微波加热干燥单宁锗酸的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了锗的性质与用途。对比了红外加热干燥、燃料加热干燥以及微波加热干燥的特点,体现了微波加热干燥的优越性。论述了微波加热在国内外冶金领域的应用。通过常规电加热干燥、微波加热干燥、微波加热-自然蒸发干燥三种方法对粘结性物料单宁沉锗的脱水过程进行了研究。得到如下结论:
     (1)在常规电加热干燥中,单宁沉锗的相对脱水率随着干燥温度的增加而增大;随着保温时间的延长而增大;随着物料质量的增加而减少,但是减少的趋势越来越缓慢。得出最佳工艺参数为:干燥温度120℃,保温时间170min,物料重量10g,单宁沉锗的相对脱水率为98.69%。
     (2)在微波加热干燥中,单宁沉锗的相对脱水率随着干燥温度的增加而增大;随着保温时间的延长而增大;随着物料质量的增加而减少,且这种下降趋势越来越小。条件实验下的最佳工艺参数为:干燥温度为90℃,保温时间为8min,物料重量10g,单宁沉锗的相对脱水率为97.33%。
     (3)采用微波加热-自然蒸发干燥单宁沉锗这种方法,相对脱水率先随温度的增加而增大,继续升温相对脱水率基本没有变化;在一定时间范围内,相对脱水率随着保温时间的延长而增大;相对脱水率随着物料重量的增加而降低,且降低的趋势趋于平缓。条件实验下的最佳工艺参数为:干燥温度为80℃,保温时间为6min时,物料重量10g,单宁沉锗的相对脱水率为98.73%。
     (4)对于粘结性物料,微波加热干燥的优势在于:降低了干燥温度,缩短了保温时间。微波加热-自然蒸发干燥的优势表现为:缩短了微波作用在物料上的时间,提高了相对脱水率,节约了能耗。
     (5)对常规电加热、微波加热-自然蒸发干燥单宁沉锗的实验过程进行了分析,得出不同干燥方式下的动力学指数模型MR=exp(-ktn),为进一步研究单宁沉锗的干燥机理奠定了理论基础。
     (6)通过采用Design-Expert7软件优化了微波加热干燥、微波加热-自然蒸发干燥的实验结果,得出了两种方法的干燥模型,预测了实验的最佳工艺条件。
     (7)由常规电加热干燥和微波加热干燥后SEM微观结构图,物料的形态变化可知:微波加热干燥后物料结构的孔隙较多、较大,更疏松,且硬度较低,有利于充分煅烧,可能会提高锗的回收率。
     由此可见,微波加热-自然蒸发干燥单宁沉锗不仅可以发挥微波加热干燥选择性加热、迅速升温、节约能源的优势,而且能够利用微波加热停止后的余热,使水分进一步的排除。因此,微波加热-自然蒸发干燥单宁沉锗是一种高效、节能、经济可行的的干燥新工艺。
The properties and the application of germanium is introduced, a comparison of characteristics of infrared dehydration, fuel heating dehydration and microwave heating dehydration is made, the advantage of the microwave heating dehydration is proposed and the application in national and international metallurgy field is discussed. Three methods including conventional electric heating dehydration, microwave heating dehydration and microwave heating-natural evaporation dehydration, are taken to study the relative dehydrationrate of cohesive material-tannins germanium acid。
     (1)When dehydrated by conventional electric heating, the relative dehydrationrate of tannins germanium acid increases along with the increase of the dehydrated temperature. The relative dehydrationrate increases along with the increase of the holding time. The relative dehydrationrate decreases along with the increases of material weight, but tends to flat. The recommended technological parameters are as follows:the dehydrated temperature is 120℃, the holding time is 170min, the material weight is lOg and the relative dehydrationrate of tannins germanium acid is 98.69%.
     (2)In microwave heating, the relative dehydrationrate of tannins germanium acid increases along with the increase of the dehydrated temperature. The relative dehydrationrate increases along with the increase of the holding time. The relative dehydrationrate decreases along with the increases of material weight, but tends to mininum. The recommended technological parameters are as follows:the dehydrated temperature is 90℃, the holding time is 8min, the material weight is 10g and the relative dehydrationrate of tannins germanium acid is 97.33%.
     (3)By microwave heating-natural evaporation, the relative dehydrate-onrate of tannins germanium acid increases along with the increase of the dehydrated temperature. When the temperature reaches a given value, the temperature's increasing has no obvious effect on relative dehydrationrate. In a given period, the relative dehydrationrate increases with the increase of treating time. The relative dehydrationrate decreases along with the increases of material weight, but tends to flat. The recommended technological parameters are as follows:the dehydrated temperature is 80℃, the holding time is 6min, the material weight is lOg and the relative dehydrationrate of tannins germanium acid is 98.73%.
     (4) For cohesive material, microwave heating dehydration reduces the temperature for a large scale and shortens the reaction period comparing with the conventional electric heating dehydration. Microwave heating-natural evaporation dehydration shortens the time that microwave takes effect on the material, which saves energy.
     (5)A kinetic exponential model MR=exp(-ktn)in different dehydrate-ions is developed by analyzing the experimentations tannins germanium acid heated by conventional electricity and microwave heating-natural evaporation dehydration.
     (6) The experiment results of microwave heating dehydration and microwave heating-natural evaporation dehydration are optimized by adopting the Design-Expert7 software and the development of dehydration models of these two methods.
     (7) It can be seen from the SEM analysis by comparing conventional electric heating dehydration with microwave heating dehydration and the change of configuration materials that the material processed with the latter method gets much more and much larger structural pores, more loosen and less hardness which makes it easy to calcine and raises the recovery of germanium.
     It can be concluded that microwave heating-natural evaporation dehyd-ration not only shows its advantages on selectively heating, temperature rising rapidly and energy saving but also utilize the excess heat to eliminate moisture further. Therefore, microwave heating-natural evaporation dehydrating tannins germanium acid is an efficient, energy-saving and economically feasible new dehydration technics.
引文
[1]张元福,陈家蓉.贵州含锗氧化铅锌矿资源的开发状况及前景[J],有色冶炼,1997,26(3):17-20.
    [2]邱光文.含锗氧化锌烟尘综合回收锗锌工艺[J],云南冶金,2000,29(3):17-21.
    [3]张博亚,王吉坤,彭友奇,等.湿法炼锌过程中铟锗的综合回收[J],云南冶金,2007,36(5):25-28.
    [4]刘中清,唐谟堂,鲁君乐,等.湿法炼锌中性浸出过程中锗的行为研究[J],湿法冶金,2000,19(2):43-46.
    [5]雷霆,张玉林,王少龙.锗的提取方法[M],北京:冶金工业出版社2007.
    [6]胡福田,梁杰,郑东升.全萃法从锗烟尘浸出液中分离锗的研究[J],贵州工业大学学报(自然科学版),2001,(6):37-39.
    [7]黄机炎.锗工业进展概述[J],有色金属技术经济研究,1992,(1):25-57.
    [8]牟战旗,霍胜娟.短波红外加热技术在连续板钢生产线中的应用[J],电镀与精饰,2008,30(11):24-26.
    [9]程玉兰.红外诊断现场实用技术[M],北京:机械工业出版,2002,20-57.
    [10]李全禄.远红外辐射材料的研究及应用[J],压电与声光,1995:47-52.
    [11]李月军.塑料加T过程中的红外加热技术简介[J],塑料工业,2004(6):56-57.
    [12]林金清.含水粒子层的红外线干燥[J],化工学报,1996,(5):607-613.
    [13]李晖.印刷工艺中的红外干燥技术[J],网印工业,2004,(6):44-45.
    [14]崔听,孙磊,宋奎伟,等.红外辐射在油漆烘烤中的应用[J],机械制造,2001,(2):39-40.
    [15]李桂玉,远红外干燥技术的应用[J],北京节能,1998,(3):18.
    [16]秉时,国内红外应用漫谈[J],红外,2001,(3):48.
    [17]王相友,操瑞兵,孙传祝.红外加热技术在农业物料加工中的应用[J],农业机械学报,2007,38(7):177-182.
    [18]蔡如华,卢文全,丁宣浩.热辐射波长测温法的理论研究[J],宇航计测技术,2003,23(4):19-23.
    [19]葛世名,李工一.表面涂层烘干固化新工艺新技术[J],腐蚀科学与防护技术,2003,15(6):356-360.
    [20]曹崇文,朱文学著.农产品干燥工艺过程的计算机模拟[M],北京:中国农业出版社,2001.
    [21]朱文学,张仲欣,刘建学,等.我国干燥用热源的研究和应用现状分析[J],粮食储藏,2005,(4):132-142.
    [22]周国江,王磊.熄焦方式对焦炭孔隙结构的影响[J],2009,(3):214-217.
    [23]霍镰全.一种降低热风炉煤耗的方法[P],中国,实用新型,2009,(2):78.
    [24]刘伟军,王佐民,于晓东,等.生物质型煤燃烧机理分析和燃烧速度试验研究[J],煤炭转化,1998,28(4):52-57.
    [25]王光盛,王英勇.燃煤燃稻壳两用炉的改进设计[J],现代化农业,1999,(8):36-40.
    [26]郝玉福,苏俊林,许思传,等.燃用稻壳热管式热风炉的研究[J],农业机械学报,1994,25(3):70-73.
    [27]刘圣勇,赵迎芳,张百良.生物质成型燃料燃烧理论分析[J],能源研究与利用,2002,(6):26-28.
    [28]刘伟军,王佐民,于晓东,等.生物质型煤燃烧机理分析和燃烧速度试验研究[J],煤炭转化,1998,28(4):52-57.
    [29]E Cigdem,O Huseyin.Dehydration of ulexite by microwave heating[J]. Thermochi-mica Acta,2005,428(1):125-129.
    [30]G J Rajeev, N P Perry.Nonisothermal radiofrequency drying of red oak[J], Wood and Fiber Science,2001,33(3):476-485.
    [31]M Medeni.Drying shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying[J], Journal of Food Engineering,2001,48:177-182.
    [32]刘志军,张璧光.微波加热在木材干燥中的应用[J],世界林业研究,2005,18(3):54-58.
    [33]王绍林.微波加热原理及应用[J],物理,1996,26(4):232-237.
    [34]崔正伟,许时婴,孙大文.微波真空干燥技术的进展[J],粮油加工与食品机械,2002,28-30.
    [35]杨州,段吉利.微波加热干燥及其发展[J],粮油加工与食品机械,2000,267(3):5-8.
    [36]王绍林.微波加热技术在食品加工中的应用[J],2000,21(2):6-12.
    [37]张兆锉,钟若青编译.微波加热技术[M].北京:电子工业出版社,1988.
    [38]I.R.N., Gedye, et al.The rapid synthesis of organic compounds microw-ave ovens[J]. Can.J.Chem,1992,66:17-27.
    [39]J D Ford, D C T Pei. High temperature chemical processing via micro-wave absorption[J]. J.Microwave Power,1967,2(2):61-64.
    [40]A Idris, K Khalid, W Omar. Drying of silica sludge using microwave heating[J]. Applied Thermal Engineering,2004,24:905-918.
    [41]T T Chen, J E Dutrizac, K E Haque, etal. The relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly, 1984,23(3):349-351.
    [42]S Kocakusak, H J Kproglu, R Tolum. Drying of boric acid by microwa-ve heating[J].Chemical Engineering and Processing,1998,37:197-201.
    [431]S L Megill, J W Walkiewicz. Application of microwave energy in ext-ractive metallurgy[J]. Microwave Power and Electromagnetic energy, 1987,22(3):175-177.
    [44]J W Walkiewicz, G Kazonich, S L Mcgill. Microwave heating charact-erictics of selected minerals and compounds[J]. Mineral and Metallurgical Processing,1988,5(1):39-42.
    [45]尚新华译.使用煤通过微波加热还原铁矿[J],国外选矿快报,1998,(3):13-16.
    [46]S Abdullah, O Baris. Dehydration of sodium carbonate monohydrate with indirect microwave heating[J].Thermochimica Acta,2006,448(1): 31-36.
    [47]范兴祥,彭金辉,张利波,等.微波辐射干燥硫酸钠的工艺研究[J], 云南化工,2002,9(6):5-7.
    [48]秦文峰,彭金辉,樊希安,等.微波辐射法干燥仲铝酸铵新工艺[J],中国钼业,2002,26(6):28-31.
    [49]林培喜,李晓明.微波加热干燥法用于硫酸铜中结晶水的测定[J],茂名学院学报,2003,26(6):28-31.
    [50]张世敏,彭金辉,张利波,等.微波加热中试装置及硫酸铜的干燥[J],有色冶金,2003,55(2):40-42.
    [51]武文华,唐惠庆.微波加热干燥和焙烧球团矿[J],北京科技大学学报,1994,16(2):118-121.
    [52]朱艳丽.钛提取过程中干燥还原和电解新技术:[D].昆明:昆明理工大学,2003.
    [53]朱艳丽,彭金辉,张世敏,等.微波加热干燥闪锌矿试验研究[J],有色金属(冶炼部分),2005,5:21-24.
    [54]陈津,刘浏,曾加庆,等.微波加热在含碳球团中应用的研究[J],工业加热,2000,6:8-10.
    [55]康守方,魏丽斯,李俊华,等.Ag/Al2O3选择性还原整体式催化剂的制备[J],清华大学学报(自然科学版),2008,48(6):1004-1007.
    [56]刘晓熹,曾令可,刘平安,等.利用工业钛液制备纳米二氧化钛[J],佛山陶瓷,2006,119:5-7.
    [57]彭金辉,杨显万.微波能技术应用[M].昆明:云南科技出版社,1997.
    [58]潘永康主编.现代干燥技术[M].北京:化学工业出版社,1998.
    [59]唐伟琴.木瓜的薄层微波加热干燥特性实验研究:[D].南宁,广西大学,2006.
    [60]诸爱士,成忠.西芹热风干燥动力学研究[J],农机化研究,2007,3:139-142.
    [61]Y Soysal. Microwave drying characteristics of Parsley[J]. Biosystems Engineering, 2004,89(2):167-173.
    [62]I M Diamante, P A Monro. Mathematical modeling of hot air dring of sweet pota-to slices[J]. International journal of Food Science and Technolog,1991,26:99-109.
    [63]王俊,许乃章.热风、远红外和微波加热干燥香菇、蘑菇方程研究[J],农业机械 学报,1994,25(2):45-49.
    [64]Y Soysal.Microwave drying characteristics of Parsley[J]. Biosystems Engineering, 2004,89(2):167-173.
    [65]王绍林,微波加热原理及其应用[J],物理,1997,26(4):232-237.
    [66]杨晓青,秦文峰,罗振中,等.微波加热技术在钼工业中的应用[J],中国钼业,2005,29(2):43-46.
    [67]M Maskan. Enetic of color change of kiwifruits during hot air and microwave drying[J]. Journal of Food Engineering,2001,48:169-175.
    [68]刘志军,张璧光,微波加热在木材干燥中的应用[J],世界林业研究,2005,18(3):54-58.
    [69]H W Lee. Combined Microwave and Convective Drying of Korea[J].8th International IUFRO Wood Drying,2003,146-149.
    [70]M Maskan.Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering,2000,44:71-78.
    [71]Wang J,Xi Y S. Drying characteristics and drying quality of carrot using a two-stage microwave process[J]. Journal of Food Engineering, 2005,68:505-511.
    [72]杨晓青,秦文峰,罗振中,等.微波加热技术在钼工业中的应用[J],中国钼业,2005,29(2):43-46.
    [73]H A Von. Dielectric Materials and Applications[J]. MIT Technology Press and Wiley New York,1954,18-40.
    [74]孙哲浩,李宝珍,赵谋明,等.响应面分析法优化荔枝核总黄酮提取工艺的研究[J],食品与机械,2006,22(1):30-32.
    [75]R Azargohar, A K Dalai. Production of activated carbon from Luscar char:experimental and modelling studies[J]. Micropor Mesopor. Mater, 2005,8(5):219-225.
    [76]P D Haaland. Statistical problem solving In:Experimental Design in Bioteehnology[J].New York and Basel:Marcel Dekker, Inc.,1989:1-18.
    [77]张庆国.毛豆热风与真空微波联合干燥过程研究:[D].无锡,江南大学,2006.
    [78]李琴,朱科学,钱海峰,等.微波热风组合干燥制备板栗粉的研究[J],食品工业科技,2008,29(2):209-211.
    [79]天津大学化工原理教研室编.化工原理(下册)[M].天津:天津科学技术出版社,1996.
    [80]胡纱纱,汪一红,王承明,等.响应曲面法优化水溶性黄连木多糖的提取工艺[J],食品科学,2008,29(8):172-176.
    [81]P Verma, L U S Agrawa, A K Sharma, etal. Optimization of process par-ameters for the development of a cheese analogue from pigeon pea (Cajanus cajan) and Soy Milk Using Response Surface Methodology[J], International Journal of Dairy Technology,2005,58:51-58.
    [82]R Azargohar, A K Dalai. Production of activated carbon from Luscar char:experimental and modelling studies[J]. Micropor Mesopor. Mater, 2005,8(5):219-225.
    [83]P D Haaland. Statistical problem solving In:Experimental Design in Bioteehnology[J].New York and Basel:Marcel Dekker, Inc.,1989:1-18.
    [84]潘永康主编.现代干燥技术[M].北京:化学工业出版社,1998.
    [85]朱德泉.微波加热干燥玉米的实验研究[J],包装与食品机械,2004,22(5):13-16.
    [86]SoysalY.Microwave drying characteristics of Parsley[J]. Biosystems Engineering, 2004,89(2):167-173.
    [87]I M Diamante, P A Monro. Mathematical modeling of hot air dring of sweet potato slices[J]. International journal of Food Science and Technolog,1991,26:99-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700