超声金属表面纳米化及摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的组织结构直接影响着材料的使用性能,为了满足工作环境对材料的特殊需求,人们提出了多种表面改性技术。与传统的表面改性处理工艺措施相比,超声表面加工处理是一种方便、高效、低成本的方法,它能在金属机械零部件的表面大规模获得纳米结构表层的同时,还获得表面几何形态纳米化,从而提高金属的表面性能。
     本文采用天津大学焊接教研室研制的TJU-UMSNT-I型超声表面纳米加工处理装置对45钢、40Cr钢和铸铝棒材进行加工处理。利用透射电子显微镜对加工后的样品表面进行微观结构分析,用高精度电感式粗糙度仪对加工后的样品表面粗糙度进行测定,用显微硬度计分析加工后样品的硬度随厚度方向的变化关系,用扫描电子显微镜对摩擦磨损试验后,加工前后样品表面磨损程度进行分析。
     分析结果如下:
     (1)经超声表面加工处理后,在45钢、40Cr钢和铸铝的表层形成了等轴纳米晶结构表层,晶粒取向呈随机分布,同时形成了高密度的位错缠结,与原始晶粒尺寸相比,晶粒得到了很大程度的细化。
     (2)经超声表面加工处理后,45钢和40Cr钢的表面粗糙度显著降低,并形成光洁的表面,表面质量明显提高。
     (3)经超声表面加工处理后,45钢和40Cr钢的表面硬度与心部相比显著提高,且硬度值随着距表面距离的增大而减小。
     (4)经超声表面加工处理后,40Cr钢的表面磨擦系数比原始样品的低,且磨损重量有所降低,表面耐磨性得到了提高。
The structure of material has direct effect on its usages. People put forward many methods of surface performance improvement to meet the demands of working conditions. Comparing with traditional surface performance improvement technic, ultrasonic surface processing is a convenient, high efficiency and low cost technology. Nanostructured layers were fabricated on the metal machines and parts by ultrasonic processing, as well as geometrical modality nanocrystallization was formed, so the surface performance was advanced.
     In this paper, the samples of 45 steel, 40Cr steel and aluminum alloy were processed by TJU-UMSNT-Ⅰultrasonic surface nanocrystallization device, which is made in Welding institute in Tianjin University. Observe microstructure on the treated sample by Transmission Electron Microscope, determine the roughness on the treated sample by high precision inductance type roughometer, analyze the relation between the hardness and distance from surface on the treated sample by micro-sclerometer and analyze abrasion degree on the samples treated before and after by Scanning Electron Microscope.
     Results are as follow:
     (1) Equiaxed crystal nanostructured surface layers were fabricated on 45 steel, 40Cr steel and aluminum alloy by ultrasonic processing. The grain orientation takes on random distribution, at the same time, high-density dislocation tangle is formed and the grain is highly refined.
     (2) The surface roughness is significantly reduced of 45 steel and 40Cr steel after ultrasonic processing, smooth surface comes into being and the surface quality is obviously improved.
     (3) The surface hardness of 45 steel and 40Cr steel highly increased after ultrasonic surface processing, comparing with the center of the samples. Hardness falls as the distance to the surface increases.
     (4) After ultrasonic processing, friction factor is smaller than original sample of 40Cr, wearing capacity is reduced and surface resistance to abrasion is enhanced.
引文
[1] 程存弟,贺西平,功率超声振动系统研究进展,声学技术,1995,14(2):87~90
    [2] 《电子工业技术词典》编委会,电子工业技术词典——超声,北京:国防工业出版社,1977
    [3] 叶邦彦,周泽华,超声振动切削改善硬脆材料加工性的研究,华南理工大学学报,1994,22(5):132~137
    [4] 赵波,工程陶瓷发动机缸套零件超声振动磨削研究(?),金刚石与磨料磨具工程,1997,120(6):26~31
    [5] P.Hu,J.M.Zhang, Z.J.Pei, Clyde Treadwell.Modeling of material removal rate in ratary ultrasonic machining: designed experiments, Journal of Materials Processing Technology, 2002, 129:339~344
    [6] 章伟,陈澄洲,张发英,罗干英,明冬兰,电解、磨粒、超声复合加工技术及其加工表面粗糙度的预测方法,工具技术,1998,32(2):20~23
    [7] L.M.洛巴诺夫,巴顿焊接研究所在结构焊接及强度领域的最新研究方向,第九届全国焊接会议论文集,黑龙江:黑龙江人民出版社,1999:48~52
    [8] 张立德,牟季美,纳米材料和纳米结构,科学出版社,(2001) 1-525
    [9] G.D.Hughes , S.D.Smith , C.S.Pande , H.R.Johnson and R.W.Armstrong ,Hall-Petch strengthening for the micro hardness of twelve nanometer grain diameter electrodeposited nickel,Scripta Metall.,20(1986)93-97
    [10] S.R.Agnew , B.R.Elliott , C.J.Youngdahl , K.J.Hemker and J.R.Weertma ,Microstructure and mechanical behavior of nanocrystalline metals ,Mater.Sci.Eng.,A285(1-2)(2000)391-396
    [11] H.Chang,H.J.Hofler,C.J.Altstetter and R.S.Averback,Synthesis,processing and properties of nanophase TiAl,Scripta Metall.Mater.,25(5)(1991)1161-1166
    [12] 蔡树芝,牟季美,张立德,程本培,纳米非晶氮化硅健态结构的 X 射线径向分布函数研究,物理学报,41(10)(1992)1620-1626
    [13] K.Lu,J.T.Wang and W.D.Wei,Thermal expansion and specific heat capacity of nanocrystalline Ni-Palloy,Scripta Metall. Mater.,25(1991)619-623
    [14] Birringer R, Gleiter H, Klein H P, Marquardt P, phys Lett, 1984;102A;356
    [15] Lu K. Nanocrystalline metals crystallized from amorphous solids nanocrystallization, structure and properties[J]. Materials Science and Engineering R,1996,16(4) :161.
    [16] Koch C C. Synthesis of nanostructured materials by mechanical milling problems and opportuities [J]. Nano structured Materials,1997,9(1) :13.
    [17] Saito Y, Tsuji N. Utsunomiya H, Sakai T, Hong R G. Scripta, Mater.1998,39:1221
    [18] Erb U, EI-Sherik A M, Palumbo G, Aust K T. Nanostr Mater 1993 ;383
    [19] K. Ku, J. Lu. Surface Nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach [J]. J Mater Sci Technol. 1999,15(3);193~197.
    [20] Tao N R, Wang Z B,Tong W P,et al.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Mater,2002,50 :4603-4616
    [21] Liu G, Lu J,Lu K.Surface nanocrystallization of 316L strainless steel induced by ultrasonic shot peening[J]. Mater SciEng, 2000, A286 : 91-95
    [22] 王吉孝、王志平、霍树斌.16MnR 钢焊接接头表面纳米化及接头抗 H2S 应力腐蚀性能[J].焊接,2005 年 2 期:13-16
    [23] Liu G ,Wang S C ,Lou X F ,et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scr Mater, 2001, 44:1791-1795.
    [24] Wu X,Tao N,Hong Y,et al.Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP [J].Acta Mater,2002,50 :2075-2084
    [25] 冯 淦,石连捷,吕 坚,卢 柯,低碳钢超声喷丸表面纳米化的研究,金属学报,2000,36:785~789
    [26] 孙希泰,金属表面强化技术,北京:化学工业出版社,2005
    [27] 林书玉,匹配电路对压电陶瓷超声换能器振动性能的影响,压电与声光, 1995,(17): 27~31
    [28] 鲍善惠,用电流角分析超声换能器的匹配问题,声学技术,Vol.15:175~177
    [29] 林书玉,超声换能器的原理及设计,北京:科学出版社,2004
    [30] 林仲茂,超声变幅杆的原理和设计,北京:科学出版社,1987
    [31] Frommberger, Moritz, A simple and robust set-up for on-column sample preconcentration-Nano-liquid chromatography-Electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones, Analytical and Bioanalytical Chemistry, 2004, 378(4):1014~1020
    [32] Wang,Yanli, Influence of sample surface condition on nano indentation experiment, Rare Metals, 2002, 21(2):131~132
    [33] Zhang, H., Dynamic friction of nano-materials, AIP Conference Proceeding, 2000, 505(2):1225~1228
    [34] 常铁军、祁欣等,材料近代分析测试方法,哈尔滨:哈尔滨工业大学出版社,1999,106~112
    [35] 王培铭、许乾慰主编,材料研究方法,北京:科学 出版社,154-155
    [36] 许云华、袁善良、罗勤业、朱金华,高能量冲击接触载荷下高锰钢磨损机理的研究,热加工工艺,2000 年 1 期:10~12
    [37] 许云华、熊建龙、陈瑜眉,朱金华,冲击接触加载下高锰钢表层纳米结构及其特异耐磨性,自然科学进展:国家重点实验室通讯,2001 年 11 卷 3 期:282~287
    [38] 许云华、熊建龙、武红等,冲击接触载荷下 45 钢的微观塑性变形特征与损伤,2000 年 8 月,第 36 卷第 8 期。
    [39] 匡震邦,顾海澄等. 材料的力学行为[M]. 北京:高等教育了版社,1998
    [40] Kuhlmann-Wilsdorf D,Van der Merwe J H.Mater Sci Eng,1982,(55) :79
    [41] 徐滨士主编,纳米表面工程,北京:化学工业出版社,373-375
    [42] 翟绪圣编著,表面粗糙度测量,北京:中国计量出版社,1-5
    [43] 曹凤国主编,超声加工技术,北京:化学工业出版社,2005,162~163
    [44] Jang J S C, Koch C C. Hall-petch relationship in nanocrystalline iron produced by ball milling [J]. Scr Metall Mater,1990,24:1599-1604.
    [45] 邵荷生、曲敬信、许小棣、陈华辉编著,摩擦与磨损,北京:煤炭工业出版社,1992,142~150
    [46] E.A.马尔钦柯[苏]著,何世禹译,金属表面摩擦破坏实质,北京:国防工业出版社,1990,105~112
    [47] 鲁德曼[美]著,赵玉和等译,摩擦、磨损、粘着与润滑,四川:成都科技大学出版社,1988,83~85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700