8-羟基喹啉、邻羟基苯乙酮类席夫碱衍生物的光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
8-羟基喹啉具有良好的光化学性能,尤其是在其5位与7位合理修饰不同取代基团时,其光学性能和化学性质可以获得很大的提高。当其5/7位取代衍生物同金属离子如铝、锌、镁、镉等结合后可以得到光学性能优异的稳定金属配合物,并可以广泛的用于OLED、LED等光学材料的研究开发中。如果在5/7位修饰特定的如席夫碱等可以提供配位点的取代基团时,也可以实现对环境及生物体内金属离子的荧光选择性识别。镁离子同人体、植物的生命活动息息相关,过多的镁离子会对生物体造成极大的伤害,会导致心脑血管疾病、偏头痛等重要症状,严重损害人体的健康。尤其当绿色植物体内的镁离子过多或过低时,均会对其光合作用过程造成严重的损害。因此,对镁离子的生物体和环境检测具有重要意义。铝离子在环境中会对植物、鱼类造成严重损害。当人体内铝含量过多时,会导致疾病的发生。邻羟基苯乙酮类席夫碱衍生物由于其特定的空间结构和绑定位点的存在,使得其可以对铝离子进行有效地绑定形成稳定的铝配位化合物,同时表现出优越的光学性能,可以实现对铝离子的有效检测。因此研究8-羟基喹啉和邻羟基苯乙酮席夫碱衍生物光学性能具有重要的应用意义。
     在本文中,设计合成了一系列的以8-羟基喹啉-5/7-醛和邻羟基苯乙酮类骨架为母体的腙和酰腙类衍生物。8-羟基喹啉-5/7-甲醛-(三羟甲基氨基甲烷)腙具有良好的光学性质,在发光材料发面具有很好的应用前景。8-羟基喹啉-5-醛-苯并三唑酰腙对镁离子表现出了良好的选择性和灵敏性,且发光机理可以很好的用光诱导电子转移机理来解释。4-甲氧基邻羟基苯乙酮-(4-氨基安替比林)腙、2,6-二羟基苯乙酮-(4-氨基安替比林)腙、2,4-二羟基苯甲醛-(4-氨基安替比林)腙均可以对铝离子实现有效的荧光检测,通过对比结构,我们发现具有该类邻羟基苯乙酮结构的有机分子对铝离子均可进行有效的绑定并表现出良好的光学性能,这为设计更加有效的铝离子荧光传感器提供了新的方向。
8-hydroxyquinoline have good photochemical properties, especially when the5or7points reasonable modified by different substituent groups, its optical properties and chemical properties can be greatly improved. The5/7-substituted derivatives can bind with metal ions such as aluminum, zinc, magnesium, cadmium, etc., forming stable metal complexes with excellent optical properties, and can be widely used in the research and development of optical material, such as OLED and LED.5/7modified8-hydroxyquinoline, such as Schiff-base, etc., may provide the coordination sites by substituent groups, can also be achieved the selective recognition of the fluorescence of the metal ions in the environment and in-vivo. Magnesium ions are closely related to the human body and plant life activities, the excessive magnesium ions in organisms cause great harms, cause cardiovascular and cerebrovascular diseases, migraine headaches and other symptoms, serious damage to the health of the human body. Especially when too many or low magnesium ions in green plants, it will cause serious damage to the process of photosynthesis. Thus, the testing of the magnesium ions in the organisms and environmental is significant. Aluminum ions in the environment would cause serious damage to plants and fish. When too much of the aluminum contain in the human body, it will lead to the occurrence of the diseases. Due to its specific spatial structure and binding sites, o-hydroxyacetophenone Schiff-base derivatives can be effectively bound to aluminum ions and form stable aluminum coordination compounds, which exhibit great optical performance, can achieve the effective detection of the aluminum ions. So the researches on the optical properties of8-hydroxyquinoline and o-hydroxyacetophenone Schiff-base derivatives have important practical significance.
     In this paper, we design and synthesis a series of8-hydroxyquinoline-5/7-aldehyde and o-hydroxyacetophenone skeleton hydrazone and acylhydrazone derivatives.8-hydroxyquinoline-5/7-aldehyde-(tris (hydroxymethyl) aminomethane) hydrazone have good optical properties, exhibit great potential in luminescent material fields.8-hydroxyquinoline-5-aldehyde-benzotriazole hydrazone shows good selectivity and sensitivity to magnesium ion, and fluorescence mechanism can be clear explained by Photoinduced Electron Transfer (PET) mechanism.4-methoxy-o-hydroxyacetophenone-(4-aminoantipyrene) hydrazone,2, 6-dihydroxyacetophenone-(4-aminoantipyrene) hydrazone,2,4-dihydroxyphenyl formaldehyde-(4-aminoantipyrene) hydrazone can achieve the effective fluorescence detection of aluminum ion. By comparing the structure, we found that organic molecules having a similar structure of the o-hydroxyacetophenone can bind with aluminum ions effectively and exhibit excellent optical performance. This provides a new direction for the design of more effective aluminum ion fluorescent sensor.
引文
[1]Wen, J.H., Geng, Z.R., Yin, Y.X., Wang, Z.L. A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin[J]. Dalton Transactions.2011,40: 9737-9745.
    [2]Panda, S., Pati, P.B., S. Zade, S. Twisting (conformational changes)-based selective 2D chalcogeno podand fluorescent probes for Cr(Ⅲ) and Fe (Ⅲ) [J]. Chemical Communications. 2011,47:4174-4176.
    [3]Liu, Y.L., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M.L., Wang, P., Guo, W. Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO- based on a N-picolinyl rhodamine B-hydrazide derivative[J]. Organic & Biomolecular chemistry.2011, 9:432-437.
    [4]Hai, Y., Chen, J.J., Zhao, P., Lv, H.B., Yu, Y., Xu, P.Y., Zhang, J.L. Luminescent zinc salen complexes as single and two-photon fluorescence subcellular imaging probes[J]. Chemical Communications.2011,47:2435-2437.
    [5]Xue, L., Li, G.P., Zhu, D.J., Liu, Q., Jiang, H. Rational Design of a Ratiometric and Targetable Fluorescent probe for imaging Lysosomal Zinc Ions[J]. Inorganic Chemistry.2012,51, 10842-10849.
    [6]Man, B.Y., Chan, D.S., Yang, H., Ang, S., Yang, F., Yan, S., Ho, C., Wu, P., Che, C., Leung, C., Ma, D. A selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar silver(Ⅰ) ions in aqueous solution[J]. Chemical Communications.2010, 46:8534-8536.
    [7]Wen, J.H., Geng, Z.R., Yin, Y.X., Zhang, Z., Wang, Z.L. A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum[J]. Dalton Transactions.2011,40:1984-1989.
    [8]Hu, Y., Li, Q.Q., Li, H., Guo, Q.N., Lu, Y.G., Li, Z.Y. A novel class of Cd(II), Hg(H) turn-on and Cu(II), Zn(II) turn-off Schiff base fluorescent probes[J]. Dalton Transactions.2010, 39:11344-11352.
    [9]Mummidivarapu, V.V., Nehra, A., Hinge, V.K., Rao, C.P. Triazole linked picolylimine Conjungat of Calix[6] arene as a Sequential Sensor for La3+ Followed by F-[J]. Organic Letters.2012,14:2968-2971.
    [10]Senapan, T., Senapati, D., Singh, A.K., Fan, Z., Kanchanapally, R., Ray, C. Highly selective SERS probe for Hg(Ⅱ) detection using tryptophan-protected popcorn shaped gold nanoparticles[J]. Chemical Communications.2011,47:10326-10328.
    [11]Kumar, A., Singh, J.D. An Organoselenium-Based Highly Sensitive and Selective Fluorescent "Turn-On" Probe for the Hg2+ Ion[J]. Inorganic Chemistry.2012,51:772-774.
    [12]Tsukamoto, K., Shinohara, Y., Iwasaki, S., Maeda, H. A coumarin-based fluorescent orobe for Hg2+ and Ag+ with an N'-acetylthioureido group as a fluorescent switch[J]. Chemical Communications.2011,47:5073-5075.
    [13]Sun, X., Wang, Y.W., Peng, Y. A Selective and Ratiometric Bifunctional Fluorescent Probe for Al3+ Ion and Proton[J]. Organic Letters.2012,14:3420-3423.
    [14]Hau, F.K., He, X.M., Lam, W.H., Yam, V.W. Highly selective ion probe for Al3+ based on Au(Ⅰ)...Au(Ⅰ) interactions in a bis-alkynyl calyx[4]arene Au(Ⅰ) isocyanide scaffold[J]. Chemical Communications.2011,47:8778-8780.
    [15]Li, P., Duan, X., Chen, Z.Z., Liu, Y., Xie, T., Fang, L.B., Li, X.R. A near-infrared fluorescent probe for detecting copper(Ⅱ) with high selectivity and sensitivity and its biological imaging applications[J]. Chemical Communications.2011,47:7755-7757.
    [16]Bhalla, V., Roopa., Kumar, M. Fluoride Triggered Fluorescence "Turn On" Sensor for Zn2+ Ions Based on Pentaquinone Scaffold That Works as a Molecular Keypad Lock[J]. Organic Letters.2012,14:2803-2805.
    [17]Satapathy, R., Wu, Y.H., Lin, H.C. Novel Thieno-imidazole Based Probe for Colorimetric Detection of Hg2+ and Fluorescence Turn-on response of Zn2+[J]. Organic Letters.2012, 14:2564-2567.
    [18]Peng, Y., Dong, M.Y., Dong, M., Wang, Y.W. A Selective, Sensitive, Colorimetric, and Fluorescnce probe for Ready Recognition of Fluoride and Cu(Ⅱ) Ions with "Off-On-Off' switching in Ethanol-water Solution[J]. Journal of Organic Chemistry.2012,77:9072-9080.
    [19]Li, M, Lu, H.Y., Liu, R.L., Chen, J.D., Chen, C.F. Turn-On Fluorescent Sensor for Selective Detection of Zn2+, Cd2+, and Hg2+ in Water[J]. Journal of Organic Chemistry.2012, 77:3670-3673.
    [20]Wang, M.Q., Li, K., Hou, J.T., Wu, M.Y., Huang, Z., Yu, X.Q. BINOL-Based Fluorescent Sensor for Recognition of Cu(Ⅱ) and Sulfide Anion in Water[J]. Journal of Organic Chemistry.2012,77:8350-8354.
    [21]Weitz, E.A., Pierre, V.C. A ratiometric probe for the selective time-gated luminescence detection of potassium in water[J]. Chemical Communications.2011,47:541-543.
    [22]Comby, S., Tuck, S.A., Kotova, T.O., Gunnlaugsson, T. New Trick for an Old Ligand! The Sensing of Zn(Ⅱ) Using a Lanthanide Based Ternary Yb(Ⅲ)-cyclen-8-hydroxyquinoline System As a Dual Emissive Probe for Displacement Assay[J]. Inorganic Chemistry.2012, 51:10158-10168.
    [23]Xu, Y.Q., Pang, Y. Zn-triggered excited-state intramolecular proton transfer:a sensitive probe with near-infrared emission from bis(benxazole) derivative[J]. Dalton Transactions. 2011,40:1503-1509.
    [24]Kwon, J.E., Lee, Sumin., You, Y., Baek, K.W., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S.Y., Nam, W. Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions[J]. Inorganic Chemistry.2012,51:8760-8774.
    [25]Hou, F.P., Huang, L., Xi, P.X., Cheng, J., Zhao, X.F., Xie, G.Q., Shi, Y.J., Cheng, F.J., Yao, X.J., Bai, D.H., Zeng, Z.Z. A Retrievable and Highly Selective Fluorescent Probe for Monitoring Sulfide and Imaging in Living Cells[J]. Inorganic Chemistry.2012, 51:2454-2460.
    [26]Zhou, X. Y., Li, P.Y., Shi, Z.H., Tang, X.L., Chen, C.Y., Liu, W.S. A Highly Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions Based on a Quinoline Platform[J]. Inorganic Chemistry.2012,51:9226-9231.
    [27]Li, Y.P., Yang, H.R., Zhao, Q., Song, W.C., Han, J., Bu, X.H. Ratiometric and Selective Fluorescent Sensor for Zn2+as an "Off-On-Off" Switch and Logic Gate[J], Inorganic Chemistry.2012,51:9642-9648.
    [28]Matsui, A., Umezawa, K., Shindo, Y., Fujii, T., Citterio, D. A near-infrared fluorescent calcium probe:a new tool for intracellular multicolour Ca2+ imaging[J]. Chemical Communications.2011,47:10407-10409.
    [29]Hou, J.L., Song, F.Y., Wang, L., Wei, G., Cheng, Y.X., Zhu, C.J. In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine[J]. Macromoleculars.2012,45:7835-7842.
    [30]Kim, T., Kim, H., Choi, Y., Kim, Y. A fluorescent turn-on probe for the detection of alkaline phosphatase activity in living cells[J]. Chemical Communications.2011,47:9825-9827.
    [31]Cheng, X.H., Jia, H.Z., Long, T., Feng, J., Qin, J.G., Li, Z. A "turn-on" fluorescent probe for hypochlorous acid:convenient synthesis, good sensing performance, and a new design stategy by the removal of C=N isomerization[J]. Chemical Communications.2011, 47:11978-11980.
    [32]Yuan, L., Lin, W.Y., Yang, Y.T. A ratiometric fluorescent proe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles[J]. Chemical Communications.2011,41:6215-6211.
    [33]Long, L.L., Lin, W.Y., Chen, B.B., Gao, W.S., Yuan, L. Construction of a FRET-based ratiometric fluorescent thiol probe[J]. Chemical Communications.2011,47:893-895.
    [34]Cui, K., Chen, Z.L., Wang, Z., Zhang, G.X., Zhang, D.Q. A naked-eye visible and fluorescence "turn-on" probe for acetyl-cholinesterase assay and thiols as well as imaging of living cells[J]. Analyst.2011,136:191-195.
    [35]Lee, M.H., Han, J.H., Lee, J., Choi, H.G., Kang, C., Kim, J.S. Mitochondrial Thioredoxin-Responding Off-On Fluorescent probe[J]. Journal of the American Chemical Society.2012,134:17314-17319.
    [36]Zeng, X.D., Zhang, X.L., Zhu, B.C., Jia, H.Y., Li, Y.M., Xue, J. A colormetric and ratiometric fluorescent probe for quantification of bovine serum albumin[J]. Analyst.2011, 136:4008-4012.
    [37]Egawa, T., Koide, Y., Hanaoka, K., Komatsu, T., Terai, T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region[J]. Chemical Communications.2011,47:4162-4164.
    [38]Chung, C., Srikum, D., Lim, C.S., Chang, C.J., Cho, B.R. A two-photo fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissues[J]. Chemical Communications.2011, 47:9618-9620.
    [39]Song, P.S., Chen, X.T., Xiang, Y., Huang, L., Zhou, Z.J., Wei, R.R., Tong, A.J. A ratiometric fluorescent pH probe based on aggeregation-induced emission enhancement and its application in live-cell imaging[J]. Journal of Material Chemistry.2011,21:13470-3475.
    [40]Park, S., Kim, H. Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide[J]. Chemical Communications.2010,46:9197-9199.
    [41]Lv, X., Liu, Y.L., Zhao, Y., Chen, M.L., Wang, P., Guo, W. A ratiometric fluorescent probe for cyanide based on FRET[J]. Organic&Biomolecular Chemistry.2011,9:4954-4958.
    [42]Shiraishi, Y., Sumiya, S., Manabe, K., Hirai, T. thermoresponsive Copolymer Containing a Coumarin-Spiropyroan Conjugate:Reusable Fluorescent Sensor for Cyanide Anion Detection in Water[J]. ACS Applied Materials & Interfaces.2011,3:4649-4656.
    [43]Yu, H.B., Xiao, Y., Jin, L.J. A Lysosome-Targetable and Two-Photo Fluorescent Probe for Monitoring Endogenous and Exgenous Nitric Oxide in Living Cells[J]. Journal of the American Chemical Society.2012,134:17486-17489.
    [44]Chen, Y.G., Guo, W.H., Ye, Z.Q., Wang, G.L., Yuan, J.L. A europium(III) chelate as an efficient time-gated luminescent probe for nitric oxide[J]. Chemical Communications.2011, 47:6266-6268.
    [45]Michel, B.W., Lippert, A.R., Chang, C.J. A Reaction-Based Fluorescent Probe for Selective Imaging if Carbon Monooxide in Living Cells Using a Palladium-Mediated carbonylation[J]. Journal of the American Chemical Society.2012,134:15668-15671.
    [46]Kim, T., Park, J., Choi, Y., Kim, Y. Visualization of throsinase activity in melanoma cells by a BODIPY-based fluorescent probe[J]. Chemical Communications.2011,47:12640-12642.
    [47]Xu, K.H., Wang, L.L., Qiang, M.M., Wang, L.Y., Li, P., Tang, B. A selective near-infrared fluorescent probe for singlet oxygen[J]. Chemical Communications.2011,47:7386-7388.
    [48]Liu, Y., Zhu, M.J., Xu, J.J., Zhang, H., Tian, M. Using a TEMPO-based fluorescent probe for monitoring oxidative stress in living cells[J]. Analyst.2011,136:4316-4320.
    [49]Yu, C.W., Zhang, J., Wang, R., Chen, L.X. Highly sensitive and selective colorimetric and off-on fluorescent probe for Cu2+ based on rhodamine derivative[J]. Organic & Biomolecular Chemistry.2010,8:5277-5279.
    [50]Yuan, L., Lin, W.Y., Yang, Y.T., Song, J.Z. A fast-responsive fluorescent probe for detection of gold ions in water and synthetic products[J]. Chemical Communications.2011, 47:4703-4705.
    [51]Hitomi, Y., Takeyasu, T., Funabiki, T., Kodera, M. Detection of Enzymatically Generated Hydrogen Peroxide by Metal-based Fluorescent Probe[J]. Analytical Chemistry.2011, 83:9213-9216.
    [52]Wang, Z., Han, D.M., Jia, W.P., Zhou, Q.Z., Deng, W.P. Reaction-Based fluorescent Probe for Selective Discrimination of Thiophenols over Aliphaticthiols and Its Application in Water Samples[J]. Analytical Chemistry.2012,84:4915-4920.
    [53]Cheng, X.H., Tang, R.L., Jia, H.Z., Feng, J., Qin, J.G., Li. Z. New Fluorescent and Colormetric Probe for Cyanide:Direct Reactivity, High Selectivity, and Bioimaging Application[J]. ACS Applied Materials & Interfaces.2012,4:4387-4392.
    [54]YuanY., L., Lin, W.Y., Xie, Y.N., Chen, B., Zhu, S.S. Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals[J]. Journal of the American Chemical Society.2012,134:1305-1315.
    [55]Shiue, T., Chen, Y., Wu, C, Singh, G., Chen, H., Hung, C., Liaw, W., Wang, Y.M:Nitric Oxide Turn-On fluorescent Probe Based on Deamination Aromatic Primary Monoanimes[J]. Inorganic Chemistry.2012,51:5400-5408.
    [56]Xiao, Y.N., Ye, Z.Q., Wang, G.L., Yuan, J.L. A Ratiometric Luminescence Probe for Highly Reactive Oxygen Species Based on Lanthanide Complexes[J]. Inorganic Chemistry.2012, 51:2940-2946.
    [57]Sun, Y.Q., Chen, M.L., Liu, J., Lv, X., Li, J.F., Guo, W. Nitrolefin-based coumarin as a colormetric and fluorescent dual probe for biothiols[J]. Chemical Communications.2011, 47:11029-11031.
    [58]Zrazhevskiy, P., Sena, M., Gao, X.H. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J].Chemical Society Reviews.2010,39:4326-4354.
    [59]Biju, V., Itoh, T., Ishikawa, M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging[J]. Chemical Society Reviews.2010,39:3031-3056.
    [60]Dong, Y.Q., Li, G.L., Zhou, N.N., Wang, R.X., Chi, Y.W., Chen, G.N. Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water[J]. Analytical Chemistry.2012,84:8378-8382.
    [61]Barat, B., Sirk, S.J., McCabe, K.E., Li, J.Q., Lepin, E.J., Remenyi, R., Koh, A.L., Olafsen, T., Gambhir, S.S., Weiss, S., Wu, A.M. Cys-diabody Quantum Dot Conjugates(ImmunoQdots) for Cancer Marker Detection[J]. Bioconjugate Chemistry.2009,20:1474-1481.
    [62]Lin, Q., Zhang, L.Z., Yao, W., Qian, H.Q., Ding, D., Wu, W., Jiang, X.Q. Water-Soluble Chitosan-Quantum Dot Hybrid Nanospheres toward Bioimaging and Biolabeling[J]. ACS Applied Materials&Interfaces.2011,3:995-1002.
    [63]Wang, Z.Y., Wu, H., Wang, C.L., Xu, S.H., Cui, Y.P. Gold aggregates-and quantum dots-embedded nanospheres:Switchable dual-mode image probes for living cells[J]. Journal of Material Chemistry.2011,21:4307-4313.
    [64]Liu, J.B., Yang, X.H., Wang, K.M., Yang, R.H., Ji, H.N., Yang, L.Y., Wu, C.L. A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism[J]. Chemical Communications.2011,47:935-937.
    [65]Clapp, A.R., Medintz, L.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., Mattoissi, H. Fluorescence Resonance Energy Transfer Between Quantum dot Donors and Dye-Labeled Protein Acceptors[J]. Journal of the American Chemical Society.2004,126:301-310.
    [66]Hu, D.H., Zhang, P.F., Gong, P., Lian, S.H., Lu, Y.Y., Gao, D.Y., Cai, L.T. A fast synthesis of near-infrared emiting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes[J]. Nanoscale.2011,3:4724-4732.
    [67]Godman, E.R., Medintz, L.L., Whitley, J.L., Hayhurst, A., Clapp, A.R., Uyeda, H.T., Deschampd, J.R., Lassman, M.E., Mattoussi, H. A Hybrid Quantum Dot-Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor[J]. Journal of the American Chemical Society.2005,127:6747-6751.
    [68]Clapp, A.R., Medintz, L.L., Uyeda, H.T., Fisher, B.R., Goldman, E.R., Bawedi, M.G., Mattoussi, H. Quantum Dot-Based Multiplexed Fluorescence Resonance Energy [J]. Journal of the American Chemical Society.2005,127:18212-18221.
    [69]Uyeda, H.T., Medinta, L.L., Jaiswai, J.K., Simon, S.M., Mattoussi, H. Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores[J]. Journal of the American Chemical Society.2005,127:3870-3878.
    [70]Arachchige, I.U., Brock, S. Highly Luminescent Quantum-Dot Monoliths[J]. Journal of the American Chemical Society.2007,129:1840-1841.
    [71]Quach, A.D., Crivat, G., Tarr, M.A., Rosenzweig, Z. Gold Nanoparticle-Quangtum Dot-Polystyrene Microspheres as Fluorescence Resonance Energy Transfer Probes for Bioassays[J]. Journal of the American Chemical Society.2011,133:2028-2030.
    [72]Jin, X., Palui, G., Avellini, T., Na, H.B., Yi, C.Y., L, K., Jr, K., Mattoussi, H. On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine[J]. Journal of the American Chemical Society.2012,134:6006-6017.
    [73]Burks, P.T., Ostrowski, A.D., Mikhailovsky, A.A., Chan, E.M., Wageknecht, P.S., Ford, P.C. Quantum Dot Photoluminescence Quenching by Cr(Ⅲ) Complexes. Photosensitized Reactions and Evidence for a FRET Mechanism[J]. Journal of the American Chemical Society.2012,134:13266-13275.
    [74]Genin, E., Carion, O., Mahler, B., Dubertret, B., Arhel, N., Charneau, P., Doris, E., Mioskowski, C. CrAsH-Quangtum Dot Nanohybids for Smart Targeting of Proteins[J]. Journal of the American Chemical Society.2008,130:8596-8597.
    [75]Chan, Y.H., Ye, F.M., Gallina, M.E., Zhang, X.J., Jin, Y.H., Wu, I., Chiu, D.T. Hybrid Semiconducting polymer Dot-Quantum Dot with Narrow-Band Emission, Near-Infrared Fluorescence, and High Brightness[J]. Journal of the American Chemical Society.2012, 134:7309-7312.
    [76]Zhou, D.J., Ying, L.M., Hong, X., Hall, E.A., Abell, C., Klenermau, D. A Compact Functional Quantum Dot-DNA Conjugate:Preparation, Hybridization, and Specific Label-Free DNA Detection[J]. Langmuir.2008,24:1659-1664.
    [77]Blum, A.S., Moore, M.H., Ratna, B.R. Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments[J]. Langmuir.2008,24:9194-9197.
    [78]Biju, V., Muraleedharan, D., Nakayama, K., Shinohara, Y., Itoh, T., Baba, Y., Ishikawa, M. Quantum Dot-Insect Neuropeptide Conjugates for Fluorescence Imaging, Transfection, and Nucleus Targeting of Living Cells[J]. Langmuir.2007,23:10257-10261.
    [79]Yan, J.J., Wang, H., Zhou, Q.H., You, Y.Z. Reversible and Multisensitive Quantum Dot gels[J]. Macromoleculars.2011,44:4306-4312.
    [80]Bentzen, E.L., House, F., Utley, T.J., Crowe, J.E., Wright, D.W. Progression of Respiratory Syncytial Virus Infection Monitored by Fluorescent Quantum Dot Probes[J]. Nano Letters. 2005,5:591-595.
    [81]Poznyak, S.K., Talapin, D.V., Shevchenko, E.V., Weller, H. Quantum Dot Chemiliminescence[J]. Nano Letters.2004,4:693-698.
    [82]Ho, Y.P., Kung, M.C., Yang, S., Wang, T. Multiplexed Hybridization Detection with Multicolor Colocalization of Quantum Dot Nanoprobes[J]. Nano Letters.2005,5:1693-1697.
    [83]Smith, B.B., Cheng, Z., De, A., Koh, A.L., Sinclair, R., Gambhir, S.S. Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature[J]. Nano Letters.2008,8:2601-2606.
    [84]Dennis, A.M., Bao, G. Quantum Dot-Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes[J]. Nano Letters.2008,8:1439-1445.
    [85]Ruan, G., Winter, J.O. Alternating-Color Quantum Dots Nanocomposites for Particle Tracking[J]. Nano Letters.2011,11:941-945.
    [86]Zhang, B.Q., Zhang, Y.J., mallapragada, S.K., Clapp, A.R. Sensing Polymer/DNA Polyplex Dissociation Using Quantum Dot Fluorophores[J]. ACS Nano.2011,5:129-138.
    [87]Dennis, A.M., Rhee, W.J., Sotto,D., Dublin, S.N., Bao, G. Quantum Dot-Fluorescent protein FRET Probes for Sensing Intracellular pH[J]. ACS Nano.2012,6:2917-2924.
    [88]Auzel, F., Upconversion and Anti-Stokes Processes with f and d Ions in Solids[J]. Chemical Reviews.2004,104:139-173.
    [89]Somers, R.C., Bawandi, M.G., Nocera, D.G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews.2009, 38:976-989.
    [90]Tian, G., Gu, Z.J., Zhou, L.G., Yin, W.Y., Liu, X.X., Yan, L., Jin, S., Ren, W.L., Xing, G.M., Li, S.J., Zhao, Y.L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for vivo Imaging and Drug Delivery[J]. Advance Materials.2012, 24:1226-1231.
    [91]Hu, H., Xiong, L.Q., Zhou, J., Li, F.Y., Cao, T.Y., Huang, C.H. Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells[J]. Chemistry-a European Journal.2009,15:3577-3584.
    [92]Yong, I.P., Kim, J.H., Lee, K.T., Jeon, K., Na, H.B., yu, J.H., Kim, H.M., Lee, N., Choi, S.H., Baik, S., Kim, H., Park, S.P., Park, B., Kim, Y.W., Suh, Y.D., Hyeon, T. Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent[J]. Advanced Materials.2009,21:4467-4471.
    [93]Wang, Y.H., Shen, P., Li, C.Y., Wang, Y.Y., Liu, Z.H. Upconversion Fluorescence Resonance Energy Transfer Based Biosensor for Ultrasensitive Detection of Matrix Metalloproteinase-2 in Blood[J]. Analytical Chemistry.2012,84:1466-1473.
    [94]Wang, L.Y., Li, Y.D. Green upconversion nanocrystals for DNA detection[J]. Chemical Communications.2006,24:2557-2559.
    [95]Xiong, L.Q., Chen, Z.G., Tian, Q.W., Cao, T.Y., Xu, C.J., Li, F.Y. High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors[J]. Analytical Chemistry.2009,81:8687-8694.
    [96]He, M., Huang, P., Zhang, C.L., Hu, H.Y., Bao, C.C., Gao, G., He, R., Cui, D.X. Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrstals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging[J]. Advanced Functional Materials.2011,21:4470-4477.
    [97]Nam, S.H, Bae, Y.N., Park, Y.I., Kim, J.H., Kim, H.M., Choi, J.S., Lee, K.T., Hyeon, T., Suh, Y.D. Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting nanoparticles in Living Cells[J]. Angewandte Chemie,International Edition. 2011,50:6093-6097.
    [98]Liu, J.L., Liu, Y., Liu, Q., Li, C.Y., Sun, L.N., Li, F.Y. Irdium(Ⅲ) Complex-Coated Nanosystem for Ratiometric Upconversion Luminescence Bioimaging of Cyanide Anions[J]. Journal of the American Chemical Society.2011,133:15276-15279.
    [99]Liu, Q., Sun, Y., Yang, T.S., Feng, W., Li, C.G., Li, F.Y. Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrstals for Sensitive Bioimaging in Vivo[J]. Journal of the American Chemical Society.2011,133:17122-17125.
    [100]Dong, B., Cao, B.S., He, Y.Y., Liu, Z., Li, Z.P., Feng, Z.Q. Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides[J]. Advanced Materials.2012,24:1987-1993.
    [101]Liu, J.N., Bu, W.B., Zhang, S.J., Chen, F., Xing, H.Y., Pan, L.M., Zhou, L.G., Peng, W.J., Shi, J.L. Controlled Synthesis of Uniform and Monodisperse Upconversion Core/Mesoporous Silica Shell Nanocomposites for Biomodal Imaging[J]. Chemistry-a European Journal.2012,18:2335-2341.
    [102]Yao, L.M., Zhou, J., Liu, J.L., Feng, W., Li, F.Y. Irdium-Complex-Modified Uoconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Water[J]. Advanced Functional Materials.2012,22:2667-2672.
    [103]Yang, Y.M., Shao, Q., Deng, R.R., Wang, C., Teng, X., Cheng, K., Cheng, Z., Huang, L. Liu, X.G., Xing, B.G. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconverion Nanoparticles[J]. Angewandte Chemie International Edition. 2012,51:3125-3129.
    [104]Deng, R.R., Xie, X.J., Vendrell, M., Chang, Y.T., Liu, X.G. Intracellular Glutathione Detection Using Mn02-Nanosheet-monitored Upconversion Nanoparticles[J]. Journal of the American Chemical Society.2011,133:20168-20171.
    [105]Tu, D.T., Liu, L.Q., Ju, Q., Liu, Y.S., Zhu, H.M., Li, R.F., Chen, X.Y. Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals[J]. Angewandte Chemie International Edition.2011,50:6306-6310.
    [106]Li, L.L., Zhang, R.B., Yin, L.L., Zheng, K.Z., Qin, W.P., Selvin, P.R., Lu, Y. Biomimetic Surface Engineering of Lanthanide-Doped Upconversion Nanoparticles as versatile Bioprobes[J]. Angewandte Chemie,International Edition.2012,51:6121-6125.
    [107]Chen, F., Zhang, S.J., Bu, W.B., Chen, Y., Xiao, Q.F., Liu, J.N., Xing, H.Y., zhou, L.P., Peng, W.J., Shi, J.L. A Uniform Sub-50 nm-Sized Magnetic/Upconversion Fluorescent Bimodal Imaging Agent Capable of Generating Singlet Oxygen by Using a 980 nm Laser[J]. Chemistry-a European Journal.2012,18:7082-7090.
    [108]Yin, W.Y., Zhao, L.N., Zhou, L.J., Gu, Z.J., Liu, X.X., Tian, G., Jin, S., Ren, W.L., Xing, G.M., Zhao, Y.L. Enhanced Red Emission from GdF3:Yb3+, Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging[J]. Chemistry-a European Journal.2012. 18:9239-9245.
    [109]Li, F.F., Li, C.G., Lin, X.M., Chen, Y., Bai, T.Y., Wang, L., Shi, Z., Feng, S.H. Hydrophilic, Upconverting, Multicolor, Lanthanide-Doped NaGdF4 Nanocrystals as Potential Multifunctional Bioprobes[J]. Chemistry-a European Journal.2012,18:11641-11646.
    [110]Liu, Q., Yang, T.S., Feng, W., Li, F.Y. Blue-Emissive Upconversion Nanoparticles for Low-Power-Excited Bioimaging in Vivo[J]. Journal of the American Chemical Society.2012, 134:5390-5397.
    [111]Zhan, Q.Q., Qian, J., Liang, H.J., Somesfalean, G., Wang, D., He, S.L., Zhang, Z.G., Andersson-Engeis, S. Using 915 nm Laser Excited Tm37+/Er3+/Ho3+ Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irridation[J]. ACS Nano.2011,5:3744-3757.
    [112]Liu, Q., Peng, J.J., Sun, L.N., Li, F.Y. High-Efficiency Upcinversion Luminescent sensing and Bioimaging of Hg(II) by Chromophoric Ruthenium Complex-Assembled Nanophosphors[J]. ACS Nano.2011,5:8040-8048.
    [113]Mi, C.C., Tian, Z.H., Cao, C., Wang, Z.j., Mao, C.B., Xu, S.K. Novel Microwave-Assisted Solvothermal Synthesis of NaYbF4:Yb, Er Upconversion Nanoparticles and Their Application in Cancer Cell[J]. Langmuir.2011,27:14632-14637.
    [114]Park, Y.I., Kim, H.M., Kim, J.H., Moon, K.C., Yoo, B., Lee, K.T., Lee, N., Choi, Y., Park, W., Ling, D., Na, K., Moon, W.K., Choi, S.H., Park, H.S., Yoon, S., Suh, Y.D., Lee, S.H., Hyeon, T. Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simulataneous In Vivo Dual-Modal Imaging and Photodynamic Therapy[J]. Advanced Materials.2012:1-7.
    [115]Wu, S.J., Duan, N., Ma, X.Y., Xia. Y., Wang, H.X., Wang, Z.P., Zhang, Q. Multiplexed Fluorescence Resonance Energy Transfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for the simultaneous Determination of Mycotoxins[J]. Analytical Chemistry.2012,84:6263-6270.
    [116]Zhang, F., Braun, G.B., Shi, Y.F., Zhang, Y.C., Sun, X.H., Reich, N.O., Zhao, D.Y., Stucky, G. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging:Tuning of the Upconversion Fluorescence with Silver Nanoparticles[J]. Journal of American Chemical Society.2010,132:2850-2851.
    [117]Que, E.L., Chang, C.J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine[J]. Chemical Society Reviews.2010,39:51-60.
    [118]Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N. Magnetic Iron Oxide Nanoparticles:Synthesis, Stabilization, Vetorization, Physicochemical Characterizations, and Biological Applications[J]. Chemical Reviews.2008,108:2064-2110.
    [119]Kumar, R., Nyk, M., Ohulchanskyy, T.Y., Flask, C.A., Prasad, P.N. Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals[J]. Advanced Functional Materials.2009,19:853-859.
    [120]Roullier, V., Grasset, F., Boulmedaic, F., Artnzer, F., Cador, O., Marchi-Artzner. Small Bioactivated Magnetic Quantum Dot Micelles[J]. Chemistry of Materials.2008, 20:6657-6665.
    [121]Mamedow, H., Logothetis, N.K., Angelovski, G. Structure-related variable responses of calcium sensitive MRI probes[J]. Organic & Biomolecular Chemistry.2011,9:5816-5824.
    [122]Tian, G., Gu, Z.J., Liu, X.X., Zhou, L.G., Yin, W.Y., Yan, L., Jin, S., Ren, W.L., Xing, G.M., Li, S.J., Zhao, Y.L. Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties[J]. Journal of Physical Chemistry C.2011,115:23790-23796.
    [123]Chen, F., Zhang, S.J., Bu, W.B., Lin, X.H., Chen, Y., He, Q.J., Zhu, M., Zhang, L.X., Zhou, L.P., Peng, W.J., Shi, J.L. A "Neck-Formation" Strategy for an Antiquenching Magnetic/Upconversion Fluorescent Bimoda Cancer Probe[J]. Chemistry-a European Journal. 2010,16:11254-11260.
    [124]Zahgn, F., Braun, G.B., Pallaoro, A., Zhang, Y.C., Shi, Y.F., Cui, D.X., Maoskovits, m., Zhao, D.Y., Stucky, G.D. Mesoprous Multifunctional upconversion Luminescent and magnetic "Nanorattle" Materials for Targeted Chemotherapy[J]. Nano Letters.2012, 12:61-67.
    [125]Liu, L.W., Law, W., Yong, K., Roy, I., Erogbogbo, F., Zhang, X.H., Prasad, P.N. Multimodal imaging probes based on Gd-DOTA conjugated quantum dot nanomecelles[J]. Analyst.2011,136:1881-1886.
    [126]Chalmers, K.H., Bota, M., Parker, D. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance[J]. Dalton Transactions.2011,40:904-913.
    [127]Basiruddin,S., Saha, A., Sarkar, R., Majumder, M., Jana, N.R. Highly fluorescent magnetic quantum dot probe with superior colloidal stability[J]. Nanoscale.2010,2:2561-2564.
    [128]Kacenka, M., Kaman, O., Kotek, J., Falteisek, L., Cemy, J., Jirak, D., Herynek, V., Zacharovova, K., Berkova, Z., Jendelova, P., Kupeik, J., Pollert, E., Veveka, p., Lukes, I. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on pervskite manganite nanoparticles[J]. Journal of Material Chemistry.2011,21:157-164.
    [129]Singh, A., Arutyunoy, D., McDeemon, M.T., Szymanski, C.M., Evoy, S. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe[J]. Analyst.2011,136:4780-4786.
    [130]Liu, Q., Sun, Y., Li, C.G., Li, C.Y., Yang, T.S., Zhang, X.H., Yi, T., Wu, D.M., Li, F.Y. 18F-Labeled Magnetic-Upconversion nanophosphors via Rare-Earth Cation-Assisted Ligand Assembly[J].ACS Nano.2011,5:3146-3157.
    [131]Fan, H.M., Olivo, M., Shuter, B., Yi, J.B., Bhuvaneswan, R,, Tan, H.R., Xing, G.C., Ng, C.T., Liu. L., Lucky, S.S., Bay, B., Ding, J. Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging[J]. Journal of American Chemical Society.2010,132:14803-14811.
    [132]Terreno, E., Boffa, C., Menchise, V., Fedeli, F., Carrera, C., Castelli, D.D., Digilo, G., Aime, S. Godolinium-doped LipoCEST agents:a potential novel class of dual 1H MRI probes[J]. Chemical Communications.2011,47:4667-4669.
    [133]Zhang, X.L., Jing, X., Liu, T., Han, G., Li, H.Q., Duan, C.Y. Dual-Functional Gadolinium-Based Copper(Ⅱ) Probe for Selective Magnetic Resonance Imaging and Fluorescence Sensing[J], Inorganic Chemistry.2012,51:2325-2331.
    [134]MCCarthy, J.F., Parina-Mello, A., Rakovkh, T., Volkov, Y., Gunko, Y.K. Fabrication and characterization of multimodal magnetic-fluorescent polystyrene nanowires as selective cell imaging probes[J]. Journal of Material Chemistry.2011,21:14219-14225.
    [135]Wang, M.H., Wang, C., Young, K.L., Hao, H.L., Medved, M., Rajh, T., Fry, H.C., Zhu, L.L. Karcznmar, G.S., Watson, C., Jiang, J.S., Markovic, N.M., Samenkovic, V.R. Cross-linked Heterogeneous Nanoparticles as Bifunctional Probe[J]. Chemistry of Materials.2012, 24:2423-2425.
    [136]Luo, J., Li, S., Xu, P., Zhang, L.Y., Chen, Z.M. Zn2+ Responsive Bimodal Magnetic Resonance Imaging and Fluorescent Imaging Probe based on a Gadolinium(III) Complex[J]. Inorganic Chemistry.2012,51:9508-9516.
    [137]Dong, Y.Q., Wang, R.X., Li, G., Chen, C.Q., Chi, Y.W., Chen, G.N. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions[J]. Analytical Chemistry.2012,84:6220-6224.
    [138]Goh, E.J., Kim, K.S., Kim, Y.R., Jung, H.S., Beack, S., Kong, W.H., Scarcelli, G., Yun, S.H., Hahn, S.K. Bioimaging of Hyaluronic Acid Derivatives Using Nanosized Carbon Dots[J]. Biomacromoleculars.2012,13:2554-2561.
    [139]Zhao, H.X., Liu, L.Q., Liu, Z.D., Wang, Y., Zhao, X.J., Haung, C.Z. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots[J]. Chemical Communications.2011,47:2604-2606.
    [140]Wei, W.L., Xu, C., Ren, J.S., Xu, B.L., Qu, X.G. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and grapheme[J]. Chemical Communications.2012,48:1284-1286.
    [141]Lin, Y.W., Huang, C.C., Chang, H.T. Gold nanoparticle probes for the detection of mercury, lead and copper ions[J]. Analyst.2011,136:863-871.
    [142]Wang, X.X., Wu, P., Hou, X.D., Lv, Y. An ascorbic acid sensor based on protein-modified Au nanoclusters[J]. Analyst.2013,138:229-233.
    [143]Xie, J.Q., Zheng, Y.G., Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions[J]. Chemical Communications.2010,46:961-963.
    [144]Wang, L., Li, H.L., Zhang, Y.W., Tian, J.Q., Sun, X.P. Detection of single-stranded nucleic acids by hybridization of probe oligonucleotides on polystyrene nanospheres and subsequent release and recovery of fluorescence[J]. RSC Advances.2011,1:1318-1323.
    [145]Li, F., Westphal, A.H., Marcelis, A.T., Sudholter, E.J., Smart, M.C., Leermakers, F.A. Thermally sensitive dual fluorescent polymeric micelles for probing cell propertiesfJ]. Soft Materials.2011,7:11211-11215.
    [146]Zheng, H.P., Wang, T.T., Quyang, X.H., Zhou, Y.D., Jing, H.L., Yuan, G.Z., Chen, D.F., Du, S.H., Li, H., Zhou, J.H.8-hydroxyquinoline derivatives induce the proliferation of rat mesenchymal stem cells (rMSCs)[J]. Bioorganic & Medicinal Chemistry.2006, 14:5446-5450.
    [147]Giraudi, G., Baggiani, C., Giovannoli, C., Marletteo, C., Vanni, A. Synthesis and characterization of 8-hydroxyquioline-ovine serum albumin conjugates as metal ions chelating proteins[J]. Ananlytica Chimica Acta.1999,378:225-233.
    [148]Montes, V.A., Zyryanov, G.V., Danilov, E., Agarwal, N., Palacios, M.A., Jr, P.A. Ultra Energy Transfer in Oligofluorene-Aluminm Bis(8-hydroquinoline)acetyacetone Coordination Polymers[J]. Journal of the American Chemical Society.2009,131:1787-1795.
    [149]8-Hydroxyquinoline Benzoates as Highly Sensitive Fluorescent Chemosensors for Transtion Metal Ions[J]. Organic Letters.2005,7:4217-4220.
    [150]Pohl, R., Montes, V.A., Shinar, J., Jr, P.A. Red-Green-Blue Emission from Tris(5-aryl-8-quinolinolate)Al(Ⅲ) Complexes [J]. Journal of Organic Chemistry.2004, 69:1723-1725.
    [151]Su, N., Bradshaw, J.S., Zhang, X.X., Song, H.C., Savage, P.B., Xue, G.P., Krakowiak, K.E., Izatt, R.M. Syntheses and Metal Ion Complexation of novel 8-Hydroxyquinoline-Containing Diaza-18-Crown-6 Ligands and Analogues[J]. Journal of Organic Chemistry.1999, 64:8855-8861.
    [152]Collins, A.M., Olof, S.M., Mitchels, J.M., Mann, S. Facile preparation and processing of aqueous dispersions of tris(8-hydroxyquinoline) aluminium(Ⅲ) photoluminescent nanoparticles[J]. Journal of Materials Chemistry.2009,19:3950-3954.
    [153]Chen, Y.T., Wang, H.L., Wan, L., Bian, Y.H., Jiang, J.Z.8-Hydroxyquinoline-Substituted Boron-Dipyrromethene Compounds:Synthesis, Structure, and OFF-ON-OFF Type of pH-Sensing Properties[J]. Journal of Organic Chemistry.2011,76:3774-3781.
    [154]Sen, R.N., Ray, S.K. Studies on Reimer-Tiemann Reaction[J]. Journal of Indian Chemical Society.1932,9:173-179.
    [155]滨田长松,平野保雄,饭田哲也Reimer-Tiemann反映的研究[J]. Nippon Kagaku Zasshi. 1956,77:1107-1109.
    [156]Pujari, H.K., Rout, M.K. Preparation of quinolyl and naphthyl-thiopyruvic acids and their corresponding nitriles[J]. Journal of Indian Chemical Society.1955,82:431-434.
    [157]Wynberg, H. The Reimer-Tiemann Reaction[J]. Chemical Reviews.1959:169-183.
    [158]Fiedler, H. Synthese von 8-Hydroxy-chinolin-aldehyden-(7)[J]. Archivder Pharmazle. 1963:108-117.
    [159]Fiedler, H.8-Hydroxy-chinolin-aldehyd-(7)[J]. Zeitscgrift Fuer Chemie.1963,3:27.
    [160]Prystal, F., Phillips, J.7-Formayl-8-quinolinools[J]. Journal of the Heterocycles Chemistry. 1967,4:131-132.
    [161]Henning, V.H., Dieteze, U., Uhlemann, E. Zur Konstitution der Metallchelate von 8-Hydroxy-7-formyl-chinolin[J]. Zeitscgrift Fuer Chemie.1968:264-270.
    [162]El-Sonbati, A.Z., El-Dissouky, A. Complexing ability of uranyl(Ⅵ) with some aroyhydrazone derivatives of 7-carboxyaldehyde-8-hydroxyquinoline[J]. Transition Metal Chemistry.1987,12:256-260.
    [163]El-Asmy, A.A., E1-Sonbati, A.Z., Ba-Issa, A.A. Synthesis and properties of 7-formyl-8-hydroxyquinoline and its transition metal complexes[J]. Transition Metal Chemistry.1990,15:222-225.
    [164]El-Dissouky, A., El-Sonbati, A.Z. Effect of Substituents on the Structure of Dioxouranium(Ⅵ) Complexes of 7-Carboxyaldehyde-8-hydroxyquinoline and some of its Schiff Bases[J]. Transition Metal Chemistry.1986,11:112-115.
    [165]Oraby, A.H., El-Moiz, A.B., Hefni, M.A., El-Sonbati, A.Z. D.C. conduction phenomenon and spectrum of a novel bis(7-formyl-8-hydroxyquinoline) zinc complex[J]. Journal of Materials Science.1995,30:447-451.
    [166]Khalil, Z.H., Yanni, A.S., Abdel-Hafez, A.A., Khaiaf, A.A. Synthesis of some Oxazolo-, Imidazolo-, Thiadiazolo-, Azatidinono- and Thiazolidinono-8-hydroxyquinolines[J]. Journal of Indian Chemical Society.1987:42-45.
    [167]Khalil, Z.H., Yanni, A.S., Khaiaf, A.A., Abdel-Hafez, A.A., Abdo, R.F. Synthesis and application of Some 1-[8-Hydroxy-5(or 7)-quinolinyl]-alkylidene-Substituted Heterocycles as Bactericides, Funjicides, and Bioregulator[J]. Bulletin of The Chemical Sociiety of Japan. 1988,61:1345-1349.
    [168]Mubarak, A.T. Novel supramolecular assembly of symmetrical mixed-metal-ligand complexes of dioxouranium(VI)[J]. Spectrochimica Acta A.2006,65:1197-1207.
    [169]Komatsu, H., Lwasawa, N., Citterio, D., Suzuki, Y., Kubota, T., Tokuno, K., Kitamura, Y., Oka, K., Suzuki, K. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracelluar 3D Mg2+ imaging[J]. Journal of the American Chemical Society.2004,126:16353-16360.
    [170]Hama, H., Morozumi, T., Nakamura, H. Novel Mg2+ -responsive fluorescent chemosensor based on benzo-15-crown-5 possessing 1-naphthaleneacetamide moiety[J]. Tetrahedron Letters.2007,48:1859-1861.
    [171]Liu, Y., Duan, Z.Y., Zhang, H.Y., Jiang, X.L., Han, J.R. Selective binding and inverse fluorescent behavior of magnesium ion by podand prossessing plural imidazo[4,5-f]-1,10-phenanthroline groups and its Ru(II) complex[J]. Journal of Organic Chemistry.2005,70:1450-1455.
    [172]Dong, Y., Li, J.F., Jiang, X.X., Song, F.Y., Cheng, Y.X., Zhu, C.J. Na+ triggered fluorescence sensors for Mg2+detection based on a coumarin salen moiety[J]. Organic Letters. 2011,9:2252-2255.
    [173]Tian, M.Q., Ihmels, H., Ye, S. Fluorimetric detection of Mg2+ and DNA with 9-(alkoxyphenyl)benzo[b]-quinolizinium derivatives[J]. Organic & Biomolecular Chemistry. 2012,10:3010-3018.
    [174]Wang, L.N., Qin, W.W., Tang, X.L., Dou, W., Liu, W.S. Development and applications of fluorescent indicators for Mg2+ and Zn2+[J]. The Journal of Physical Chemistry A.2011, 115:1609-1616.
    [175]Liu, K., Zhou, Y., Yao, C. A highly sensitive and selective ratiometric and colorimetric sensor for Hg2+ based on a rhodamine-nitrobenzoxadiazole conjugate[J]. Inorganic Chemical Communications.2011,14:1798-1801.
    [176]Lu, M., Ma, X., Fan, Y.J., Fang, C.J., Fu, X.F., Zhao, M., Peng, S.Q., Yan, C.H. Selective "turn-on" fluorescent chemosensors for Cu2+ based on anthrancene[J]. Inorganic Chemical Communications.2011,14:1864-1867.
    [177]Kim, H.M., Yang, P.R., Seo, M.S., Yi, J.S., Hong, J.H., Jeon, S.J., Ko, Y.G., Lee, K.J., Cho, B.R. Magnesium ion selective two-photon fluorescent probe based on a benzo[h]chromene derivative for in vivo imaging[J]. Journal of Organic Chemistry.2007,72:2088-2096.
    [178]Chandrasekhar, V., Pandey, M.D., Bag, P., Pandey, S. A modular ligand design for cation sensors:phosphorus-supported pyrene-containing ligands as efficient Cu(Ⅱ) and Mg(Ⅱ) sensors[J]. Tetrahedron.2009,65:4540-4546.
    [179]Abada, S., Lecointre, A., Elhabiri, M., Esteban-Gmez, D., Platas-Iglesias, C., Mazzanti, M., Charbonniere, L.J. Highly relaxing gadolinium based MRI contrast agents responsive to Mg2+ sensing[J].Chemical Communications.2012,48:4085-4087.
    [180]Tanaka, K., Kumagai, T., Aoki, H., Deguchi, M., Iwata, S. Application of 2-(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)benzoxazole and -benzothiazole to fluorescent probes sensing pH and metal cations[J]. Journal of Organic Chemistry.2001, 66:7328-7333.
    [181]Saluja, P., Sharma, H., Kaur, N., Singh, N., Jang, D.O. Benzimidazole-based imine-linked chemosensor:chromogenic sensor for Mg2+ and fluorescent sensor for Cr3+[J]. Tetrahedron. 2012,68:2289-2293.
    [182]Yang, Q.Z., Wu, L.Z., Zhang, H., Chen, B., Wu, Z.X., Zhang, L.P., Tung, C.H. A luminescent chemosensor with specific response for Mg2+[J]. Inorganic Chemistry.2005, 43:5195-5197.
    [183]Hamdi, A., Kim, S.H., Abidi, R., Thuery, P., Kim, J.S. A dipyrenyl calixazacrown chemosensor for Mg2+[J]. Tetrahedron.2009,65:2818-2823.
    [184]Brandel, J., Sairenji, M., Ichikawa, K., Nabeshima, T. Remarkable Mg2+ -selective emission of an azacrown receptor based on Ir(II) complex[J]. Chemical Communications.2010, 46:3958-3960.
    [185]Pearson, A.J., Hwang, J.J., Ignatov, M.E. Crown-annelated p-phenylenediamine derivatives as electrochemical and fluorescence responsive chemosensors:fluorescence studies[J]. Tetrahedron Letters.2001,42:3537-3540.
    [186]Kim, J., Morozumi, T., Nakamura, H. Disciminating detection between Mg2+ and Ca2+ by fluorescent signal from anthracene aromatic amide moiety[J]. Organic Letters.2007, 22:4419-4422.
    [187]Farruggia, G., Iotti, S., Prodi, L., Montalti, M., Zaccheroni, N., Savage, P.B., Trapani, V., Sale, P., Wolf, F.I.8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells[J]. Journal of the American Chemical Society.2006,128:344-350.
    [188]Bronson, R.T., Montalti, M., Prodi, L., Zaccheroni, N., Lamb, R.D., Dalley, N.K., Izatt, R.M., Bradshawa, J.S., Savagea, P.B. Origins of'on-off fluorescent behavior of 8-hydroxyquinoline containing chemosensors[J]. Tetrahedron.2001,42:3537-3540.
    [189]Prodi, L., Bolletta, F., Montalti, M., Zaccheorni, N. A fluorescent sensor for magnesium ions[J]. Tetrahedron Letters.1998,39:5451-5454.
    [190]Shoda, T., Kikuchi, K., Kojima, H., Urano, Y., Komatsu, H., Suzuki, K., Nagano, T. Development of selective, visible light-excitable, fluorescent magnesium ion probes with a novel fluorescence switching mechanism[J]. Analyst.2003,128:719-723.
    [191]Dong, Y., Mao, X.R., Jiang, X.X., Hou, J.L., Cheng, Y.X., Zhu, C.J. L-proline promoted fluorescent sensor for Mg2+ detection in a multicomponent sensory system[J]. Chemical Communications.2011,47:9450-9452.
    [192]Suresh, M., Das, A. New coumarin-based sensor molecule for magnesium and calcium ions[J]. Tetrahedron Letters.2009,50:5808-5812.
    [193]Komatsu, H., Miki, T., Citterio, D., Kubota, T., Shindo, Y., Kitamura, Y., Oka, K., Suzuki, K. Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging[J]. Journal of the American Chemical Society.2005,127:10798-10799.
    [194]Ray, D., Bharadwaj, P.K. A coumarin-derived fluorescence probe selective for magnesium[J]. Inorganic Chemistry.2008,47:2252-2254.
    [195]Velu, R.., Ramakrishnan, V.T., Ramamurthy, P. Colorimetric and fluorometric chemosensors for selective signaling toward Ca2+ and Mg2+by aza-crown ether acridinedione-functionalized gold[J]. Tetrahedron Letters.2010,51:4331-4335.
    [196]Ipe, B.I., Yoosaf, K., Thomas, K.G. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors[J]. Journal of the American Chemical Society.2006, 128:1907-1913.
    [197]Momotake, A., Arai. T. A new class of azobenzene chelators for Mg2+ and Ca2+ in buffer at physiological pH[J]. Tetrahedron Letters.2003,43:7277-7280.
    [198]Wang, X.Q., Liu, Z.P., Qian, F., He, W.J. A bezoimidazole-based highly selective and low-background fluorescent sensor for Zn2+[J]. Inorganic Chemical Communications.2012, 15:176-179.
    [199]Watanabe, S., Ikishima, S., Matsuo, T., Yoshida, K. A luminescent metalloreceptor exhibiting remarkably high selectivity for Mg2+ over Ca2+[J]. Journal of the American Chemical Society.2001,123:8402-8403.
    [200]Song, K.C., Choi, M.G., Ryu, D.H., Kim, K.N., Chang, S.K. Ratiometric chemosensor of Mg2+ ions by a calyx[4]arene diamine derivative[J]. Tetrahedron Letters.2007, 48:5397-5400.
    [201]Sen, R.N., Ray, S.K. Studies on the Reimer-Tiemann reaction[J]. Journal of Indian Chemistry Society.1932,9:173-179.
    [202]El-Khawass, S.M., Habib, N.S. Synthesis of 1,2,4-triazolo[3,4-b][1,3,4]triadiazole and 1,2,4-triazolo[3,4-b][1,3,4]triadiazine derivatives of benzotriazole[J]. Journal of the Heterocycles Chemistry.1989,1:177-181.
    [203]Liu, Y., Han, M., Zhang, H.Y., Yang, L.X., Jiang, W. A photo-triggered on-off-on fluorescent chemosensor for Mg(Ⅱ) via twisted intramolecular charge transfer[J]. Organic Letters.2008,13:2873-2876.
    [204]Ma, Y.Y., Liu, H., Liu, S.P., Yang, R. A simple fluorescent receptor selective for Mg2+[J]. Analyst.2012,137:2313-2317.
    [205]Sen, S., Mukherjee, T., Chattopadhyay, B., Moirangthem, A., Basu, A., Marek, J., Chattopadhyay, P. A water soluble Al3+ selective colormetric and fluorescent turn-on chemosensor and its application in living cell imaging[J]. Analyst.2012,137:3975-3981.
    [206]Banerjee, A., Sahana, A., Das, S., Lohar, S., Guha, S., Sarkar, B., Mukhopadhyay, S.K., Mukherjee, A.K., Das, D. A naphthalene complex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range:experimental and computational studies[J]. Analyst.2012,137:2166-2175.
    [207]Zhao, Y.G., Lin, Z.H., Liao, H.P., Duan, C.Y., Meng, Q.J. A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline[J]. Inorganic Chemistry Communications.2006,9:966-968.
    [208]Sahana, A., Banerjee, A., Das, S., Lohar, S., Karak, D., Sarkar, B., Mukhopadhyay, S.K., Mukherjee, A.K., Das, D. A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging[J]. Organic & Biomolecular Chemistry.2011,9:5523-5529.
    [209]Jiang, X.H., Wang, B.D., Yang,Z.Y., Liu, Y.C., Li, T.R., Liu, Z.C. 8-Hydroxyquinoline-5-carbaldehyde Schiff-base as a highly selective and sensitive Al3+ sensor in weak acid aqueous medium[J]. Inorganic Chemistry Communications.2011, 14:1224-1227.
    [210]Das, S., Karak, D., Lohar, S., Banerjee, A., Sahana, A., Das, D. Interaction of a naphthalene based fluorescent probe with Al3+:experimental and computational studies[J]. Analytical Methods.2012,4:3620-3624.
    [211]Liu,Y.W., Chen, C.H., Wu, A.T. A turn-on reversible fluorescence sensor for Al3+ ion[J]. Analyst.2012,137:5201-5203.
    [212]Wang, Y.W., Yu, M.X., Yu, Y.H., Bai, Z.P., Shen, Z., Li, F.Y., You, X.Z. A colormetric and fluorescent turn-on chemosensor for Al3+ and its application in bioimaging[J]. Tetrahedron Letters.2009,50:6169-6172.
    [213]Gou, Y., Qin, S.H., Wu, H.Q., Wang, Y., Luo, J., Liu, X.Y. A highly selective chemosensor for Cu2+ and Al3+ in two different ways based on Salicyladehyde Schiff[J]. Inorganic Chemistry Communications.2011,14:1622-1625.
    [214]Upadhyay, K.K., Kumar, A. Pyrimidine based highly selective fluorescent receptor for Al3+ showing dual signaling mechanism[J]. Organic & Biomolecular Chemistry.2010, 8:4892-4897.
    [215]Kaur, K., Bhardwaj, V.K., Kaur, N., Singh, N. Imine linked fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for HSO4- anion[J]. Inorganic Chemistry Communications.2012,18:79-82.
    [216]Shi, X.Y., Wang, H., Han, T.Y., Feng, X., Tong, B., Shi, J.B., Zhi, J.G., Dong, Y.P. A highly sensitive, single selective, real-time and "turn-on" fluorescent sensor for Al3+ detection in aqueous media[J]. Journal of Materials Chemistry.2012,22:19296-19302.
    [217]Wang, Y.X., Xiong, L.M., Geng, F.H., Zhang, F.Q., Xu, M.T. Design of a dual-signaling system for fluorescent ratiometric detection of Al3+ ion based on the inner-filter effect[J]. Analyst.2011,136:4809-4814.
    [218]Kaur, K.; Bhardwaj, V.K., Kaur, N., Singh, N. Fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for perchlorate anion:First molecular security keypad lock based on Al3+ and ClO4- inputs[J]. Inorganic Chemistry Communications.2012, 26:31-36.
    [219]Gholivand, M.B., Ahmadi, F., Rafiee, E. A Novel Al(Ⅲ)-Selective Electrochemical Sensor Based OnN,N'-Bis(salicylidene)-1,2-phenylenediamine Complexes[J]. Electroanalysis.2006, 18:1620-1626.
    [220]Wang, L.N., Qin, W.W., Tang, X.L., Dou, W., Liu, W.S., Teng, Q.F., Yao, X.J. A selective, cell-permeable fluorescent probe for Al3+ in living cells[J]. Organic & Biomolecular Chemistry.2010,8:3751-3757.
    [221]Bereau, V., Duhayon, C., Sournia-Saquet, A., Sutter, J.P. Tuning of the Emission Efficiency and HOMO-LUMO Band Gap for Ester-Functionalized{Al(salophen)(H2O)2}+ Blue Luminophors[J]. Inorganic Chemistry.2012,51:1309-1318.
    [222]Sinha, S., Koner, R.R., Kumar, S., Mathew, J., Monisha, P.V., Kazi, I., Ghosh, S. Imine containing benzophenone scaffold as an efficient chemical device to detect selectively A13+[J]. RSC Advances.2013,3:345-351.
    [223]Kim, S.H., Choi, H.S., Kim, J., Lee, S.J., Quang, D.T., Kim, J.S. Novel Optical/Electrochemical Selective 1,2,3-Triazole Ring-Appended Chemosensor for the Al3+ Ion[J]. Organic Letters.2010,12:560-563.
    [224]Lu, Y., Huang, S.S., Liu, Y.Q., He, S., Zhao, L.C., Zeng, X.S. Highly Selective and Sensitive Fluorescent Turn-on Chemosensor for Al3+ Based on a Novel Photoinduced Electron Transfer Approach[J]. Organic Letters.2011,13:5274-5277.
    [225]Maity, D., Govindaraju, T. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophone as selective Al3+ sensor[J]. Chemical Communications.2010,46:4499-4501.
    [226]Maity, D., Govindaraju, T. Conformationally Constrained (Coumarin-Triazolyl-Bipyridyl) Click Fluoroionophone as a Selective Al3+ Sensor[J]. Inorganic Chemistry.2010, 49:7229-7231.
    [227]Maity, D., Govindaraju, T. A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media[J]. Chemical Communications.2012,48:1039-1041.
    [228]Dong, M., Dong, Y.M., Ma, T.H., Wang, Y.W., Peng, Y. A highly selective fluorescence-enhanced chemosensor for Al3+ in aqueous solution based on a hybrid ligand from BINOL scaffold and P-amino alcohol[J]. Inorganica Chimica Acta.2012,381:137-142.
    [229]Oliveira, E., Santos, H.M., Capelo, J.L., Lodeiro, C. New emissive dopamine derivatives as fluorescent chemosensors for metal ions:A CHEF effect for Al(Ⅲ) interaction[J]. Inorganica Chimica Acta.2012,381:203-211.
    [230]Lohani, C.R., Kim, J.K., Yoon, J., Lee, K.H. Colormetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex[J]. Analyst.2010,135:2079-2084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700