the large-size pure aluminum samples of 30mm in diameter were pressed at room temperature by 4 passes with ECAP dies self-designed. The change law of extrusion force and the microstructure evolution during ECAP were investigated. The mechanical properties of pure aluminum after ECAP, the uniformity of deformation and its influencing factors were also researched. Further more, the grain refining mechanism of pure aluminum during ECAP and the industrialization of ECAP were discussed.
     The results show that the load required to drive the deformation varies with the increasing displacement, according to the following five steps when there exists residual sample: rapid increase, rapid decrease, slow increase, slow decrease and load rising slightly. And the mechanical properties of pure aluminum are greatly improved by ECAP process. After 4 passes of ECAP in route Bc, the grain size of pure aluminum has been refined from 40-50μm to about 5μm. It is found that the shearing deformation, the large cumulative of strain and dislocation movements are the main causes for grain refining during ECAP. Hardness method research results show that the deformations of sample in head and tail are extremely inhomogeneous, the deformation at the top is similar to that in the middle, and the deformation at the bottom is very different with the top and the middle. In addition, residual sample plays a role of backward extrusion during ECAP, and makes the deformation and strain distribution more uniform.
引文
[1]Zhao M,Li J C,Jiang Q.Hall-Petch relationship in nanometer size range.Journal of Alloys and Compounds[J],2003,361(1-2):160-164.
    [2]Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science,2000,45:103-189.
    [3]Iwahashi Y,Horita Z,Nemoto M,et al.The process of grain refinement in equal channel angular pressing[J].Acta mater,1998,46(9):3317-3331.
    [4]Valiev R Z.Structure and mechanical properties of ultrafine-grained metals[J].Materials Science and Engineering,1997,A234-236:59-66.
    [5]Furukawa M,Horita Z,Nemoto M,et al.Review processing of metals by equal channel angular pressing[J].Journal of Materials Science,2001,36:2835-2843.
    [6]Segal V M,Reznikov V I,Drobyshevkiy A E,et al.Plastic metal working by simple shear[J].Russ MetallY,1981,(1):99-104.
    [7]Gleiter H.Nanocrystalline materials[J].Progr Mater Sci,1989,33:223-315.
    [8]Valiev R Z,Krasilnikov N A,Tsenev N K.Plastic deformation of alloys with submicron-grained structure[J].Materials Science and Engineering,1991,A137:35-40.
    [9]Segal V M.Materials processing by simple shear[J].Materials Science and Engineering,1995,A 197:157-164.
    [10]陈勇军,王渠东,李德江,等.往复挤压工艺制备超细晶材料的研究与发展[J].材料科学与工程学报,2006,24(1):152-155.
    [11]魏伟,陈光.块体纳米结构金属制备新工艺[J].材料导报,2002,16(10):22-25.
    [12]农登.等径角挤压工艺制备块体AlTiB合金超细晶材料的组织研究[D].广西大学硕士学位论文,2006年5月.
    [13]Lowe T C,Valiev R Z.Producing nanoscale microstructures through severe plastic deformation[J].JOM,2000,52(4):27-28.
    [14]Segal V M.Equal channel angular extrusion:from macro-mechanics to structure formation[J].Materials Science and Engineering,A 1999,271:322-333.
    [15]Iwahashi Y,Wang J,Horita Z,Nemoto M,Langdon T G.Principle of equal channel angular pressing for the processing of ultra-fine grained materials[J].Scrpita Mater,1996,35(2):143-146.
    [16]Wu Y,Baker I.An experimental study of equal channel angular extrusion[J].Scripta mater,1997,37:437-442.
    [17]Shan A,Moon I G,Ko H S,et al.Direct observation of shear deformation during equal channel angular processing of pure aluminium[J].Scripta mater,1999,41:353-357.
    [18]Delo D P,Semiatin S L.Finite element modelling of nonisothemal equal channel angular extrusion[J].Metallurgical and materials Transactions,A1999,30(5):1391-1402.
    [19]Nakashima K,Horita Z J,Nemoto M,et al.Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing[J].Acta Mater,1998,46:1589-1599.
    [20]Iwahashi Y,Horita Z,Nemoto N,et al.An investigation of microstructural evolution during equal channel angular pressing[J].Acta Mater,1997,45(11):4733-4741.
    [21]Langdon T G,Furukawa M,Nemoto M,et al.Using equal channel angular pressing for refining grain size[J].JOM,2000,52(4:30-33.
    [22]Prangnell P B,Gholinia A,Markushev V M,et al.Investigations and Applications of Severe Plastic Deformation.Kluwer Academic Pub.,Dordrecht,2000:65-71.
    [23]Zhu Y T,Lowc T C.Observations and issues on mechanisms of grain refinement during ECAP process[J].Materials Science and engineering,2000,A291:46-53.
    [24]Valiev R Z,Komikov A V,Mulyokov R R.Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J].Materials Science and engineering,1993,A168:141-148.
    [25]Chang J Y,Yoon J S,Kim G H.Development of Submicron Sized Grain During Cyclic Equal Channel Angular Pressing[J].Scripta Mater,2001,45(3):347-354.
    [26]Shih M H,Yu C Y,Kao P W,et al.Microstructure and Flow stress of copper deformed to Large Plastic Strains.Scripta Mater,2001,45(7):793-799.
    [27]郑立静,陈昌麟,周铁涛,等.ECAP细晶机制及对纯铝显微组织和力学性能的影响[J].稀有金属材料与工程,2004,33(12):1325-1328.
    [28]Kim W J,An C W,et al.Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing[J].Scripta Materalia,2002,47:39-44.
    [29]Kim W J,Hong S I,Kim Y S,et al.Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J].Acta Materialia,2003,51:3293-3307.
    [30]田景来,张忠明,王锦程,等.等通道转角挤压对纯铝L2阻尼性能的影响[J].材料热处理学报, 2005,26(2):43-46.
    [31]丁桦,赵文娟.铸态与轧制态纯铝等径角挤压变形后的组织与性能[J].机械工程材料,2006,30(12):36-39.
    [32]Berbon P B,Furukawa M,Horita Z,et al.Influence of pressing speed on microstructural development in equal channel angular pressing[J].Metall Mater Trans,1999,30A(8):1989-1997.
    [33]Kamachi M,Furukawa M,Horita Z,et al.A Model Investingation of the Shearing Characteristics in Equal-channel Angular Processing[J].Materials Science and Engineering,2002,A347(1-2):223-230.
    [34]Yamaguchi D,Horita Z,Nemoto M,et al.Significance of adiabatic heating in equal-channel angular pressing[J].Scripta Mater,1999,41(8):791-796.
    [35]Yamashita A,Yamaguchi D,Horita Z,et al.Influence of pressing temperature on microstructural development in equal-channel angular pressing[J].Materials Science and Engineering,2000,A287(1):100-106.
    [36]Shin H D,Pak J J,Kim Y K,et al.Effect of press in temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J].Materials Science and Engineering,2002,A325(1):31-37.
    [37]刘英,陈维平,张大童,等.不同路径等通道转角挤压镁合金的结构与力学性能[J].华南理工大学学报(自然科学版),2004,32(10):10-14.
    [38]Huang W H,Chang L,Kao P W,et al.Effect of die angle on deformation texture of copper processed by equal channel angular extrusion.Mater Sci Eng.2001(A307):113-118.
    [39]Alexandrov I V,Zhu Y T,Lowe T C,et al.Consolidation of nanometer sized powders using severe plastic torsional straining[J].Namo Structured material,1998,110(1):45-54.
    [40]陈刚,彭晓东,范培耕,等.等通道转角挤压工艺参数对铝镁合金组织和性能的影响[J].轻金属,2007,1:54-57.
    [41]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [42]郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析[J].中国有色金属学报,2001,11(2):230-233.
    [43]张建,崔宏祥,赵润娴,等.等通道转角挤压过程有限元模拟[J].重型机械,2002(3):43-46.
    [44]刘睿,孙康宁,毕见强.残余试样对等径角挤压过程的影响[J].中国机械工程,2006,17(17):1858-1864.
    [45]赵润娴,张建,王志奇,等.等通道转角挤压纯铝的组织结构[J].有色金属,2002,54(2):8-11.
    [46]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术(Ⅰ)—显微组织演化.中国有色金属学报.2003,13(1):21-26.
    [47]郝南海,王全聪.等截面侧向挤压的力学分析[J].塑性工程学报,2001,8(3):14-16.
    [48]李洪达.等径角挤压制备AlTiB超细晶材料组织和性能的研究[D].广西大学硕士学位论文,2007年5月.
    [49]Ibraheem A K,Priestner R,Bowen J R,et al.Novel processing routes to ultrafine-grained stell[J].Ironmaking and Steel making,2001,28(2):203-208.
    [50]Shin D H,Kim B C,Kim Y S,et al.Microstructure evolution in a commercial low carbon steel by equal channel angular pressing[J].Acta mater,2000,48:2247-2255.
    [51]Chung C S,Kim J K,Kim H K,et al.Improvement of high-cycle fatigue life in a 6061Al alloy produced by equal-channel angular pressing[J].Materials Science and Engineering,2002,A337:39-44.
    [52]唐志宏,黄伯云,周科朝,等.超细晶材料制备新工艺—等径角挤压.材料导报,2001,15(8):16-19.
    [53]Valiev R Z,Kozlov E V,Ivanov Y F,et al.Deformation behaviour of ultra-fine-grained copper[J].Acta Metall,1994,42:2467-2475.
    [54]Vinogradov A,Patlan V,Suzuki Y,et al.Structure and properties of ultra-fine grain Cu-Cr-Zn alloy produced by eaual-channel angular pressing[J].Acta Materialia,2002,50:1639-1651.
    [55]Lee S,Utsunomiya A,Akamatsu H,et al.Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grain Al-Mg alloys[J].Acta Materialia,2002,50:553-564.
    [56]王立忠,王经涛,郭成,等.ECAP法制备超细晶铝合金材料的超塑性行为[J].中国有色金属学报,2004,14(7):1115-1116.
    [57]Cheng Xu,Minoru Furukawa,Zenji Horita,et al.Using ECAP to achieve grain refinement,precipitate fragmentation and hige strain rate superplasticity in a spray cast aluminum alloy[J].Acta materialia,2003,51:6139-6149.
    [58]Chuvil deev V N,Nieh T C.Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP[J].Scripta Materialia,2004,50:861-865.
    [59]Zhernakov V S,Latysh V V,Stolyarov,V V,etc.The developing of nanostructured SPD Ti for structural use.Scripta Mater,2001,44(8):1771-1774.
    [60]Semiatin S L,Delo D P,Shell E B.The effect of material properties and toding design on deformation and fracture durinn equal channel annular extrusion[J].Acta Mater,2000,48:1841-1851.
    [61]王立忠,安静,王经涛,等.低碳钢等径弯曲通道变形数值模拟及组织分析.西安交通大学学报,2004.38(3):226-229.
    [62]Prannnell P B,Harris C,Roberts S M.Finite element modeling of equal channel,angular extrusion[J].Scripta Mater,1997,37(7):983-989.
    [63]Ranhavan S.Computational simulation of the equi-channel angular extrusion process[J].Scripta Mater,2001,44(1):91-96.
    [64]Suh J Y,Kim H S,Park J W,et al.Finite element analysis of material flow in equal channel angular pressinn[J].Scripta Mater,2001,44(4):677-681.
    [65]Saiyi Li,Irene J B,Carl T N,et al.Heterogeneity of deformation texture in equal channel angular extrusion of copper[J].Acta Materialia,2004,52:4859-4875.
    [66]Zuyan L,Zhonnjin W.Finite element analysis of the load of equal-cross-section lateral extrusion[J].J Mater Proc Tech,1999,94(2/3):193-196.
    [67]Kim H S,Seo M H,Hong S I.Plastic deformation analysis of metals durinng equal channel angular pressinn of pure aluminum[J].J Mater Proc Tech,2001,113(1/3):622-626.
    [68]Kim I,Kim J,Shin D H,et al.Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J].Mater Sci Eng,2003,A342(2):302-310.
    [69]Kim I,Jeong W S,Kim J,et al.Deformation structures of pure Ti produced by equal channel angular pressing[J].Scripta Mater,2001,45(5):575-581.
    [70]Ferrasse S,Segal V M,Hartwig K T,et al.Development of a submicrometer grained microstructure in aluminum 6061 using equal channel angular extrusion[J].J Mater Res,1997,12:1253-1261.
    [71]Wang J,Hotrita Z,Furukawa M,et al.An invetigation of ductility and microstructural evolutionin an Al-30%Mg alloy with submicron grain size[J].J Mater Res,1993,8(11):2810-2818.
    [72]王立忠,王进,王经涛,等.工业纯铝等径弯曲通道变形过程的数值模拟[J].长安大学学报,2004,24(1):96-99.
    [73]汪建敏,许晓静,石凤健,等.等径角挤压获得超细晶铜的研究[J].热加工工艺,2004(7):6-7.
    [74]翟德梅.挤压工艺及模具[M].北京:化学工业出版社,2004.
    [75]杨长顺.冷挤压模具设计[M].北京:国防工业出版社,1994.
    [76]马怀宪.金属塑性加工学—挤压、拉拔与管材冷轧[M].北京:冶金工业出版社,2004.
    [77]庞玉华.金属塑性加工学[M].西安:西北工业大学出版社,2005.
    [78]李尧.金属塑性成形原理[M].北京:机械工业出版社,2004.
    [79]王平.金属塑性成形力学[M].北京:冶金工业出版社,2006.
    [80]毕大森,张建,崔宏祥,等.等通道转角挤压模具挤压力计算[J].重型机械.2001,6:34-36.
    [81]刘先兰.等径角挤压法制备块体超细晶材料的工艺研究[D].广西大学硕士学位论文,2006年5月.
    [82]杨如柏,张胜华.连续挤压译文集[M].长沙:中南工业大学出版社,1990.
    [83]王德胜.ECAP法细化H62黄铜晶粒的研究[D].大连交通大学硕士学位论文,2005年6月.
    [84]毕见强.2A12铝块体超细晶材料的制备模拟及细化机制的研究[D].山东大学博士学位论文,2005年3月.
    [85]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.
    [86]Georgy J R,Ruslan Z V,Terry C L.Continuous processing of ultrafine grained Al by ECAP-Conform [J].Materials Science and Engineering,A2004,382:3034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700