利用工业废气中高浓度磷化氢合成四羟甲基氯化磷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济全球化在给各国经济发展带来重大机遇的同时,也对各国经济发展战略,尤其对发展中国家传统的工业化道路提出严峻的挑战。随着人类消费需求增加及全球磷化工进程的加速,对磷矿的大量开发和利用造成的磷矿资源短缺现象日益严重,我国国土资源部已将磷矿列为2010年后不能满足中国经济发展需求的矿种之一。云南省的磷矿储量及产量均在全国前列,磷化工同时又是云南省的重要的经济支柱之一,黄磷总产量大量增加,产生的固体废物泥磷也在增加。如何在资源开发利用的同时,依法保护和合理使用资源,提高资源利用率,实现资源的永续利用是重要的课题。课题组前期研究表明利用泥磷与碱液反应制取次磷酸钠是一种有效的资源综合利用及污染治理手段,但此过程中有20%的单质以磷以磷化氢的形式排出,因此对于产生的高浓度磷化氢气体仍需要妥善处理。
     本文以泥磷资源化利用过程中产生的磷化氢为研究对象,利用高浓度磷化氢废气合成阻燃剂四羟甲基氯化磷(THPC).但由于传统的高浓度磷化氢合成THPC未采用催化剂,磷化氢的转化率较低,因此反应中需要筛选高效的催化剂,以提高在反应时间内的磷化氢综合利用率。本研究设计出利用催化剂高效制备阻燃剂THPC的的实验方案,采用无载体催化剂氯化铜催化氧化磷化氢,不仅可以无害化处理PH3废气,更可变废为宝实现废气资源化制得产品阻燃剂THPC,有效地提高磷资源的综合利用率。
     研究的内容主要有:在前期研究工作的基础上,合理进行流程设计,优化实验方案;根据磷化工常用催化剂的分类及用途,查阅相关文献选取氧化铝、氧化锌、氯铂酸钾、氯化铜作为本研究的催化剂筛选类型,用单因素实验方式考察各种工艺条件:空速、反应时间、反应温度、原料配比等因素对合成工艺磷化氢转化率的影响,确定最佳合成工艺条件,根据单因素实验结果,进行4因素3水平的正交实验,并进行磷化氢转化率方差分析,确定影响磷化氢转化率的因素和最佳工艺方案,并对产品含量和反应机理和动力学过程进行相关分析。
     确定了单组分催化剂的筛选、工艺条件的单因素实验的最佳实验条件:选取CuCl2为最适宜催化剂;制备THPC反应条件为空速150h-1,反应温度60℃,催化剂用量0.75g,甲醛和盐酸摩尔比4:1。磷化氢的转化率可达到95%。产品阻燃剂水溶液THPC含量81%,符合工业商品THPC要求。
     通过正交实验确定了THPC合成实验,确定响磷化氢转化率的因素从主到次的顺序:空速、反应温度、催化剂用量、甲醛和盐酸摩尔比;筛选出工艺参数最优方案:n(HCHO)/n(HCl)4:1;空速150h-1,反应温度60℃,催化剂用量0.75g。并发现反应温度对磷化氢合成THPC有极显著影响,空速对磷化氢转化率有显著影响。研究表明催化剂样中含有大量的活性成分氯化亚铜,主要由于氯化铜的催化氧化氧化作用加速了合成反应的进行,使得磷化氢的转化率大大的提高。对高浓度废气磷化氢合成阻燃剂THPC的宏观动力学进行研究表明:在催化剂作用下,磷化氢与盐酸和甲醛合成阻燃剂的反应是一级反应。
Economic globalization has brought significant opportunities in the economic development of countries, but it also has posed serious challenges to national economic development strategy, in particular, the traditional path of industrialization in the developing countries. With the increase of human consumption and the acceleration of global phosphorus chemical process, the shortage phenomenon of phosphate resources is worsening with the development and utilization of the phosphate. China's Ministry of Land and Resources has set phosphate as one of minerals that it can not meet China's economic development demand after2010. Phosphate reserves and production in Yunnan Province is the most in the nation, and the phosphorus chemical industry is one of the important economic pillar of Yunnan Province, the total output of yellow phosphorus increase in the enterprises, while the mount of phosphorus sludge is also increasing. How to protect with the law and use resources rationally, improve resource utilization of resources, and use sustainably is an important issue, at the same time of resource development and utilization, in accordance, Group preliminary studies showed that a process of phosphoric sludge to the sodium hypophosphite is an effective comprehensive utilization of resources and means of pollution control, but in the process20%elemental phosphorus discharge in the form of phosphine and produce the high concentration of phosphine gas which still need to be addressed.
     Phosphine generated in the process of phosphoric sludge utilization is viewed as the this research object, with use of of high concentration of phosphine emissions flame retardants (THPC) is composited. However due to synthesis of THPC did not use catalyst in Traditional research,so the conversion rate of phosphine is the low. The reaction need to be screened in a highly efficient catalyst, in order to improve the comprehensive utilization rate of phosphine in the reaction time. In this study, the catalyst for efficient preparation of flame retardants THPC, using carrier-free catalyst copper chloride catalyzed and oxidated of phosphine gas.It is not only harmless treatment of phosphine, but also change the waste to the resources of the system and get the products flame retardants THPC, effectively improving the comprehensive utilization rate of phosphorus resources.
     The content of the study:on the basis of preliminary studies, a reasonable process is designed, and the experimental program is optimizated too; According to the classification and use of commonly catalyst in phosphorus chemistry, select the alumina, zinc oxide, chloroplatinic potassium copper chloride as a catalyst for this study, single factor experiments to examine the impact of a variety of conditions:space velocity, reaction time, reaction temperature, the ratio of raw materials and other factors on the synthesis process at phosphine conversion rate, to determine the optimum conditions.4factors and3levels of orthogonal experiment is conducted according to the results of single factor experiments, and phosphine conversion rate variance analysis to determine the phosphine conversion rate factors and the best of the process plan, and also product content and the reaction mechanism and analysis of dynamic process.
     Single-component catalyst screening and the optimal experimental conditions of the process conditions is determined, the single factor experiment:select CuC12as the optimal catalyst; airspeed in preparation of THPC conditions150h-1,the reaction temperature of60℃, the amount of catalyst0.75g, formaldehyde and andhydrochloric acid molar ratio of4:1. Phosphine conversion rate can reach95%. Product of flame retardant solution content is80%, which is in line with THPC requirements of industrial commodities.
     the THPC synthesis experiments is determined by orthogonal experiments, the factors that ring the rate of phosphine conversion from the main to order: airspeed, the reaction temperature, amount of catalyst, formaldehyde and hydrochloric acid molar ratio; optimal solution of screening process parameters:n(HCHO)/n (HC1)4:1, space velocity150h-1, the reaction temperature of60℃, the amount of catalyst0.75g. The research found that the reaction temperature had very significant effects on the synthesis of THPC with phosphine, and the airspeed also have a significant effect on phosphine conversion rate. The study showed that the catalyst samples contained a large number of active ingredients cuprous chloride which accelerated the synthesis reaction, this mainly due to the catalytic oxidation of copper chloride oxidation, making the conversion rate of phosphine greatly improve. Studies the macroscopic dynamics of the synthesis of flame retardants THPC have shown that reaction of synthetic flame retardants with phosphine, hydrochloric acid and formaldehyde under catalyst is first-order reaction.
引文
[1]根扎大地和谐发展云南省安宁市县街磷矿区资源整合纪略[J].资源与人居环境,2010,(6):46-47
    [2]陶俊法.云南磷深加工现状与展望.2005年云南省青海省矿业可持续发展高层论坛论文集[J].2005.7.344-346
    [3]Huang, X.F.; Li, L.Y.; Ning, P.; Liu, W.W.; Wang, X.N., Effect of Isopropyl Alcohol and Activated Carbon on Producing Sodium Hypophosphite by Phosphorous Sludge, Energy and Environment Technology,2009. ICEET'09. International Conference,2009,282-285
    [4]Bessarabov, A. M.; Kvasyuk, A. V.; Zaikov, G. E., Synthesis of flexible manufacturings for phosphoric industry waste utilisation based on the CALS-CONCEPT. Journal of the Balkan Tribological Association.2009,15(4),599-610
    [5]黄小凤,马仲明,宁平等.泥磷的处理方法研究[J].中国工程科学,2005,7(11):91~94
    [6]夏成洋,黄德镛,林友等.泥磷回收制磷危险性分析与防治[J].无机盐工业,2007,39(11):44~46
    [7]云南省磷矿发展现状和展望[A].全国磷肥、硫酸行业第十四届年会论文集[C].2004
    [8]段希祥,龚贵生.云南磷矿资源开发利用与问题探讨[J].云南冶金,2002,31(5),18-24
    [9]Huang, X.F.; Li, L.Y.; Ning, P.; Liu, W.W.; Wang, X.N., Effect of Isopropyl Alcohol and Activated Carbon on Producing Sodium Hypophosphite by Phosphorous Sludge, Energy and Environment Technology,2009. ICEET'09. International Conference,2009,282-285
    [10]Bessarabov, A.; Bulatov, I.; Kvasyuk, A.; Kochetygov, A., Utilization of waste for large capacity productions of phosphorus-containing products based on the system analysis methods. Clean Technologies and Environmental Policy.2010,12(6),601-611
    [11]冉隆文.精细磷化工技术[M].北京:化学工业出版社,2005
    [12]杨陆华,马兴良,廖昆生.云南磷及磷酸盐工业发展现状及前景[J].云南化工,2001,28(5):9-12
    [13]宋发志.从泥磷回收黄磷[J].湖北化工,1996,(3):36-38
    [14]韩金涛,江映翔,罗芳.泥磷中温提取黄磷方法研究[J].资源与环境,2009,(11):91~92
    [15]谢光炎,孙水裕,王孝武.黄磷工业污泥的处理技术探讨[J].环境污染治理技术与设备,2004,5(1):77~80
    [16]顾志勤.制磷生产中的泥磷及其处理[J].磷酸盐工业,1989,(4):54~56
    [17]莎芭琳娜,别洛.制磷生产中泥磷的形成及处理[J].吴志伟译.磷酸盐工业,1989,(1):78~79
    [18]白天和.热法加工磷的化学及工艺学[M].昆明:云南科技出版社,2001
    [19]刘书勤,赵军.磷泥的综合利用[J].化工环保,1990, (2):83~89
    [20]江善襄.磷酸、磷肥和复混肥料[M].北京:化学工业出版社,1999
    [21]李旺华.泥磷动态蒸馏工艺设计[J].江西化工,1999,(4):24~25
    [22]钱爱珠,赵玮.一种泥磷的回收处理方法[P].中国:1324759,2001,12(5)
    [22]江善襄.磷酸、磷肥和复混肥料[M].北京:化学工业出版社,1999
    [23]李旺华.泥磷动态蒸馏工艺设计[J].江西化工,1999,(4):24-25
    [24]钱爱珠,赵玮.一种泥磷的回收处理方法[P].中国:1324759,2001,12(5)
    [25]任希廉.磷盐生产中资源的综合利用[J].甘肃化工,1997,(1):18~20
    [26]刘云根,江映翔,周平.泥磷中温真空提取黄磷的技术研究[J].云南化工,2005,32(2):12~14
    [27]唐振尧,马镇华.一种从废泥磷中回收磷的好办法[J].化工设计通讯,1994,20(1):37~38.
    [28]黄初平.泥磷生产饲料磷酸氢钙工艺[J].江西化工,1995,(1):27-28
    [29]薛福连.双渣磷肥的制取[J].云南化工,2001,28(4):34-35
    [30]高建培,田森林,宁平等.由黄磷生产副产物磷泥制备磷铜实验研究[J].武汉理工大学学报,2008,30(6):41-43
    [31]马兴良,优质磷铜清洁化生产工艺的开发[D]:[硕士论文].昆明:昆明理工大学,2005
    [32]Yu Q F, Tang X L, Yi H H, et al. Equilibrium and heat of adsorption of phosphine on CaC12-modified molecular sieve[J].Asia-Pacific Journal of Chemical Engineering,4 (2009):612
    [33]于剑昆.磷化氢的制备与精制[J].无机盐工业,2007,39(3):11
    [34]朱仁斌,孔德明,孙立广,等.南极大气中磷化氢的首次监测[J].科学通报,2006,51(18):2212
    [35]牛晓君.自然环境中磷化氢研究进展[J].中国沼气,2007,25(1):18
    [36]Huang X F, Li L Y, Ning P, et al.2009 International Conference on Energy and Environment Technology,2009[C].Gui Lin:ICEET 2009
    [37]Colabella J M, Stall R A, Sorenson C T, The adsorption and subsequent oxidation of A sH3 and PH3 on activated carbon [J] Journal of Crystal Growth,92 (1988):189
    [38]王成俊,郭爱红,王福生,等。次磷酸钠工业生产过程中PH3尾气处理技术[J].天津化工2003,(5):37
    [39]Guo K M、Xie Z L, Ma L, et al.Special impregnated activated carbon and canister for removing AsH3 and PH3 in H2 stream[J].New Carbon Materials.2001,16 (2):54
    [40]天津市劳动卫生职业病研究所.GB/T16037—1995,车间空气中磷化氢的铝酸铵分光光度测定方法[S].北京:中国标准出版社,1995
    [41]易玉敏.PH3液相催化氧化催化剂的筛选及动力学研究[D].昆明:昆明理工大学,2008
    [42]吴满昌,宁平,任丙南,等.黄磷尾气中总磷及磷化氢的测定[J].环境污染与防治,2004,(4):317
    [43]张永生,张伟.正确使用磷化氢气体检测仪[J].粮食加工,2004,29(1):63
    [44]徐浩东,蒋明.火焰光度气相色谱法测定磷化氢的研究[J].江西农业学报,2007,19(4):101
    [45]陈海群,周亚红,朱俊武,等.利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢[J].色谱,2004,(4):442
    [46]Wang X Q, Ning P, Shi Y, et al.Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon[J]. Journal of Hazardous Materials,2009,171 (1-3):588
    [47]Wilde Jurgen.Absorbent mass for phosphine[P].Internationale Ver affent lichung summer.WO 00/21644 A3,2000.04.20
    [48]Li W C, Bai H L, Hsu J N, et al. Metal loaded zeolite adsorbents for phosphine removal[J].Industrial & Engineering Chemistry Research,2008,47 (5):1501
    [49]四川天一科技股份有限公司.从黄磷尾气中脱除磷、磷化物、硫化物并回收磷的方法:四川CN00116137.7[P].2000-9-29
    [50]Goncharova L V,Clowes S K, Fogg R R,et al.Phosphine adsorption and the production of phosphide phases on Cu(001) [J].Surface Science,2002,515:553-566.
    [51]The BOC Group plc.Gas stream purification apparatus[P].EP:0611140.1994.08.01.
    [52]程建忠,张宝贵,张英喆.次磷酸钠生产过程中PH3尾气处理技术的研究[J].南开大学学报(自然科学版),2001,34(2):31
    [53]朱尔根.茨默门伍德有限公司.从气体中特别是从乙炔气气体中洗脱磷化氢的方法[P].CK85105317
    [54]余琼粉,易红宏,唐晓龙,等.PH3净化技术及其展望[J].环境科学与技术,2009,32(10):87-91
    [55]江苏康祥集团公司.用生产次磷酸钠过程中的PH3制备四羟甲基氯化磷方法:江苏,CN200710133486.6[P].2008-03-19
    [56]林徐明,韩长秀,任吉利,等.钴磷合金催化剂的制备及其催化分解PH3的研究[J].环境污染与防治,2007,29(2):104
    [57]Li L L, Han C X, Yang L, et al. The nature of PH3 decomposition reaction over amorphous CoNiBP alloy supported on carbon nanotubes[J].Industrial & Engineering Chemistry Research, 2010,49 (4):1658
    [58]Herbert ROsch.现代阻燃剂体系及阻燃测试标准[J].印染,2007,33(23):38-40
    [59]徐加艳,胡源,王清安等.阻燃材料工业中的绿色化学与技术[J].高分子材料科学与工程,2002,18(1):17-21
    [60]徐启杰,李伟,时文中.溴系反应型阻燃剂的研究进展[J].天中学刊,2007,22(2):25-28
    [59]史翎.阻燃剂的发展及在塑料中的应用[J].塑料,2002,31(3):11-15
    [60]张洪昆.纺织品阻燃综述[J].印染助剂,2009,26(2):7-11,15
    [61]杨丽,周逸潇,韩新宇等.阻燃剂阻燃机理的探讨[J].天津化工,2010,24(1):1-4
    [62]黄沙.磷系阻燃剂的现状与发展前景[J].四川化工,2010,13(5):24-28
    [63]张铁江.常见阻燃剂的阻燃机理[J].化学工程与装备,2009,(10):11-115,83
    [64]白景瑞,滕进.阻燃剂的应用与研究进展[J].宇航材料工艺,2001,31(2):10-13
    [65]麻炳辉,李萌,王鹤童.阻燃剂的环保化发展趋势和聚合型溴系阻燃剂的应用[J].盐业与化工2009,38(6):44-46
    [66]史楷岐,李亚,单志华等THPC的分析测试方法[J].皮革科学与工程,2005,15(3):16-19
    [67]郭文宇.亚甲基兰比色法测定THPC的含量[J].皮革科学与工程,2004,14(4):17-19
    [68]姚成,高旭,戴乾胜THPC含量的容量法和离子交换法测定[J].石油化工工,2000,29(2):131-133
    [69]刘伟文.泥磷制取次磷酸钠尾气的多相催化氧化研究[D]:[硕士学位论文].昆明:昆明理工大学,2010
    [70]谭娟.吸附法净化泥磷制取次磷酸钠尾气PH3的研究[D]:[硕士学位论文].昆明:昆明理工大学,2010
    [71]王行泳.催化法制备阻燃剂氯化四羟甲基磷新工艺:湖北,CN88101082[P].1988-12-21
    [72]孙大中.气体检测管原理及其应用技术(上)[J],化工劳动保护:工业卫生与职业病分册,1991(3):113-116
    [73]李亚.THP盐的分析及其与皮胶原作用研究[D]:[硕士学位论文].成都:四川大学,2005.
    [74]曾庆友,曾明荣.阴离子交换树脂负载氯化锌催化合成诺卜醇[J].生物质化学工程,2006,40(3):6-8
    [75]孙婧,邰晓曦,刘海锋.氧化锌催化苯甲酸加氢制备苯甲醛[J].精细石油化工进展,2007,8(6):34-41
    [76]田勇,薛丽梅.三氯化铝催化合成叔十二碳硫醇[J].化学与粘合,2003,(2):66-68。
    [77]李军燕,宁平,瞿广飞,Cu(Ⅱ)-Co(Ⅱ)液相催化氧化净化PH3研究[J].武汉理工大学学报,2007,29(10):63-65,69
    [78]姜贵君,姜贵平,李建华.X射线衍射分析及其在微纤丝角测定中的应用[J].安徽农业科学,2010,38(2):592-594
    [79]李霞.X射线衍射原理及在材料分析中的应用[J].物理通报,2008,(9):58-59
    [80]杨新萍.X射线衍射技术的发展和应用[J].山西师范大学学报(自然科学版),2007,21(1)
    [81]田志宏,张秀华,田志广.X射线衍射技术在材料分析中的应用[J].工程与试验,2009,49(3):40-42
    [82]陈自力.甲烷液相催化氧化制甲醇的工艺研究[D].[硕士学位论文].西安:西北大学,2008
    [83]赵晓蕾,严莲荷,董岳刚.季磷盐化合物的合成研究[A].2000工业表面活性剂技术经济文集[C].2000.337-341
    [84]杨韵娜,刘源发,徐家业.1-甲基-3,5-二苯基吡唑啉在氯化铜催化下的氧化脱氢反应(Ⅱ)-计量反应与氧分子的作用阶段[J],高等学校化学学报,1985,6(9):840-842
    [85]赵匡华.化学通史.北京:高等教育出版社,1990.
    [86]王克强.由反应机理推导反应动力学方程的基本方法[J].大学化学,1991,(2):54-551.
    [87]高慧敏.泥磷综合利用基础研究[D].[硕士学位论文].昆明:昆明理工大学,2005.
    [88]王新平,王旭珍,王新葵等.关于化学反应表观活化能和指前因子的教学讨论[J].大学化学,2011,26(3):35-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700