铁氧化物微波场中升温行为及其煤基直接还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界钢铁工业的快速发展,以高炉为主导的炼铁流程已经发展到鼎盛时期,具有技术成熟、生产能力大、效率高等优点,但是由于其流程长、投资大、能耗高、污染重等缺点,在焦煤短缺、价格昂贵的当今世界,开发清洁、高效的非高炉炼铁工艺已成为当务之急。本论文进行了铁氧化物微波场中升温行为及其煤基直接还原基础研究,为开发微波加热氧化球团煤基直接还原新工艺提供理论指导。
     与传统加热方式不同,微波加热是利用电磁场中冶金物料的介电损耗和磁损耗使物料整体加热。升温试验结果表明:铁及其氧化物粉末和团块都是良好的微波吸收体,并且团块在微波场中的升温快于粉末的升温,它们在微波场中的升温可分为前后两个阶段——快速升温阶段和缓慢升温阶段,前段升温速率顺序为:Fe3O4>FeO>Fe>Fe2O3。其中Fe2O3粉末和团块前段升温缓慢,后段升温速度加快;而Fe3O4、FeO、Fe粉末及其团块前段升温较快,后段升温较慢。氧化球团和无烟煤也是良好的微波吸收体,并且无烟煤的升温快于氧化球团的升温。在不同微波功率、质量和粒级条件下对氧化球团和无烟煤进行升温性能研究,结果表明:当功率为1.3KW、球团质量为160g、粒级为12-16mm时升温速率最快,温度升至1050℃C的时间为42min;当功率为1.3KW、无烟煤质量为80g、混合粒级时升温速率最快,温度升至1080℃的时间为43min。
     研究了脉石成分在微波场中对Fe2O3团块或氧化球团的升温特性和还原过程的影响,结果表明:SiO2、Fe2O3在团块中吸收微波出现“叠加效应”,使升温速率变快;氧化球团中的脉石成分会引起局部的“热应力”,导致球团内部产生裂纹,有利于还原气体的扩散。
     采用扫描电镜分析了在微波作用下铁及其氧化物的结构性能变化,揭示了颗粒之间存在相互迁移、长大的规律。在微波输入功率为1.3KW条件下,Fe2O3团块温度升高到1050℃时,Fe2O3颗粒直径从0.25μm长大至1.2μm;Fe3O4团块温度升高到650℃C时,颗粒直径从1μm长大至7μm。微波作用后铁及其氧化物团块的强度顺序为:Fe> Fe3O4>FeO>Fe2O3。
     对Fe203团块和氧化球团微波加热煤基还原试验进行了研究,结果表明:随着还原终点温度和C/Fe的增加,还原团块与还原球团的金属化率、金属铁含量以及全铁含量也随之增加。
With the quickly development of steel industry in the world, the ironmaking process flow which with blast furnace as the dominant is very boom, maturate, high efficiency. Howeve, because of the long flow, biggest financial, high power consumption, nowadays, in the world where coking coal is shortage and expensive, we should development non blast furnace which clear and high efficiency as early as possible, thus the paper comes to study on the temperature rising behavior and coal-based direct reduction of iron oxides in microwave field, in the interest of providing the theoretic guidance for developing the new technique of the coal-based direct reduction of iron oxide pellet heated by microwave.
     Different from traditional heating, microwave heating uses the dielectric loss and magnetic loss to heat. The result of rising temperature shows:iron and iron oxide powders and briquettes are all good microwave absorbers, and the rising temperature rate of briquettes is quicker than the one of pellets, the rising temperature can be divided to two stages of fore period and late period:quick rising and slow rising. The order of fore period rising temperature rate is:Fe> Fe3O4>FeO >Fe2O3. Fe2O3 powder and briquette rising temperature is very quick in fore period, and is very slow in late period; Fe3O4, FeO and Fe powders and briquettes rising temperature is very quick in fore period, but are all slow in later. Iron oxide pellets and anthracite are both good microwave absorbers, and the rate of anthracite is quicker than iron oxide pellets. To study the temperature rising characteristics under different microwave powers, weights and sizes, the result shows:when microwave input power is 1.3KW and the temperature coming to 1050℃, the rate of the pellets of 160g and 12~16mm is the quickest, using 42 minutes; when microwave input power is 1.3KW and the temperature coming to 1080℃, the rate of the anthracite of 80g and admixture grade is the quickest, using 43 minutes.
     To study on the influence of gangue on the temperature rising characteristic and the reduction process of Fe2O3 briquettes and iron oxide pellets in microwave field, the result shows: SiO2 and Fe2O3 in briquette absorb microwave with superimposition effect, which results in an increase in the temperature rising rate; the partial thermal stress caused by gangue in pellets results in plenty of cracks, which in favor of the quick reduction.
     The structures and properties of iron and iron oxides under microwave radiation are analyzed by the SEM. It is revealed that there are the laws of intermigration and grow between grains of iron and iron oxide. When microwave input power is 1.3KW and temperature is 1050℃, the diameter of Fe2O3 grains changes from about 0.25μm to about 1.2μm; when temperature is 650℃, the diameter of Fe3O4 grain change from about 1μm to about 7μm. After microwave radiation, the order of the briquettes compressive strength is: Fe> Fe3O4>FeO>Fe2O3.
     To test on Fe2O3 briquettes and iron oxide pellets with anthracite heated by microwave, the result of reduction shows: with the rising of end point temperature and C/Fe, the metallization, the metal iron content and total iron content of briquettes and pellets increase.
引文
[1]徐匡迪.中国钢铁工业的任务、现状和发展[J].自然杂志,2001,22(4):187~193
    [2]YIN Rui Yu, The times consideration of technological progress of steel industry. ASIA STEEL 2000, The Chinese Society for Metals, Sept26-29,2000, Beijing, Vol.A:General,1~20
    [3]中国联合钢铁网.钢产量数据.http://www.opsteel.cn.2010
    [4]游锦洲,周国凡,于仲洁,等.热态直接还原铁防再氧化初步研究[J].钢铁,1999,34(11):5~6
    [5]王定武.熔融还原炼铁技术的新发展[J].中国冶金,2003,(5):34~37
    [6]刘云彩.炼铁生产过去.现在和未来[J].中国冶金2005,15(3):1~6
    [7]史占彪.非高炉炼铁学[M].沈阳:东北大学出版社,1990.13~15
    [8]叶匡吾.面对新的炼铁技术-也谈“炼铁技术”[J].中国冶金,2005,15(2):14~17
    [9]张涛,陈凌,郭敏,等.煤气化竖炉直接还原工艺的开发,非高炉炼铁所会论文集,2010.1~2
    [10]魏国,赵庚杰,董文献,等.直接还原铁生产概况及发展[J].中国冶金,2004,(9):16-20
    [11]周强.直接还原新技术[J].烧结球团,1999,24(1):24~28
    [12]阴继翔.煤基直接还原技术的发展[J].太原理工大学学报,2000,31(3):12~15
    [13]邱冠周,姜涛,徐经沧,等.冷固结球团直接还原[M].长沙:中南大学出版社.2001
    [14]全红.直接还原炼铁工艺技术综述[J].云南冶金,2007,36(2):1~3
    [15]柳政根,唐珏,王兆才,等.2009世界直接还原铁生产统计.2010年非高炉炼铁年会论文集.19~28
    [16]王定武.印度直接还原铁生产近况及前景[N].世界金属导报,2004-11-16(011版)
    [17]赵庆杰,李艳军,储满生,等.直接还原铁在我国钢铁工业中的作用及前景展望,非高炉炼铁所会论文集,2010.1~3
    [18]张汉泉,朱德庆.直接还原的现状与发展[J].钢铁研究,2002,(2): 51~54
    [19]张清芩,肖奇.直接还原生产的发展及在我国应用前景[J].烧结球团,1997,22(2):31~35
    [20]朱德庆.铁矿石直接还原工艺的新进展[J].矿冶工程,1996增刊,(2):32~36
    [21]周渝生.非高炉炼铁工艺的现状及其发展[J].世界钢铁,1997,(2):1~11
    [22]李永全,等BL法直接还原工艺研究和开发[J].钢铁,1999,(9):6~10
    [23]胡俊鸽,吴美庆,毛艳丽.直接还原技术的最新发展[J].钢铁研究,2006,34(2):2~4
    [24]杨双平,冯燕波,高维成,等.直接还原技术的发展及前景[J].甘肃:冶金,2006,3(1):3~6
    [25]朱德庆,张汉泉.冷固结球团基直接还原新工艺及其应用[J].钢铁研究,2003,5(1):1~4
    [26]储满生,赵庆杰.中国发展非高炉炼铁的现状及展望[J].中国冶金,2008,2(9):2~3
    [27]方觉.非高炉炼铁工艺与理论[M].北京:冶金工业出版社,2007.5~13
    [28]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.7~45,205~206,282~318
    [29]W.H.Sutton, Microwave Processing of Ceramic Materials [J], Am. Ceram. Soc. Bull,1989,68(2):376
    [30]张伯伦,贺拥军.微波加热在化学反应中的应用进展[J],现代化工2001,21(4):8~12.
    [31]A.G.Whittaker, Difusion in Microwave Heated Ceramics[J]. Chem. Master. 2005,17:3426~3432
    [32]W R.Tinga, Voss Wag. Microwave Power Engineering[M]. Academic Press New York,1968
    [33]徐勇,陈克巧.国外微波能在金属提取中应用研究的进展[J].上海有色金属,1997,18(2):64~67
    [34]张兴仁.微波能在矿冶工程中的应用及其前景[J].矿产综合用,1998,(5):23~29
    [35]Ed Kubel. Advancements in Microwave Heating Technology [J], Industrial Heating,2005,11(3):43~53
    [36]陈克巧,徐勇.矿物及化合物微波化学理论与应用冶金进展述评[J].云南冶金,1998,12(4):32~36
    [37]刘志军,张壁光.微波加热在木材干燥中的应用[J].世界林业研究,2005,18(3):54~58
    [38]L.M.Sheppard, Manufacturing ceramics with microwaves[J], The potential for economical production. Am. Ccram. Soe. Bull.,1988,67(10):1656~1661
    [39]J.D.Katz, R.D.Blake, Microwave sintering of multiple alumina and composite components [J], Am. Ceram. Soc. Bull.,1991,70(81):1304~1307
    [40]王绍林.微波食品工程[M].北京机械工业出版社,1994.1~3,29~31
    [41]余恺,胡卓炎,黄智洵,等.微波杀菌研究进展及其在食品工业中的应用现状[J].食品工业科技.2005,7(26):2~4
    [42]周勇生.微波在调味粉杀菌中的应用[J].中国调味品,2004(2)35:16~17
    [43]李爱军,郭建中.微波在软包装竹笋杀菌保鲜中的应用[J].食品工业科技,2003,2(5):73~74
    [44]张丽华,马春影,杨建文,等.微波在牛乳灭菌保鲜中的应用[J].食品工业,2003(2):37~38
    [45]B. A. Welt, C.H. Tong, J.L. Rossen, et al. Effect of microwave radiation on inactivation of clostridium sporogenes(PA 3679) spores [J]. Applied and Environmental Microbiology,1994(2):482~488
    [46]F.Celandroni, I.Longo, N. Tosoralti, et al. Effect of microwave radiation on Bacillus subtilis spores [J]. Journal of Applied Microbiology,2004(2):2~9
    [47]S. Tajchakavit, H.S. Ramaswamy. Thermal vs microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions[J]. Lehensm-Wiss u-Technol,1997,30:85~93
    [48]M.H.Lau, J.Tang. Pasteurization of pickled asparagus using 915MHZ microwaves [J]. Journal of Food Engineering,2002,51:283~290
    [49]E. Marconi, S. Ruggeri, M. Cappelloni, et al. Physicochemical, nutritional, and microstructural characteristic of chickpeas (Cicer arietinum L) and common beans(Phaseolus vulgaris L) following microwave cooking[J]. Journal of Agricultural and Food Chemistry,2000,48:5986~5994
    [50]林伟,白新德,马文军,等.微波在陶瓷加工中的应用与进展[J].清华大学学报(自然科学版),2002,42(5):1~5
    [51]周健,程吉平,董学斌,等.陶瓷材料的微波连续化烧结系统研究[J]. 硅酸盐通报,1999,18(4):37~40
    [52]郭文.结构陶瓷微波加工的试验研究:[博士学位论文].北京:清华大学,1996
    [53]徐东,施利毅,吴振红,等.微波烧结氧化锌压敏陶瓷的研究进展[J].电瓷避雷器,2007,12(5):1~4
    [54]M.A.Janney, H.D.Kimrey, M.A.Schmidt, et al. Grain growth in miceowave annealed alumina [J]. J Am Ceram Soc,1991,74(7):1675~1681
    [55]Chenliang Li, Chenchia Chou, Microstructures and electrical properties of lead zinc niobate-lead titanate-lead zirconate ceramics using microwave sintering [J], the Euro. Cera. Society,2005
    [56]F Satoru, I Makoto, H Takashi. Sintering of partially stabilized zirconia by microwave heating using ZnO-MnO2-Al2O3 plates in a domestic microwave oven[J]. J Am Ceram Soc,2000,83(8):2085~2087
    [57]M.Panneerselvam, K J Rao. Novel microwave method for the synthesis and sintering of mullite from kaolinite[J]. Chem. Mater,2003,15(4):2247~2232
    [58]赵俊蔚,赵国惠,郑晔,等.微波加热在矿冶方面的应用研究现状[J].黄金,2008,29(12):1~4
    [59]宋耀欣,储少军.微波加热在冶金碳热还原中的应用研究现状[J].铁合金,2006,37(6):3~5
    [60]陈津,刘浏,曾加庆,等.微波加热在含碳球团中应用的研究[J].工业加热,2001,6:8~10
    [61]彭金辉,郭胜惠,张世敏,等.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4):5~9
    [62]S W Kingman, K Jackson, S M Bradshaw, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder technology. 2004,19(2):176~184
    [63]G Scott, S M Bradshaw, J J Eksteen. The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling[J]. Int J Miner. Process, 2008,85(6):121~128
    [64]樊希安,彭金辉,秦文峰,等.微波辐射在提金活性炭技术中的应用[J].黄金,2003,24(5):33~35
    [65]周云,彭开玉,王世俊,等.含锌冶金尘泥在微波场中的升温特性[J].钢铁研究,2006,34(2):58~60
    [66]秦文峰,彭金辉,樊希安,等.微波辐射法干燥仲铝酸铵新工艺[J].中 国钼业,2002,26(6):28~31
    [67]E.Breval, J.P.Cheng, D.K.Agrawal, et al. Comparison between microwave and conventional sintering of WC/Co composites [J]. Materials Science and Engineering, A 291,2005,285~295
    [68]武文华, 唐惠庆.微波干燥和焙烧球团矿[J].北京科技大学学报,1994,16(2):118~121
    [69]曹明贺,刘韩星,欧阳世翕,等.微波烧结钛酸钡陶瓷与常规烧结钛酸钡陶瓷界面偏析研究[J].硅酸盐学报,2000,28(1):47~50
    [70]http://www.hwwb.cn/NewsInfo.asp?ArticleID=29
    [71]阮颖铮.雷达散射截面与隐身技术[M].北京:国防工业出版社1998.269~270
    [72]周馨我.功能材料学[M].北京:北京理工大学出版社,2002.237~241
    [73]Jiann-Yang Hwang, Xiaodi Huang, Shaolong Qu, et al. Iron oxide reduction with conventional and microwave heating under CO and H2 atmospheres [J]. TMS,2006,2(35):1~9
    [74]Xiang Sun, Jiann-Yang Hwang, Xiaodi Huang. The microwave processing of electric arc furnace dust [J]. Pyrometallurgical processing,2009,60(10):34~39
    [75]Kotaro ISHIZAKI, Kazuhiro NAGATA. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder. ISIJ International[J],2007,47 (6):811~816
    [76]S.钟和H.E.乔治曼.使用煤通过微波还原铁矿.国外选矿快报,1998,285(3):1~4
    [77]N.STANDISH, PRAMUSANTO. Reduction of microwave irradiated iron ore particles in CO[J]. ISIJ International,1991,31 (1):11~16
    [78]A B Yu, N Standish, R P Zou, et al. Reduction of stannic oxide with carbon by microwave heating[J]. Ausimm extractive metallurgy conference,1994,6 (2):3~ 6
    [79]陈津,刘洲,曾加庆,等.微波加热还原含碳铁矿粉试验研究[J].钢铁.2004,39(6):1~5
    [80]Y.X.Hua. Microwave-assisted carbothermic reduction of limonits[J]. Acta metallurgica sinica (English letters),1996,9 (3):164~170
    [81]张世敏,黄孟阳,彭金辉,等.微波还原越南钛精矿制备初级富钛料新工艺研究[J].矿产综合利用,2007,3:1~4
    [82]黄娟娟.片状磁性金属及合金纳米颗粒的微波磁性与微波吸收特性研 究:[博士学位论文].兰州:兰州大学,2007
    [83]邢丽英.隐身材料[M].北京:化学工业出版社.2004.41~46
    [84]廖绍彬.铁磁学(下册)[M].北京:科学出版社,2000.1~60
    [85]潘小娟,陈津,张猛,等.微波加热含碳碳酸锰矿粉升温机理[J].中南大学学报,2008,39(6):1234~1235
    [86]张兴仁.微波能在矿冶工程中的应用及前景[J].矿产综合利用,1998,12(5):1~3
    [87]王真.微波场中气液固态介质行为研究:[博士学位论文].长春:吉林大学,1994
    [88]王真,洪品杰,戴树珊.中国电子学会第七届全国微波能应用学术会议论文集,1995.149~150
    [89]毕先钧.微波辐照下甲烷部分氧化制合成气的研究:[博士学位论文].长春:吉林大学,1998
    [90]M. Hamid. Heat Transfer Engineering[M],1992,13 (14):23~26
    [91]胡传忻.隐身涂层技术[M].北京:化学工业出版社,2004.194~200
    [92]徐文兰,沈学础.隐身技术和物理[J].物理,1995,24(5):29~295
    [93]张兆镗,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988.11~15,50~161
    [94]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.13~28,102~117
    [95]张松龄,白荫章,杨型章.直接还原铁生产和应用的技术与经济[J].大冶钢厂和浙江冶金工业出版,1985.35~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700