ZK60镁合金等径角挤压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等径角挤压工艺(ECAP)是基于大塑性变形(SPD)理论的一种制备大块体超细晶材料的先进技术,由于其特殊优点,已引起众多学者的研究。随着汽车轻量化和高性能的发展,迫切需要轻质材料的使用。目前,作为结构件的镁合金,具有密度轻、比强度和比刚度高的优点,现已应用于汽车、航空航天等领域。因此,研究镁合金的ECAP晶粒细化,积极探索改善镁合金力学性能和成形性能的途径,对于推动镁合金材料的应用有重要意义。
     本文主要以变形镁合金中强度最高的ZK60镁合金棒材为研究对象,从DEFORM-3D有限元模拟和实验的角度分别探索了等径角挤压这种晶粒细化的新工艺,为ECAP晶粒细化工艺的工业化生产及应用提供了理论和技术依据。具体的研究内容与成果如下:
     (1)本文基于ECAP三维实体几何模型和三维塑性变形有限元力学模型,通过解决ZK60镁合金的材料模型、网格划分、边界条件等关键建模技术,在DEFORM-3D中建立了准确的ECAP变形三维刚塑性有限元模拟模型。
     (2)基于ZK60镁合金的ECAP三维有限元模型,揭示了试样在ECAP变形过程中的载荷、等效应力、应变和速度的基本变形规律;探究了各工艺参数(模具内角、挤压温度、摩擦因子、挤压速度、挤压道次等)对ECAP变形的影响;并进一步重点模拟分析了试样的直径尺寸变化(φ6-40mm)对载荷、应变以及变形不均匀性的影响,为ECAP实验提供了理论依据。模拟得到的主要结论为:镁合金ZK60的ECAP挤压应使用Φ=90°的模具,在T=250℃且较低的挤压速度下,采用Bc路径在润滑良好的条件下进行多道次挤压获得的挤压效果最好,并且小尺寸试样的变形比大尺寸试样的变形程度大且均匀。
     (3)对铸态和热处理后的ZK60试样分别进行了ECAP实验,结果表明:均匀化热处理后的试样变形相对较好,晶粒细化效果更明显。所以,对ZK60镁合金铸态试样进行均匀化退火处理是进行ECAP变形实验的必要前提条件。
     (4)在不同温度下(T=180,200,250,300℃)对ZK60分别进行ECAP实验,结果表明:ZK60试样低于200℃挤压时会发生裂纹甚至断裂;综合结果,当T=250℃挤压后的晶粒分布最均匀,细化效果相对较好。
     (5)对ZK60试样连续进行了4道次ECAP实验,分析表明:随着挤压道次的增加,晶粒细化程度越好,小尺寸细晶数量不断增多,晶粒分布更为均匀。1道次挤压后ZK60的晶粒尺寸由~110μm细化到~11μm,细化程度很大;4道次挤压后细化到~5μm,说明ECAP法是一种有效的晶粒细化手段。
     (6)用自行设计的两套ECAP模具对比研究了径向尺寸分别为φ10mm与φ30mm的ZK60镁合金试样前两道次ECAP变形,得到的平均晶粒尺寸分别为-6gm和~8μm。微观组织观察结果表明:小尺寸φ10mm试样的晶粒细化程度较大,细化后的晶粒尺寸和形状的分布更为均匀;而大尺寸Φ30mm试样局部的细晶数量较多,但大尺寸粗晶的数量也比较多,晶粒尺寸分布很不均匀。
     (7)对比了ECAP变形后的两种尺寸试样横截面上有代表性区域的晶粒细化情况。结果表明:ZK60试样横截面上晶粒细化程度与模拟中的等效应变分布有正相关性,试样维氏硬度值的变化与变形程度是一致的。所以,利用有限元模拟的等效应变分布情况可以解释实验结果中的晶粒细化状态和硬度变化。
     (8)有限元模拟得到的挤压后试样形状和ECAP实验结果是一致的,并且模拟中等效应变的分布和晶粒细化结果相对应,从而验证了在DEFORM中建立的模拟模型的准确性,说明了模拟结果具有一定的可靠性。
Equal channel angular pressing (ECAP) is an advanced technique based on the theory of severe plastic deformation (SPD) which to producing bulk ultrafine-grained materials (UFG). With its special advantages, the scientists have made a lot of research about this technology. With the development of the cars'lightweight and high performance, the using of lightweight materials is in urgent demand. At present, the magnesium alloy as the structural components, with the advantage of light density, high strength and rigidity, has been used in automotive and aerospace field. Therefore, it is important to study the magnesium alloy's grain refinement processed by ECAP and explore active approach of improving the mechanical properties and formability, thus to push the application of magnesium alloy.
     The research object of this paper is ZK60magnesium alloy which has the highest strength. The new ECAP technology is explored via finite element (FE) simulation and experimental method. The research results provide useful guidance for the future successful incorporation of the ECAP process into commercial manufacturing and applying operations. The contents and results of this paper are generally shown as following:
     (1) The sound3D rigid-plastic FE model of the ECAP process is established under the DEFORM-3D platform by solving several key modeling techniques such as geometrical and material models of ZK60, meshing and boundary conditions.
     (2) Based on the FE models, the law of forming loads, equivalent stress and strain during the ECAP process is revealed. And the effects of multi-parameters, such as die angle, pressing temperature, friction factor, pressing speed and passes are explored. Furthermore, the ZK60FE models with channel diameters fromφ6-40mm are built. Through these simulations, the distributions of the load, equivalent strain and the nonuniformity of deformation with the increase of diameter are analyzed in detail. The simulation results provide a theory basis for the ECAP experiments. The main conclusion of the simulations shows that: the ECAP of ZK60should be conducted under the die with the inner angle Φ=90°, T=250℃, a lower pressing speed, route Bc, more passes and in good lubrication. And the deformation of the specimen with a small size is larger and more uniform than that with a large size.
     (3) Do the ECAP experiments of ZK60with different state of as-cast and after heat treatment. The results show that, the deformation of ZK60specimen after heat treatment is better and the grain refinement is more obvious. Thus, doing heat treatment is the necessary primise for the ECAP of ZK60specimen.
     (4) The grain refinement of ZK60alloy is discussed after pressing under different temperature (T=180,200,250,300℃). The ZK60specimen will craze when pressing under the temperature below200℃. The grain distribution is uniform and grain refinement is better when pressing at T=250℃.
     (5) The specimens of ZK60alloy are subjected to4-passes ECAP. The results show that, with the increase of passes, the grain refinement is getting better, the number of fine grain with small size is larger, and the grain distribution is more uniform. The grain size from~110μm refined to~11μm after1pass, and refined to~5μm after4passes. Thus ECAP process is an effective method of grain refinement.
     (6) The pressing results of ZK60specimens with different diameters of φ10mm and φ30mm after2-passes in two ECAP die-sets with different channel diameters is comparatively studied, the grain size respectively refined to~6μm and~8μm. The grain refinement ofφ10mm is bigger than that of φ30mm.
     (7) The grain refinement at different regions on the cross section of ZK60with two different diameters after1and2passes are compared. The grain refinement and the equivalent strain of simulation have positive correlation. And the change of vicker hardness and the deformation of the specimen is consistant. So the grain refinement and the vicker hardness of experiment can be explained by the equivalent strain of simulation.
     (8) The shape of ZK60specimen from FE simulation is the same with the experimental result. The grain refinement is consistant with the equivalent strain of simulation. Thus the FE models are verified by the ECAP experiments and the simulation results are reliable.
引文
[1]Hall E O. The deformation and aging of mild steel:Ⅲ Discussion of results[J]. Proceedings of the Physical Society, Section B,1951,64(9),747-753.
    [2]Zhao M, Li J C, Jiang Q. Hall-Petch relationship in nanometer size range[J]. Journal of Alloys and Compounds,2003,361(1-2):160-164.
    [3]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science,2000,45(2):103-189.
    [4]Segal V M, Reznikov V I, Drobyshevkiy A E, et al. Plastic metal working by simple shear[J]. Russian Metally,1981,1:99-104.
    [5]Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure[J]. Materials Science and Engineering A,1991,137:35-40.
    [6]Segal V M. Materials processing by simple shear[J]. Materials Science and Engineering A, 1995,197:157-164.
    [7]Segal V M, Dobatkin S V, Valiev R Z. Equal-channel angular pressing of metallic materials: achievements and trends [J]. Thematic issue, Part 1, Russian Metally,2004,1:1-102.
    [8]Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion[J]. Acta Materialia, 2003,51 (3),753-765.
    [9]Sakai G, Horita Z, Langdon T G. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion[J]. Materials Science and Engineering A,2005,393: 344-351.
    [10]Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging[J]. Materials Transactions,2004,45 (7): 2232-2238.
    [11]Chu H S. Liu K S. Yeh J W. Study of 6061-Al2O3P composites produced by reciprocating extrusion[J]. Metallurgical and Materials Transactions A,2000,31(10):2587-2596.
    [12]Chu H S, Liu K S, Yeh J W. Aging behavior and tensile properties of 6061A1-0.3 μm Al2O3p particle composites produced by reciprocating extrusion[J]. Scripta Materialia,2001,45 (5): 541-546.
    [13]Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scripta Materialia,1998,39:1221-1227.
    [14]Saito Y, Utsunomiya H, Tsuji N. et al. Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia,1999, 47(2):579-583.
    [15]Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001,49(9):1497-1505.
    [16]Zhu Y T, Jiang H, Huang J, et al. A new route to bulk nanostructured metals[J]. Metallurgical and Materials Transactions A,2001,32(6):1559-1562.
    [17]Furukawa M, Horita Z, Nemoto M, et al. Review processing of metals by equal channel angular pressing[J]. Journal of Materials Science,2001,36:2835-2843.
    [18]Iwahashi Y, Horita Z, Nemoto N, et al. An investigation of microstructural evolution during equal channel angular pressing[J]. Acta Materialia,1997,45(11):4733-4741.
    [19]Valiev R Z, Komikov A V, Mulyokov R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Materials Science and Engineering A, 1993,168:141-148.
    [20]Chang J Y, Yoon J S, Kim G H. Development of submicron sized grain during cyclic equal channel angular pressing[J]. Sripta Materialia,2001,45(3):347-354.
    [21]Shih M H, Yu CY, Kao P W, et al. Microstructure and flow stress of Cupper deformed to large plastic strains[J]. Scripta Materialia,2001,45(7):793-799.
    [22]郑立静,陈昌麟,周铁涛,等ECAP细晶机制及对纯铝显微组织和力学性能的影响[J].稀有金属材料与工程,2004,33(12):1325-1328.
    [23]Kim W J, An C W, et al. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing[J]. Scripta Materialia,2002,47:39-44.
    [24]Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Materialia,2003,51:3293-3307.
    [25]Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal channel angular pressing[J]. Acta Materialia,1998,46(9):3317-3331.
    [26]Iwahashi Y, Wang J, Horita Z, et al. Principle of equal channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia,1996,35(2):143-146.
    [27]Nakashima K, Horita Z J, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing[J]. Acta Materialia,1998,46: 1589-1599.
    [28]丁桦,赵文娟.铸态与轧制态纯铝等径角挤压变形后的组织与性能[J].机械工程材料,2006,30(12):36-39.
    [29]Furukawa M, Horita Z J, Langdon T G. Factors influencing the shearing patterns in equal-channel angular pressing[J]. Materials Science and Engineering A, 2002,332(1-2): 97-109.
    [30]Langdon T G, Furukawa M, Nemoto M, et al. Using equal channel angular pressing for refining grain size[J]. JOM,2000,52(4):30-33.
    [31]Prangnell P B, Gholinia A, Markushev V M, et al. Investigations and applications of severe plastic deformation[M]. Kluwer Academic Pub., Dordrecht,2000.
    [32]Zhu Y T, Lowe T C. Observations and issues on mechanisms of grain refinement during ECAP process[J]. Materials Science and Engineering A,2000,291:46-53.
    [33]Yamashita A, Yamaguchi D, Horita Z, et al. Influence of pressing temperature on microstructural development in equal-channel angular pressing[J]. Materials Science and Engineering A,2000,287(1):100-106.
    [34]Shin H D, PakJJ, Kim Y K, et al. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J]. Materials Science and Engineering A,2002,223(1-2):31-37.
    [35]刘英,陈维平,张大童,等.不同路径等通道转角挤压镁合金的结构与力学性能[J].华南理工大学学报(自然科学版),2004,32(10):10-14.
    [36]郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析[J].中国有色金属学报,2001,11(2):230-233.
    [37]Segal V M. Equal channel angular extrusion:from micro-mechanics to structure formation[J]. Materials Science and Engineering A,1999,271:322-333.
    [38]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术显微组织演化[J].中国有色金属学报,2003,13(1):21-26.
    [39]Berbon P B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructural development in equal-channel angular pressing[J]. Metallurgical and Materials Transactions A,1999,30(8):1989-1997.
    [40]Kamachi M, Furukawa M, Horita Z, et al. A model investigation of the shearing characteristics in equal-channel angular pressing[J]. Materials Science and Engineering A, 2003,347(1-2):223-230.
    [41]Lee J C, Seok H K, Suh J Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing[J]. Acta Materialia,2002,50 (16): 4005-4019.
    [42]Yamaguchi D, Horita Z, NemotoM, et al. Significance of adiabatic heating in equal-channel angular pressing[J]. Scripta Materialia,1999,41(8):791-796.
    [43]Shan A, Moon I G. Ko H S, et al. Direct observation of shear deformation during equal channel angular processing of pure aluminium[J]. Scripta Materialia,1999,41:353-357.
    [44]毕见强.2A12铝块体超细晶材料的制备、模拟及细化机制的研究[D].济南:山东大学博士论文,2005.
    [45]李洪达.等径角挤压制备AlTiB超细晶材料组织和性能的研究[D].南宁:广西大学硕士论文,2007.
    [46]Shin D H, Kim B C, Kim Y S, et al. Microstructure evolution in a commercial low carbon steel by equal channel angular pressing[J]. Acta Materialia,2000,48:2247-2255.
    [47]Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J]. Scripta Materialia,2001,45:89-94.
    [48]王立忠,.王经涛,郭成,等.ECAP法制备超细晶铝合金材料的超塑性行为[J].中国有色金属学报,2004,14(7):1115-1116.
    [49]Valiev R Z. Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science,2006,51(7):881-981.
    [50]Beyerlein I J, Toth L S. Texture evolution in equal-channel angular extrusion[J]. Progress in Materials Science,2009,54:427-510.
    [51]Wang J T, Patrick B S, Xu Y Z. Superplastic properties of an aluminum-based alloy after equal channel angular pressing[J]. Materials Research Society Symp,2000,601:353-358.
    [52]Zhang Z, Xi M Z, Wang J T. Investigation on grain refinement of 7475 aluminum alloy through ECAP[J]. Light Alloy Fabrication Technology,2000,10(28):37-39.
    [53]Mckenzie P W J, Lapovok R. ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1:Microstructure[J]. Acta Materialia,2010,58:3198-3211.
    [54]罗许,史庆南,刘韶华,等.对6061铝合金超细晶制备及其组织性能的研究[J].材料热处理学报,2009,30(3):71-75.
    [55]陈海红.等径角挤压法细化大尺寸铝棒材晶粒尺寸的研究[D].南宁:广西大学硕十论文,2008.
    [56]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075A1 alloy processed by ECAP and their evolutions during annealing[J]. Acta Materialia,2006,15(52):4589-4599.
    [57]魏伟.块体超细晶铜的制备与组织性能研究[D].南京:南京理工大学硕十论文,2004.
    [58]Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra fine grain Cu-Cr-Zn alloy produced by equal-channel angular pressing[J]. Acta Materialia,2002,50: 1639-1651.
    [59]Kim I, Kim J, Shin D H, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J]. Materials Science and Engineering A,2003,342(2): 302-310.
    [60]Kim I, Jeong W S, Kim J, et al. Deformation structures of pure Ti produced by equal channel angular pressing[J]. Scripta Materialia,2001,45(5):575-581.
    [61]付文杰.工业纯钛室温ECAP变形工艺及组织性能研究[D].西安:西安建筑科技大学硕士论文,2008.
    [62]夏翠芹,刘平,任凤章,等.细晶变形镁合金的研究进展[J].材料导报,2006,20(9):89-92.
    [63]李萧,杨平,李继忠,等.等通道挤压对AZ80镁合金的组织和织构的影响[J].金属铸锻焊技术,2010,39(1):85-91.
    [64]Suwas S, Gottstein G, Kumar R. Evolution of crystallographic texture during equal channel angular extrution (ECAE) and its effects on secondary processing of magnesium[J]. Material Science and Engineering A,2007,471:1-14.
    [65]Chen B, Lin D L. Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties[J]. Materials Science and Engineering A,2008, 483-484:113-116.
    [66]Geng H B, Kang S B, Min B K. High temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing[J]. Materials Science and Engineering A, 2004,373:229-238.
    [67]Berbon P, Furukawa M, Horita Z, et al. An investigation of the properties of an Al-Mg-Li-Zr alloy after equal-channel angular pressing[J]. Material Science Forum,1996,217-222: 1013-1018.
    [68]Horita Z, Furukawa M, Nemoto M. Superplastic forming at high strain rates after severe plastic deformation[J]. Acta Materialia,2000,48:3633-3640.
    [69]Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A,2001,300:142-147.
    [70]Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J]. Materials Science and Engineering A,2005,402:250-257.
    [71]王斌,易丹青,方西亚,等.ZK60镁合金高温动态再结晶行为的研究[J].材料工程,2009,11:45-50.
    [72]林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[D].上海:上海交通大学博士论文,2008.
    [73]Watanabe H, Mukai T, Ishikawa K, et al. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia, 2002,46:851-856.
    [74]Balogh L, Figueiredo R B, Ungar T, et al. The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP[J]. Materials Science and Engineering A,2010,528:533-538.
    [75]Orlov D, Raab G, Lamark T T, et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing[J]. Acta Materialia, 2011,59:375-385.
    [76]Kim H S, Seo M H, Hong S I. On the die corner gap formation in equal channel angular pressing[J]. Materials Science and Engineering A,2000,291:86-90.
    [77]Yoon S C, Seo M H, Kim H S. Preform effect on the plastic deformation behavior of workpieces in equal channel angular pressing[J]. Scripta Materialia,2006,55:159-162.
    [78]Oh S J, Kang S B. Analysis of the billet deformation during equal channel angular pressing[J]. Materials Science and Engineering A,2003,343:107-115.
    [79]Lee S C, Ha S Y, Kim K T. Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP[J]. Materials Science and Engineering A,2004,371:306-312.
    [80]Baik S C, Estrin Y, Kim H S, et al. Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing[J]. Materials Science and Engineering A,2003,351:86-97.
    [81]Semiatin S L, DeLo D P. Equal channel angular extrusion of difficult-to-work alloys[J]. Materials Science and Engineering A,2000,21(4):311-322.
    [82]Wu P D, Huang Y, Lloyd D J. Studying grain fragmentation in ECAE by simulating simple shear[J]. Scripta Materialia,2006,54:2107-2112.
    [83]Figueiredo R B, Pinheiro I P. The finite element analysis of equal channel angular pressing (ECAP)-considering the strain path dependence of the work hardening of metals[J]. Journal of Materials Processing Technology,2006,180:30-36.
    [84]Dumoulin S, Roven H J, Werenskiold J C, et al. Finite element modeling of equal channel angular pressing:Effect of material properties, friction and die geometry[J]. Materials Science and Engineering A,2005,410-411:248-251.
    [85]Alkorta J, Sevillano J G. A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP)[J]. Journal of Materials Processing Technology, 2003,141:313-318.
    [86]赵祖德,张晓华,罗守靖.AZ91D镁合金等径道角挤压制备半固态坯数值模拟[J].铸造·锻压,2007,36(5):52-55.
    [87]毕见强,孙康宁,刘睿,等.等径角挤压过程的计算机模拟[J].塑性工程学报,2005,12(4): 85-87.
    [88]赵美荣,许树勤.等通道转角挤压工艺有限元分析[J].热加工工艺,2005,(1):31-33.
    [89]唐向前.纯铜等径角挤压过程计算机模拟研究[D].兰州:兰州理工大学硕士论文,2009.
    [90]运新兵,宋宝韫.连续等径角挤压及其成形过程的三维数值模拟[J].塑性工程学报,2006,13(4):38-42.
    [91]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术(Ⅱ)变形行为模拟[J].中国有色金属学报,2003,13(2):251-256.
    [92]徐淑波,赵国群.等通道弯角挤压变形机理模拟与工艺参数优化[J].塑性工程学报,2004,11(3):22-26.
    [93]居志兰,戈晓岚,许晓静.ECAP细化晶粒法的仿真与分析[J].材料科学与工程学报,2003,21(2):254-255.
    [94]吴炬,向国权,程先华.模具外接圆弧角对纯铝ECAE影响的有限元分析[J].上海交通大学学报,2005,39(7):1063-1065.
    [95]Horita Z, Fujinami T, Langdon T G. The potential for scaling ECAP:effect of sample size on grain refinement and mechanical properties[J]. Materials Science and Engineering A, 2001,318:34-41.
    [96]Stolyarov V V, Zhu Y T, Raab G I, et al. Effect of initial microstructure on the microstructural evolution and mechanical properties of Ti during cold rolling[J]. Materials Science and Engineering A,2004,385:309-313.
    [97]Srinivasan R, Cherukuri B, Chaudhury P K. Scaling up of equal channel angular pressing (ECAP) for the production of forging stock[J]. Material Science Forum,2006,503-504:371.
    [98]Ferrasse S, Segal V M, Alford F, et al. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries[J]. Materials Science and Engineering A,2008,493:130.
    [99]Frint P, Halle T, Wagner MF-X, et al. Scaling up the equal-channel angular pressing process a study on a 6000 aluminium alloy [J]. Material wiss u Werkstofftechnik,2010,41:814.
    [100]Frint P, Hockauf M, Halle T, et al. Microstructural features and mechanical properties after industrial scale ECAP of an Al-6060 alloy[J]. Material Science Forum,2011,667-669: 1153-1158.
    [101]Budems, Feintool, Hoeseh. Cold forming and fine blanking [M]. France,1997.
    [102]张先宏.镁合金热变形过程实验研究和数值模拟[D].上海:上海交通大学硕士学位论文,2003.
    [103]李海江.镁合金挤压成形工艺及数值模拟的研究[D].武汉:华中科技大学硕士学位论文,2003.
    [104]林巍.ZK60镁合金热挤压变形组织及力学性能的研究[D].武汉:武汉理工大学硕士学位论文,2009.
    [105]魏文婷.ZK60镁合金等温挤压成形及组织性能变化规律研究[D].武汉:武汉理工大学硕士学位论文,2010.
    [106]Delo D P, Semiatin S L. Finite-element modeling of non-isothermal equal-channel angular extrusion [J]. Metallurgieal and Materials Transactions A,1999,30(5):1391-1402.
    [107]夏巨谌.典型零件精密成形[M].北京:机械工业出版社,2008.
    [108]邓小宾.锥齿轮冷摆辗精密成形规律和工艺参数优化设计[D].武汉:武汉理工大学硕士学位论文,2010.
    [109]席海霞.ZK60镁合金挤压过程数值模拟研究[D].哈尔滨:哈尔滨理工大学硕士学位论文,2009.
    [110]覃银江,潘清林,何运斌,等.ZK60镁合金高温流变本构模型[J].中南大学学报(自然科学版),2010,41(5):1774-1781.
    [111]Alexandrov I V, Raab G I, Shestakova L O, et al. Tungsten, hard metals and refractory alloys[J]. Metal Powder Industries Federation,2000,5:27.
    [112]Furuno K, Akamatsu H, Oh-ishi K, et al. Microstructural development in equal channel angular pressing using a 60°die[J]. Acta Materialia,2004,52:2497-2507.
    [113]陈再枝,蓝德年.模具钢手册[M].北京:冶金工业出版社,2002.
    [114]Barlat F, Duarte J F, Gracio J J, et al. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample[J]. International Journal of Plasticity,2003,19(8): 1215-1244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700