无磷洗涤剂助剂——层状二硅酸钠的合成与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三聚磷酸钠是性能优良的合成洗涤剂助剂,但它是封闭或半封闭水体富营养化的原因之一,寻找其替代品已成为一个热点课题。层状二硅酸钠由于具有优良的阳离子脱除能力、碱性适中、与洗涤剂其它成分配伍性能好被认为是优良的无磷洗涤剂助剂,具有良好的工业前景。
     本文对新型无磷助洗剂—层状二硅酸钠的合成规律、基本特性、二价阳离子脱除机理、在水溶液中的相变化规律、δ-层状二硅酸钠晶体结构稳定性、高稳定性δ-层状二硅酸钠工业化生产等问题进行了比较系统的研究,并取得了阶段性的进展。
     本文选取模数为1.5-2.4的液体硅酸钠为原料,不添加晶种,在温度介于630-780℃条件下,比较系统地研究了δ-层状二硅酸钠的合成规律。
     研究证明,以模数为2.1-2.2水玻璃作为原料,在660-780℃的温度范围内晶化2-8分钟,可以合成δ-层状二硅酸钠含量高于80%的样品。其中,模数2.1-2.2水玻璃作为原料,在720-750℃的温度范围内晶化2-5分钟,可以合成δ-层状二硅酸钠的纯相。突破了国际上通行的需要加入晶种来促进δ-层状二硅酸钠结晶的观点。
     以α-与δ-层状二硅酸钠复合相为α-层状二硅酸钠的晶体结构诱导剂,在780±10℃的温度范围内,快速合成α-层状二硅酸钠的纯相,有效地把α-层状二硅酸钠的晶化时间从10小时,缩短到2小时以内。
     在25-60℃,研究了层状二硅酸钠的钙、镁离子脱除特性,并与4A沸石、速溶硅酸钠、偏硅酸钠进行比较。实验结果表明,δ-层状二硅酸钠具有明显高于4A沸石的镁离子脱除能力。δ-层状二硅酸钠的钙离子脱除容量,在所研究的范围内(助剂浓度0.1-0.02%),随着
Although pentasodium phosphate (STPP) was a detergent builder with good washing ability it was also one reason of which induce eutrophication in close or semi-close water area. So, to search a substitution of STPP is becoming ever important. Layered sodium disilicates (Na_2Si_2O_5) have good ion binding capacity, provide appropriate water alkalinity; and may cooperate with other composition in good method, They were considered as excellent non-phosphate detergent builder and have good prospect for substituting STPP.In this paper, some problems about layered sodium disilicates, such as, synthesis conditions, properties, bivalent ion binding mechanism, hydrolysis rules, etc, have been studied.When constant temperature was chosen between 630-800 °C, the synthesis conditions of layered sodium disilicates have been systemic researched by using sodium silicate (modulus =1.5-2.4)as source.The data proved that the phases of layered sodium disilicate can be obtained without any seed when the modulus of sodium silicate was from 2.1 to 2.2 and constant temperature was from 660-780°C. 5 layered sodium disilicate (content of 5 phase >80%) may be synthesized at 660-780°C for 2-8 minutes. The pure phase of δ-Na_2Si_2O_5 can be prepared at 720-750°C for 2-5 minutes by employing sodium silicate with
    modulus=2.1-2.2 as source material. This is a new discovery because common preparing method of 5-Na2Si2Os is adding seed to accelerate the crystalline of 5-Na2Si2O5.By using mixture phase of 5-Na2Si205 and a-Na2Si205 as structure direct agent, the pure phase of a-Na2Si2Os was synthesized at 780 ± 10"C. This way may short the crystalline time and improve the purity of synthesized samples.The Ca2+ and Mg2+ ion binding properties of layered sodium disilicate were studied at 25-60°C. The data were compared with the properties of zeolite 4A, amorphous sodium silicate and sodium metasilicate. The experimental results proved that 5-Na2Si2Os had higher Mg"+ ion binding capacity than zeolite 4A did. In researched field (builder's concentration 0.1 -0:02%), Ca2+ ion binding capacity of 5-Na2Si205 increased with the decrease of builder's concentration. This was a different peculiarity to other builders.High stability 5-Na2Si205 has been prepared by adding Al element as framework stable agent and let it to enter the framework of 5-Na2Si;O5. The synthesized samples may keep as 5 phase and did not transformed into |3 phase after they were marinated in hot water (80±2°C) for 60 minutes. The method improved the framework stability of 5-Na2Si:O5. The experimental data proved that Ca2+ ion binding capacity of 5-Na2Si205 would decrease 30% after it was marinated in hot water (80 + 2 °C ) for 60 minutes;-' but, Ca2+ ion binding capacity of Al-5-Na2Si2O5 only decreased 5% through the same process. According to the XRD data of Al-5-Na2Si205, adding Al element may effectively restrict the form of a-Na2Si205. MAS NMR characterized the atom coordination of Al-5-Na2Si205. It was demonstrated that Al element existed in oxide and substituted the site of SiO2.In the experiments, the qualitative and quantitative methods have been found for measuring the stability of 5 layered sodium disilicate in
    powder detergent's manufacture process. By above technology, the framework stability and dissolubility of Al-8-Na2Si205 were studied in the solution of Na2CO3, Na2SO4, water glass, and LAS. The experiments demonstrated that Na2CC>3 and water glass may accelerate the phase transformation of Al-5-Na2Si205 in hot water. LAS had not clear effect on the phase transformation of Al-5rNa2Si205. Na2SO4 may restrict the phase transformation of Al-5-Na2Si20s. It was proved that Al-5-Na2Si205 may keep as 5-Na2Si205 within two hours (65-70°C) in supersaturation solution ofNa2SO4.XRD, SEM, FT-IR and ion binding rate characterized the hydrolysis samples of 5-Na2Si20s from different solutions. The data showed that , in tap water, a part of 5-Na2Si20s transported to kanemite- a layered sodium silicate with ion exchange ability, another part of 8-Na2Si205 dissolved into water and formed deposit through bonding with Ca2+ and Mg2+. The data proved that the Rieck's conclusion about its ion binding process was incompletion; the process whicja 5-Na2Si205 removed divalent ions has the characteristic of ion exchange and precipitation.The manufacture of Al-5-Na2Si20s (10000 tons/year) had been achieved by referring the basic data from laboratory and employing suitable synthesis conditions. The product was soft and its apparent gravity was in 0.30-0.65. The content of 5-Na2Si205 in manufactured product was higher than that in current other products. It was proven that high stability Al-5-Na2Si205 (product name: HSST-l)had good application effect.
引文
1.法尔勃 J.,日用制品中的表面活性剂—理论、生产技术和应用,中国石化出版社,1994,p456:
    2. Michael S. Showell, Powdered Detergents, Marcel Dekker, Inc., 1998, 45;
    3. Krings Peter, 50 Years of Detergent Development, 39 International Detergency Conference:
    4.姚晨之,李晓辉,我国无磷洗衣粉现状,日用化学品科学,1999(增刊):149-153:
    5.杜志平,张高勇.洗衣粉代磷助剂的现状和发展趋势.日用化学品科学,1999(增刊):154~157;
    6.Coffey R. and Gudowicz T., Trends in siliceous builders, Chemistry and Industry, 1990, (6):169-172:
    7.温尚英,偏硅酸钠综述,无机盐工业,1998,30(3):18-20;
    8. Brown, Graham Thomas; Osinga, Theo Jan; Parkington, Michael John et. al., Zeolites P, process for its preparation and its use in detergent compositions, EP0,384,070, A2, 1989;
    9. Leon McCulloch, A new highly silicious soda-silica compound, J. Am. Chem. Soc.,1952, 74: 2453-2456;
    10. Pant A. K. and Cruickshank D. W. J., The crystal structure of α-Na_2Si_2O_5 Acta Crystallogr., 1968, (B24): 13-19;
    11. A. K. Pant, A reconsideration of crystal structure of β-Na_2Si_2O_5 Acta Crystallogr., 1968, (B24): 1077-1083;
    12. Hoffmann Von W. und Scheel H.-J., Uber die γ- und δ-modifikationen des natriumdisilikates, Zeitschrift fur Kristallographie, 1969, 129:396-404;
    13. Apperley David C., Hudson Michael J., Keene Matthew T. J. and Knowles James A., Kanemite (NaHSi_2O_5·3H_2O) and its hydrogen-exchanged form, J. Mater. Chem., 1995, 5(4):577-582;
    14. Celine Eypert-Blaison, Emmanuel Sauzeat, Manuel Pelletier, Laurent J. Michot, Frederic villieras and Bernard Humbert, Hydration Mechanisms and Swelling Behavior of Na-Magadiite, Chem. Mater., 2001, 13:1480-1486;
    15. Her R. K., Ion exchange properties of a crystalline hydrated silica, J. Colloid Science, 1964, 19:648;
    16. Klaus Beneke, Gerhard Lagaly. Kanemite-innercrystalline reactivity and relations to other sodium silicate, American Mineralogist, 1977, 62: 763-771;
    17. Hans-Peter Rieck, Process for the preparation of crystalline sodium silicates, USP 4,585,642 (1986);
    18. Hans-Peter Rieck, Martin Schott, Process for the preparation of crystalline sheet-type alkali metal silicates, USP 4,806,327 (1989);
    19. Hans-Peter Rieck, washing and cleaning agent containing surfactants, builder, and crystalline sodium silicates, USP 4,820,439 (1989);
    20. Hans-peter Rieck, Builders.The Backbone of powdered detergent, Powdered detergents, edited by M. S. Showell, Marcel Dekker, Inc., 1998,p62;
    21. Fleet M. E., Henderson G. S., Epsilon sodium disilicate: A High-pressure Layer Structure[Na_2Si_2O_5], J. Solid State Chemistry, 1995,119:400-404;
    22. Rabic S., Kahlenberg V., Schmidt B. C, Hydrothermal synthesis and structural characterization of k - Na_2Si_2O_5 and Na_1.84K_0.16Si_2O_5, Solid State Science, 2003, 5:473-480;
    23 . Rabic S., Kahlenberg V., Weidenthaler C, Zibrowius B., Structure Characterization of high-pressure C-Na_2Si_2O_5 by single-crystal diffraction and ~29Si MAS NMR, Phys. Chem. Minerals, 2002,29:477-484;
    24. Bauer H., Schimel G, Jurges P., The evolution of detergent builders from phosphates to zeolite to silicates, Tenside. Surf. Det. 1999,36 (4) :225-229;
    25. Wilkens J., Structure-property relationships of sodium disilicates, Tenside Surf. Det, 1995,32(6):476;
    26. Lucas A., Rodriguez L., Sanchez P., Lobato J., Modelization of the retention capacity of Ca~2+ and Mg~2+ on the builder δ-Na_2Si_2O_5, Tenside. Surf. Det. 2002,39
     (4):94-99:
    27.王勤、王莹,高效助剂—复合二硅酸钠的物理化学性能及在洗衣粉中的应用,日用化学工业,1999,(3):4-7;
    28. Hans-Peter Rieck, M. Schott, W. Gohla, Process for the preparation of crystalline sheet sodium silicates, USP4,950,310, 1990;
    29. Hannsjorg Ulrich, Erftstadt; Lothar Westermann, Rinsing composition free from phosphate, USP4,959,170(1990);
    30. Bauer H., Schimel G., Neue aspekte bei der anwendung des builder-silicates SKS-6, Tenside. Surf. Det. 1997,34 (6) :425-428;
    31. Yamashita; Hiroyuki, Yamaguchi; Shu, Kubota; Teruo, Kasai; Katsuhiko, Tamura; Shigeru, Tsumadori; Masaki, Method for producing crystalline alkali metal silicate granules and granular high density detergent, USP 6,521,585 (2003);
    32. Fenney; Michael Keith, Urquhart; David, Detergent compositions comprising aggolomerates of layered silicate and anionic surfactant, USP 6,610,644, 2003;
    33. Binstock; Gary, Cummings; Bruce, Kenkare; Divaker, Kinscherf; Kevin, Phillips; Steve, Powdered automatic dishwashing composition, USP 6,191,088(2001);
    34.南风集团技术中心日化室,4A沸石、层状二硅酸盐在无磷洗衣粉中应用研究,日用化学工业信息,2002,(2):3-5;
    35.廉根旺、许海涛、徐红,无磷洗涤剂助剂δ相层状二硅酸钠的快速合成研究,中国洗涤用品工业,2003,(4):62-64;
    36.夏纪华,晶态层状结构二硅酸钠机理性能研究,无机盐工业,2000,32(4):19-21;
    37. Lucas A. de, Rodriguez L., Lobato J., Sanchez P, Synthesis of crystallineδ-Na_2Si_2O_5 from sodium silicate solution for use as a builder in detergents, Chemical Engineering Science, 2002, 57:479-486;
    38. Falamaki C., Crystallization of δ-Na_2Si_2O_5-rich layered silicate from sodium silicate solutions: seeding and temperature programmed δ phase embryo creation, J. European Ceramic Society2003, 23:697-705;
    39. Lucas A. de, Rodriguez L., , Sanchez P., Lobato J., Synthesis of crystalline layered sodium silicate from amorphous silicate for use in detergents, Ind. Eng. Chem, Res., 2000, 39:1249-1255;
    40. Lucas A. de, Rodriguez L., Lobato J., Sanchez P., Effect of particle size of starting materials on the Synthesis of crystalline layered sodium silicate for use in detergents, Ind. Eng. Chem. Res., 2001, 40:2580-2585;
    41. Blum Helmut, Breuer Wolfgang and Dolhaine Hans, Verfahren zur niedertemperatursynthese kristalliner disilicate-Ⅰ,DE 4,421,850(1995);
    42. Cuntber Schimmel, Michael Kotzian, and Reinhard Gradl, Process for the preparation of crystalline sodium silicates, USP:5183651 (1993);
    43. Eric von Reheren Borgstedt, P. Denkewicz Raymond, Jr, Crystalline hydrated layered sodium and potassium silicates and method of producing same, WO 95/354506;
    44. Srdjan Raki'c, Volker Kahlenberg, Single crystal structure investigation of twinned NaKSi_2O_5—a novel single layer silicate, Solid State Sciences 3 (2001) 659-667;
    45. Jong B.H.W.S. de, Slaats P.G.G., Super H.T.J., Veldman N., Spek A. L., Extend structures in crystalline pbhyllosilicates:silica ring systems in lithium, rubidium, cesium, and cesium/lithium phyllosilicate, Journal of Non-Crystalline Solids, 1994, 176:164-171;
    46. Jong B.H.W.S. de, Slaats P.G.G., Super H.T.J., Spek A. L., Veldman N., Nachtegaal G., Fischer J. C., Mixed alkali systems:structrure and ~(29)Si MAS NMR of Li_2Si_2O_5 and K_2Si_2O_5, Acta Cryst. 1998, B54:568-577;
    47.周明义、乔辉、焦翠云,新一代洗衣粉助洗剂—层状结晶二硅酸钠,现代化工,1999,19(6):18-20;
    48.王敬、于少明、杨保俊、单承湘,新型无磷洗涤助剂层状结晶硅酸钠的研制,合肥工业大学学报(自然科学版),2000,23(6):996-998;
    49.梁红玉、张连红、宫红,新型无磷洗涤剂助剂—层状硅酸盐的研制,抚顺石油学院学报,2002,22(2):30-32;
    50. Kahlenberg V., Dorsam G., Wendschuh-Josties M., The Crystal Structure of δ-Na_2Si_2O_5, J. of Solid State Chem., 1999(146):380-386;
    51. Woinarschy A., Isopescu R., Filipescu L., X-ray pattern identification of crystallized sodium Disilicatemixture, Crystal.Res.Technol., 2000,35(8):969-977;
    52. Gerard van Dalen and Cees Vooijs, Determination of the zeolite and silicate content in detergent products by wavelength-dispersive x-ray fluorescence spectrometry, X-Ray Spectrom. 2000; 29: 365-372;
    53.. Mortuza M. G, Dupree R., Holland D., Devitrification of sodium disilicate glass: a NMR study, J. Materials Science, 1998,33:3737;
    54. Minoru Hanaya and Robin K. Harris, Two-dimensional ~23Na MAS NMR study of layered silicates, J. Mater. Chem., 1998, 8(4): 1073-1079;
    55. Thomas J. Pinnavaia, Ivy D. Johnson and Max Lipsicas, A ~29Si MAS NMR study of tetrahedral site distributions in the layered silicic acid H+ magadiite(H_2Si_14O_29 · nH2O) and Na+ magadiite(Na_2Si_14O_29 · nH2O), Journal of Solid State Chemistry, 1986, 63:118-121;
    56. Heidemann D., Hubert C., Schwieger W., Grabner P., Bergk K.-H., and Sarv P., ~29Si und 23Na-festkorper-MAS-NMR-untersuchungen an modifikationen des Na_2Si_2O_5, Z. Anorg. Allg. Chem.,1992, (617):169-177;
    57 . Huang Yining, Jiang Zhimei and Schwieger Wilhelm, A vibrational spectroscopic study of kanemite, Microporous and Mesoporous Material, 1998, 26: 215-219;
    58. Huang Yining, Jiang Zhimei and Schwieger Wilhelm, A structural investigation of the singly layered silicates, silinaite and makatite, by vibrational spectroscopy, Can. J. Chem.. 1999,77:495-501;
    59. Robert C. Weast, Melvin J. Astle, and William H. Beyer, CRC Handbook of Chemistry and Physics, 69th Edition, CRC Press, Inc., B-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700