非稳态轧制过程的有限元分析、板厚建模与智能控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板带轧制咬入过程是一个非稳态过程,轧制工艺参数的不稳定导致轧件头部厚度高于中间厚度,一般情况下该差值要大于100μm,尖锋值可达200—300μm,故而在考核质量时一般都除去头部若干米,只对本体部分进行考核。为了提高成材率,有必要研究非稳态轧制过程中轧件的变形特点,分析工艺参数对非稳态轧制过程的影响规律,建立非稳态轧制过程的数学模型,并研究一种新型的控制系统来缩短板带头部厚度不考核的长度。本文的主要研究工作如下:
     (1)在研究热力耦合刚塑性有限元基本理论的基础上,利用MSC.MARC非线性有限元软件,建立铝板带非稳态轧制过程的三维有限元模型。该模型不仅考虑了轧辊的弹性变形,而且还考虑支撑辊对轧件变形的影响,此外还考虑了轧件与乳液对流换热的边界条件;
     (2)利用三维大变形热力耦合刚塑性有限元法对非稳态轧制过程进行模拟,并将仿真结果与实际生产数据进行比较,结果表明本文所采用的方法对非稳态轧制过程进行仿真是可行并且可靠的。在此基础上研究了非稳态阶段的轧制力分布特点和轧件的变形特点,分析了轧件表面温度对轧件“头部厚跃”现象的影响规律;
     (3)在前述研究基础上,分析了轧制温度、前后张力等工艺参数对非稳态轧制过程中厚度的影响规律,提出了缩短板带头部厚度不考核长度的措施;
     (4)利用有限元分析所得结果,选择合理的工艺参数作为神经网络的输入输出参数,建立了非稳态轧制阶段轧件出口厚度的BP神经网络预测模型。模型计算的相对误差控制在1.200%以内,平均相对误差为0.507%,说明利用BP神经网络建立的模型对非稳态轧制阶段的出口厚度进行预测具有很高的精度。
     (5)研究了神经网络PID控制器对非稳态轧制过程板厚控制的控制性能,仿真结果表明该控制系统收敛快,稳定性强,超调量小,具有良好的控制性能,将非稳态轧制过程的时间从原来的6s缩短为3s,具有较高的工程应用价值。
Biting stages is unsteady process in the plate rolling and the unsteady process parameters result in that the head and tail is thicker than the middle.Generally speaking,the difference is more than 100μm and the maximum value may be up to 200-300μm.Therefore,only main part of the rolled piece is examined for quality.In order to increase the yield and reduce the unsteady process,it is essential to study the deformation characteristic of the unsteady rolling,analyze the effect of process parameters on the unsteady rolling process,set up mathematical model of the unsteady process,and propose a new control system to improve control precision,The main research work in this thesis includes:
     (1)Based on the theory of rigid plastic finite element,the 3-D finite element model of unsteady process was built with nonlinear finite element analysis software MSC.MARC.The elastic deformation of the roll and the influence of emulsion were considered in simulation.
     (2)The unsteady process of the plate rolling was simulated by using three-dimension large deformation thermo-mechanical coupled rigid-plastic finite element methods.The simulated result was compared with the real rolling data,which showed that the method used to simulate the unsteady rolling process was feasible and reliable.The rolling force distribution and the rolled piece deformation in the bite stage were studied and the rolled piece temperature influence on strip-head bending was analyzed.
     (3)Based on the proposed method,the effect of process parameters such as rolling temperature and tension on the unsteady rolling process was analyzed.Moreover,the way to shorten the unqualified length of the plate head was presented.
     (4)Based on the simulation results of FEM,the main process parameters were selected as the inputs and outputs of a neural network, and a BP neural network prediction model of.unsteady state rolling was built.The maximum calculated error of the model was 1.200%and the average relative error was 0.507%,and showing that the accuracy of the prediction model was high.
     (5)A neural network PID controller was built to control the gauge of plate head.Simulation results showed that this control system has the characteristics of fast convergence,strong stability and small overshoot. The unsteady state rolling was reduced from 6s to 3s by using the controller that has good performance for engineering application.
引文
[1]乔俊飞,柴天佑.板形控制技术现状及未来发展[J].冶金自动化,1997.1:11-14
    [2]李伯群,张海军,孙一康.提高AGC厚度控制精度及其百分比的研究[J].控制工程,2006,13(1):32-34
    [3]王云平,王群.影响中板成材率的因素及其控制措施[J].甘肃冶金.2006,28(3):25-26
    [4]常在勤.影响带钢头部厚度精度原因的分析[J].包钢科技,2005,31(1):11-14
    [5]王廷溥,齐克敏.金属塑性加工学——轧制理论与工艺[M].北京:冶金工业出版社,2006
    [6]戴铁军,刘战英.紧凑式轧机咬入能力分析[J].上海金属学报,2002,6,Vol.22.No.4 51
    [7]张涛,刘立华,张秀山.中型万能机咬入条件浅析.莱钢科技,2005,10
    [8]傅祖铸.有色金属板带材生产[M].长沙:中南工业大学出版社,1992
    [9]陈火红.Marc有限元分析实例教程[M].北京:机械工业出版社,2002
    [10]刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社.1994
    [11]刘立忠,刘相华,周旭东等.平板轧制咬入阶段非稳定性变形的有限元模拟[J].塑性工程学报,2001,Vol.8,No.3
    [12]黄国建.中厚板平面形状控制轧制成形过程的计算机模拟.[东北大学博士学位论文],2004
    [13]古元秀昭.考虑轧辊咬入前变形的带材板型模拟[J].塑性と工.1996,37(429)
    [14]古元秀昭.非对称板轧制的刚塑性FEM分析[J].塑性と加工,1997,38(442)
    [15]Xue-Tong Li,Feng-Shan Du,Min-Ting Wang,Jian-feng Wu.FEM analysis of geometry control of the plate head in the vertical-horizontal rolling processes[J].China Mechanical Engineer.Vol.16,no.8,pp.712-715.25 Apr.2005
    [16]唐谋凤.现代带钢连轧的自动化[M].北京:冶金工业出版社,1998
    [17]孙一康.带钢连轧的模型与控制[M].北京:冶金工业出版社,2002
    [18]江定辉.采用“差动咬入法”控制中厚板轧制板头弯曲[J].武汉科技大学学报,2002,Vol.25,No.3
    [19]江定辉,刘建彬,徐洪智.中厚板轧制板头弯曲原因分析与“差动咬入”控制法[J].南方金属,2002,10
    [20]童朝南,张飞,彭开香.热轧板带头尾厚度精度控制技术[J].钢铁学报,2005, 4,Vol.40,No.4
    [21]Yanjiu,Xuebao.Fuzzy dynamic setting technology for hot strip mill[J].Journal of Iron and Steel Research,2000.Vol.12,pp.22-26
    [22]王国栋,刘相华等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.3
    [23]董洪波,康永林.有限元模拟技术在板带钢轧制中的应用[J].轧钢,2004,21(2):44-47
    [24]Troost,A.,Arch.Eisenh.,35(1964),NO9,847
    [25]Marcal,P.V.,Int.J.Mech,Sci.,7(1965),No4,229
    [26]山田嘉昭,生产研究,19(1967),No3,75
    [27]Zienkiewicz,O.C.,Golbole,P.N.,Int,J.Num,Meech.In Engr.,8(1974),No3,16
    [28]徐春光,固体力学学报,1984,No4,602
    [29]Barata,M.,et al.,Int,J.mech,Sci.,32.1990,No 10,817
    [30]Hayes,D.J.,Marcal,P.V.,Int J.Mech,Sci.,9(1967),245
    [31]冷艳.铝棒材等温挤压技术的研究[硕士学位论文].北京:北方工业大学,2003
    [32]徐伟力,李雪春,金朝海等.刚塑性有限元法中罚因子的选取[J].哈尔滨工业大学学报,1999,31(6):128-132
    [33]MSC.Marc help,volume A,Theory and User Information[M],Version 2000:8220-8227
    [34]乔端,钱银根.非线性有限元及其在塑性加工中的应用[M].冶金工业出版社,1990
    [35]MSC.Software(中国).MSC.Marc温度场及其耦合场分析培训教程[M].2001
    [36]陈国梁.有限元在热轧辊三维温度场研究中的应用[J].山东纺织经济,2005.5:62-64
    [37]王补宣.工程传热传质学[M].北京:科学出版社,1998:30-110
    [38]J G Lenard and Z Malinowski.Measurements of Friction during the Warm Rolling of Aluminum[J].Journal of Material Processing Technology,1993,39:357-371
    [39]王孟君,杨立斌,甘春雷等.6063铝合金高温流变本构方程[J].华中科技大学学报,2003,31(6):20-22
    [40]陈火红,于军泉,席源山.MSC.Marc/Mentat 2003基础与应用实例[M].北 京:科学出版社,2004
    [41]刘立文,张树堂,武志平.张力对冷轧板带变形的影响[J].钢铁.2000,35(4):37-39
    [42]刘雪峰,汪凌云.铝箔轧制速度和张力影响的的分析及模型建立[J].重庆大学学报(自然科学版).2001,24(1):63-66
    [43]徐鹤贤.冷轧钢带厚度及其控制工艺探讨.特钢技术.2000,3:4
    [44]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994
    [45]王彤,刘相华.带钢轧机弹性曲线的研究[J].轧钢,2000,17(1):8-10
    [46]杨节.轧制过程数学模型[M].北京:冶金工业出版社,1992
    [47]沈世镒.神经网络系统理论及应用[M].北京:科学出版社,1998
    [48]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [49]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005
    [50]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999
    [51]王邦文,杨光,徐峰等.基于人工神经网络铝箔轧机轧制力模型[J].北京科技大学学报.1997,19(2):173-177
    [52]沈瑛,张翠芳.基于BP神经网络的模型参考自适应控制[J].西南交通大学学报,2001,36(5):1-4
    [53]孙登月,杜凤山,朱光明等.冷连轧机出口厚度人工神经网络快速预报[J].燕山大学学报.2003,27(1):51-53
    [54]Robert Hecht-Nielson.Theory of the Back Propagation Neural Networks[J].Proc.of IJCNN,1989,1:593-603
    [55]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005
    [56]胡于华.基于人工神经网络的CSP热轧板带力学性能预报[硕士学位论文].武汉:武汉科技大学,2006
    [57]A.Downes,P.Hartley.Using an artificial neural network to assist roll design in cold roll-forming processes[J].Journal of Materials Processing Technology,2006(177):319-322.
    [58]贾春玉,李兴东,宋战.热轧带钢卷取温度高精度预报的人工神经网络方法[J].钢铁.2003,38(2):30-33
    [59]魏立群.基于MATLAB的BP网络预报2350中板轧制力能参数[J].上海金属.2005,27(4):43-46
    [60]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004
    [61]单金玲,马彩文,李文刚等.基于BP神经网络的PID控制[J].光子学报.2005,34(5):754-757
    [62]程启明.改进型PID参数神经网络自学习的船舶操纵控制器[J].系统仿真学报.2001,13(3):344-347
    [63]李博群,傅剑,张瑞成等.热连轧活套高度和张力系统的解耦控制[J].北京科技大学学报.2005,27(5):596-599
    [64]张兴,戴莹,李争.一种时变非线性对象神经网络PID控制的仿真[J].合肥工业大学学报,2006,29(11):1375-1379
    [65]沈瑛,张翠芳.基于BP神经网络的模型参考自适应控制[J].西南交通大学学报,2001,36(5):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700