异种合金激光深熔钎焊机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异种合金复合结构可以综合利用两种合金的优势性能,在现代工业中有着广泛的应用前景。但是异种合金之间的物理、化学性质差异以及不同元素在界面相互反应生成的新相,使异种合金的焊接存在很大困难。因此,对异种合金激光焊接工艺技术及机理的研究,实现异种合金的可靠连接,对于异种合金复合结构的应用具有重要的理论和实际意义。
     本文针对熔点差异较大的异种合金组合,提出了一种激光深熔钎焊的方法,即在焊接过程中,采用聚焦的激光作用在低熔点母材一侧进行深熔焊接,低熔点母材熔化后在接头界面铺展浸润高熔点母材从而形成钎焊接头。激光深熔钎焊在低熔点母材一侧为激光深熔焊特征,在高熔点母材一侧为钎焊特征。
     本文以黄铜-低碳钢、铝合金-紫铜以及铝合金-钛合金三类不同异种合金为代表,系统研究了三种组合激光深熔钎焊接头成形特点及影响因素,接头显微组织和力学性能,并采用有限单元法对激光深熔钎焊传热过程进行了模拟和分析。
     在黄铜-低碳钢组合中,液态黄铜在低碳钢界面可以良好地浸润。另外铁和铜两种元素在固相形成固溶体,不会形成金属间化合物,因此黄铜-低碳钢激光深熔钎焊接头成形较好。在铝合金-紫铜组合中,铝和铜两种元素能够形成共晶,有助于液态铝润湿铜界面形成良好深熔焊接头。但是铜与铝较高的导热率,在激光能量密度较小时,冷却速度较快,易出现未熔合缺陷。在铝和铜的焊接过程中需要较多的能量输入。对于铝合金-钛合金组合,由于液态铝在钛界面的浸润性较差及铝和钛易形成金属间化合物,在铝合金-钛合金激光深熔钎焊过程中界面易出现未熔合缺陷。通过优化工艺参数可以促进液态铝在钛合金界面的铺展浸润并控制金属间化合物的生成,得到成形较好的焊接接头。
     利用光学显微镜、扫描电子显微镜及透射电镜等手段研究了三种异种合金接头组合的接头显微组织,结果表明对于黄铜-低碳钢等形成固溶体的异种合金组合,在焊缝界面没有明显的过渡层,而对于能形成共晶或金属间化合物的异种合金组合,界面会形成由金属间化合物或共晶及其混合物构成的过渡层。如铝合金-铜接头界面存在由金属间化合物层以及α(Al)+Al2Cu共晶构成的过渡层,熔化的铜母材在焊缝中以α(Al)+Al2Cu共晶的形式存在,而在铝合金-钛合金焊缝界面位置,只存在由金属间化合物构成的过渡层。
     研究了在铝合金-紫铜激光焊接中,不同铜母材的熔化量对于接头的力学性能的影响。铝合金-紫铜激光熔焊接头的抗拉强度为79MPa左右,断裂在焊缝。铝合金-紫铜激光深熔钎焊-熔焊部分接头断裂发生在铝母材位置,部分断裂发生在界面处,其抗拉强度为大于94.5MPa。铝合金-紫铜激光深熔钎焊的抗拉强度较低,抗拉强度为52MPa,断裂发生在界面金属间化合物层与共晶层结合的位置,此时焊缝的显微硬度要高于铝母材但是低于铜母材,而铜母材存在一定熔化的焊缝的显微硬度都高于两种母材。铝合金-钛合金激光深熔钎焊接头的最大抗拉强度为217MPa,接头的断裂为韧性断裂,接头的抗拉强度随着界面未熔合率的下降而增加。但是在1m/min情况下,靠近界面的钛合金母材晶界位置析出的氧化物会导致出现微裂纹,以及当激光入射角大于9°时,激光直接作用在钛合金界面,在焊缝中产生大量缺陷影响接头强度。
     采用移动离散热源模型,在有限元分析软件Ansys中编写APDL程序对异种合金激光深熔钎焊温度场分布以及界面热循环进行了模拟计算。分析了不同材料以及工艺参数对焊接过程温度场以及界面热循环的影响。
Dissimilar alloys composite structures have wide applications in many industrial fields, because they can provide each alloy's advantage. However, the great differences in physical, chemical properties of dissimilar alloys and elements interaction in molten pool make joining them become a challenging task. It is important for investigations and comprehensions on the technique, mechanism and elements interaction in molten pool during laser welding of dissimilar alloys for the application of dissimilar alloys composite structures
     In this dissertation, for welding dissimilar alloys which differ considerably in melting point and metallurgical properties, an approach, namely laser penetration brazing (LPB), has been applied and investigated. A focused laser beam acts on the lower melting point base metal, which results in the low melting point base metal melted by means of the key-hole effect. The higher melting point base metal, however, still maintains the solid state. A penetration brazing joint is formed through the interaction of the higher melting point base metal and molten lower melting point baser metal.
     As a representative of variety dissimilar alloys couples, brass-steel, aluminum-copper and aluminum -titanium were used in laser penetration brazing experiments. The formation characteristic, microstructure and mechanical properties of laser penetration brazing joints of variety dissimilar joints were investigated. The heat-transfer process was analyzed by finite element analysis.
     The formation of the laser penetration joint is mainly influenced by the type of dissimilar alloys couple and the processing parameters. The formation of brass-steel joint is formed well, because the wettability of copper on steel is well and the interaction between Cu and Fe can form only solid solution. In the laser penetration brazing of copper and aluminum, more laser energy is needed for wetting of aluminum on copper, due to the high thermal conductivity of copper. The melting of part copper doesn't bring about the negative effect on the formation of joints due to the eutectic reaction between Cu and Al. The poor wettability of aluminum on titanium may lead to incompleted fusion part in the interface of aluminum-titanium joint. It can be improved by optimizing the processing parameters. The formation of Al-Ti intermetallic compounds has negtative effect on the joints, the melting rate of titanium, therefore, must be controlled.
     For dissimilar alloys couple which can form only solid solution, such as brass-steel, there is no obvious transition layer along the interface in the joint. However, for dissimilar alloys couples which form eutectic or intermetallic compounds, there is a transition layer along the interface in the joint. In the aluminum-copper joint, a transition layer composed of Al-Cu intermetallic compounds and a (Al)+Al2Cu eutectic. The melted copper exists as the form of Al-Cu intermeallic compounds and a (Al)+Al2Cu eutectic in the weld metal. The microstructure of aluminum-copper joints is different with the amount of the melted copper. The transition layer along the interface in the aluminum-titanium joint is only composed of Al-Ti intermetallic compounds.
     The amount of molted copper results in the different microstructure of aluminum-copper joint, which influence the mechanical properties. For the joints with excessive amount of copper melted, the microhardness is higher than that of base metal. The maximum tensile strength of joints is 79MPa, and the failure occurred at the weld metal. For the joint with part melting of copper, the microhardness is higher than that of base metal. The maximum tensile strength for tensile test is 100.6 MPa. The failure occurred at aluminum side. The maximum tensile strength of failure in interface samples is 94.5 MPa. The microhardness in the weld metal of the joint with small amount of copper melting is higher than that of aluminum base metal, however, lower than that of copper base metal. The maximum tensile strength of joints is 52MPa. The failure occurred at the copper-weld interface. The maximum tensile strength of aluminum-titanium joints is 210Mpa. The failure occurs at the interface. The incompleted fusion rate in titanium is the main factor of the strength of aluminum-titanium joints. The tensile strength increased with decreasing the incompleted fusion rate. However, the defects in weld metal have negative effect on the tensile strength, such welding velocity lm/min joints and deflect angle more than 9°joints.
     A moving integration heat source was used in the simulation of temperature field. The temperature field and heat cycling were analyzed via Ansys software. The method can be used as a reference in the simulation of laser penetration brazing.
引文
1. W. W. Duley. Laser Welding. John Wiley & Sons,1999:159-200
    2.左铁钏.高强铝合金的激光加工.国防工业出版社,2002:1-101
    3. R. Popraw著.张冬云译.激光制造工艺.清华大学出版社,2008:1-3
    4.李亚江,王娟,刘鹏编著.异种难焊材料的焊接及应用.化学工业出版社,2004:1-58
    5.潘春旭著.异种钢及异种金属焊接—显微结构表征及其转变机理.人民交通出版社,2000:1-35
    6. Sp.G. Pantelakis, N.D. Alexopoulos. Assessment of the Ability of Conventional and Advanced Wrought Aluminum Alloys for Mechanical Performance in Light-weight Applications. Materials & Design.2008,29(1):80-91
    7. A. Tharumarajah, P. Koltun. Is There an Environmental Advantage of Using Magnesium Components for Light-Weighting Cars?. Journal of Cleaner Production.007,15(11-12): 1007-1013
    8. W. V. YVaidya, M. Horstmann, V. Ven tzke et. al. Improving Interfacial Properties of a Laser beam Welded Dissimilar Joint of Aluminium AA6056 and Titanium T6A14V for Aeronautical Applications. Journal of Material Science.2010,45:6242-6254
    9.虞觉奇,易文质,陈邦迪 等编译.二元合金状态图集.上海科学技术出版社,1987:29-60
    10. W. M. Steen. Laser Material Processing.Third Edition. Speringer,2003:157-223
    11. A. Ribolla, G.L.Damoulis, G.F.Batalha.The use of Nd:YAG Laser Weld for Large Scale Volume Assembly of Automotive Body in White. Journal of Materials Processing Technology.2005 (164-165):1120-1127
    12. M. Kutsuna, S. Marya. Research and Development of Laser Technology in Materials Processing. Proceedings of SPIE 2003,4831:104-109
    13. D. Cruciani, F. Linguiti. Laser welding dissimilar metals as alternative to brazing: experimental results, economical and quality evaluations, applications in production line. Proc. SPIE 1990,1276:243-246
    14.R.S. Mishraa, Z.Y. Mab. Friction stir welding and processing. Materials Science and Engineering R.2005,50:1-78
    15. Y.C.Chen, K.Nakata, Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys. Materials and Design. 2009.30:469-474
    16. P. Xue, B.L.Xiao, D.R. Ni, Z.Y. Ma, Enhanced Mechanical Properties of Friction Stir Welded Dissimilar Al-Cu Joint by Intermetallic Compounds. Material Science Engineering A. 2010,527:5723-5727.
    17. M.Brochu, P.Wanjara. Transient Liquid Phase Bonding of Cu to Cu-W Composite Using an Electron Beam Energy Source. International Journal of Refractory Metal & Hard Materials. 2007,25:67-71
    18. T. Luijendijk. Welding of dissimilar aluminium alloys. Journal of Materials Processing Technology.2000,103(1):29-35
    19. Z. Sun, R. Karppi. The application of electron beam welding for the joining of dissimilar metals:an overview. Journal of Materials Processing Technology.1996,59(3):257-267
    20. Z. Sun, J.C. Ion. Review Laser Welding of Dissimilar Metal Combinations. Journal of Material Science.1995 (30):4205-4214
    21. E. Schbert, M. Klassen, I. Zerner, et al. Light-Weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry. Journal of Materials Processing Technology.2001,(115):2-8
    22. Y. Quan, Z. Chen, X. Gong, et al. CO2 laser Beam Welding of Dissimilar Magnesium-Based Alloys. Materials Science and Engineering:A.2008,496(1-2):45-51
    23. P. Kolodziejczak, W. Kalita.Properties of CO2 Laser-Welded But Joints of Dissimilar Magnesium Alloys. Journal of Materials Processing Technology.2009,209 (2):1122-1128
    24. J. B. Berretta, W. Rossi, M. David, et al. Pulsed Nd:YAG Laser Welding of AISI304 to AISI420 Stainless Steels. Optics and Lasers in Engineering.2007,45:960-966
    25. J. H. Park, T. H. Kim. Tailored Blank Welding Between Low Carbon Steel Sheet and STS 304 Stainless Steel Sheet by CO2 laser beam. Metals and Materials International.2010,5(1):55-62
    26. A. Ruggieroa, L. Tricaricoa, A.G. Olabib et al. Weld-Bead Profile and Costs Optimisation of the CO2 Dissimilar Laser Welding Process of Low Carbon Steel and Austenitic Steel AISI316. Optics & Laser Technology.2011,43(1):82-90
    27. X. Liu, G. Yu, M. Pang et al. Dissimilar Autogenous Full Penetration Welding of Superally K418 and 42CrMo Steel by a High Power CW Nd:YAG Laser. Applied Surface Science. 2007,253:7281-7289
    28.庞铭、郑彩云、刘秀波等.K418与42CrMo异种金属激光深熔焊接焊接学报.2007,28(9):83-86
    29.庞铭、虞钢、王恒海等.K418与42CrMo异种金属激光焊接接头组织与力学性能.2008,29(2):85-88
    30. X. Liu, M. Pang, Z. Zhang, et al. Characteristics of Deep Penetration Laser Welding of Dissimilar Metal Ni-based Cast Superalloy K418 and alloy 42CrMo. Optics and Lasers in Engineering 2007,45:929-934
    31. L. Mujica, S. Weer, H. Pinto, et al. Microstructure and Mechanical Properties of Laser-Welded Joints of TWIP and TRIP Steels. Materials Science and Engineering A.2010,527:2071-2078
    32. GDaurelio, G DIonoro, F. Memola Capece Minutolo, et. al. Lap and Butt Joints of Dissimilar Stainless Steels Welded by CO2 Laser. SPIE 1992,1810:658-663
    33. P. Dong, R.S.Xiao, Laser Welding of Lap Joint between Copper and Brass. Proceedings of 28th International Congress on Application of Lasers & Electro-Opnics (ICALEO).
    34.韩宁.激光深熔焊接阈值特性研究.北京工业大学硕士学位论文,2006
    35. G.Phanikumar,S.Manjini, P.Dutta et al. Characterization of a Continuous CO2 Laser-Welded Fe-Cu Dissimilar Couple. Metallurgical and Materials Transactions A.2005,36A:2137-2147
    36. H. Chen, A.J. Pinkerton, L. Li. Gap-Free Fibre Laser Welding of Zn-Coated Steel on Al Alloy for Light-Weight Automotive Applications. Materials & Design.2011,32(2):495-504
    37. T.A.Mai, A.C.Spowage. Characterization of Dissimilar Joints in Laser Welding of Steel-Kovar, Copper-Steel and Copper-Aluminium. Materials Science and Engineering A. 2004,374:224-233
    38. S. Liu, J.Ni, X. Zhou et al. Research on the Laser Lap Welding of TC4 Titanium Alloy and L3 Industrial Pure Aluminum Dissimilar Metal. Proc. of SPIE 2007(6825):6825-1-12
    39. C. Yao, B.Xu, X. Zhang, et al. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint. Optics and Lasers in Engineering.2009,47(7-8): 807-814
    40. M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh. Dissimilar Welding of Carbon Steel to 5754 Aluminum Alloy by Nd:YAG Pulsed Laser. Materials & Design.2010,31(1):458-465
    41. S.Z. Hong, T. Watanabe, et al. CW/PW Dual-Beam YAG Laser Welding of Steel/Aluminum Alloy Sheets. Optics and Lasers in Engineering.2010,48(7-8):732-736
    42. B. Majumdar, R.Jalun, A. Weisheit and et al. Formation of a crack-free joint between Ti alloy and Al alloy by using a high power CO2 laser. Journal of Materials Scienc.1997,32:6191-6200
    43. S. Mukherjee, S. Chakraborty, R. Galun, et al. Transport phenomena in conduction mode laser beam welding of Fe-Al dissimilar couple with Ta diffusion barrier. International Journal of Heat and Mass Transfer.2010,53(23-24):5274-5282
    44.G Eber, I. Mys, M. Schmidt. Laser Micro Welding of copper and Aluminum Using Filler Materials. Proc. of SPIE,2004,5662:337-342
    45.1. Mys, M. Schmidt.Laser Micro Welding of Copper and Aluminum. Proc. of SPIE.2006,6107: 610703-1-610703-6
    46. L. Liu, X. Liu, S. Liu. Microstructure of Laser-TIG Hybrid Welds of Dissimilar Mg Alloy and Al Alloy with Ce as Interlayer. Scripta Materialia.2006,55(4):383-386
    47. L. Liu, X. Zhao. Study on the Weld Joint of Mg alloy and Steel by Laser-GTA Hybrid Welding Materials Characterization.2008,59(9):1279-1284
    48. L. Liu, X. Qi. Strengthening Effect of Nickel and Copper Interlayers on Hybrid Laser-TIG Welded Joints between Magnesium alloy and Mild Steel. Materials & Design.2010, 31(8):3960-3963
    49. K. Chen, Z.Y Wang, R.S. Xiao, et al. Mechanism of Laser Welding on Dissimilar Metals between Stainless Steel and W-Cu Alloy. Chinese Optics Letters.2006,4(5):294-296
    50. R. Borrisutthekul, Y Miyashita, Y. Mutoh. Dissimilar Material Laser Welding between Magnesium Alloy AZ31B and Aluminum Alloy A5052-O. Science and Technology of Advanced Materials.2005,6(2):199-204
    51. M. Kreimeyer, F. Wagner, F. Vollertsen. Laser processing of Aluminum-Titanium-Tailored Blanks.Optics and Laser in Engineering.2005,43:1021-1035
    52. S. Zhao, G. Yu, X. He. Numerical simulation and experimental investigation of laser overlap welding of Ti6A14V and 42CrMo. Journal of Materials Processing Technology.2011,211(3): 530-537
    53. N. Chakrabortya, S. Chakrabortyb. Modeling of Turbulent Molten Pool Convection in Laser Welding of a Copper-Nickel Dissimilar Couple. International Journal of Heat and Mass Transfer.2007,50(9-10):1805-1822
    54. N. Chakraborty. The Effects of Turbulence on Molten Pool Transport During Melting and Solidification Processes in Continuous Conduction Mode Laser Welding of Copper-Nickel Dissimilar Couple. Applied Thermal Engineering.2009,29(17-18):3618-3631
    55. A. K. Skourasa, N. Chakrabortyb; S. Chakrabortyc. Computational Analysis of the Effects of Process Parameters on Molten Pool Transport in Cu-Ni Dissimilar Laser Weld Pool. Numerical Heat Transfer, Part A:Applications:An International Journal of Computation and Methodology.2010,58(4):272-294
    56. Z. Zeng, X. Lia, Y. Miaob et al. Numerical and Experiment Analysis of Residual Stress on Magnesium Alloy and Steel Butt Joint by Hybrid Laser-TIG Welding. Computational Materials Science.2011,50(5):1763-1769
    57. H. Zhang, J. Feng, P. He, et al. Interfacial microstructure and mechanical properties of aluminium-zinc-coated steel joints made by a modified metal inert gas welding-brazing process. Materials Characterization.2007,58(7):588-592
    58.J. Song, S. Lin, C.Yang, et al. Spreading Behavior and Microstructure Characteristics of Dissimilar Metals TIG Welding-Brazing of Aluminum Alloy to Stainless Steel. Materials Science and Engineering:A.2009,509(1-2):31-40
    59. L.A. Jacome, S. Weber, A. Leitner, et al. Influence of Filler Composition on the Microstructure and Mechanical Properties of Steel—Aluminum Joints Produced by Metal Arc Joining. Advanced Engineering Materials.2009, 11(5):350-358
    60. J. Song, S. Lin, C. Yang, et al. Effects of Si Additions on Intermetallic Compound Layer of Aluminum-Steel TIG Welding-Brazing Joint. Journal of Alloys and Compounds. 2009,488(1):217-222
    61. S. Lin, J. Song, G Ma et al. Dissimilar Metals TIG Welding-Brazing of Aluminum Alloy to Galvanized Steel. Frontiers of Materials Science in China.2009,3,(1):78-83
    62. S. Lin, J. Song, C. Yang, et al. Brazability of Dissimilar Metals Tungsten Inert Gas Butt Welding-Brazing between Aluminum Alloy and Stainless Steel with Al-Cu Filler Metal, Materials & Design.2010,31(5):2637-2642
    63. F.Wagner, I.Zerner, M.Kreimeyer, T.Seefeld, GSepold. Characterization and Properties of Dissimilar Metal Combinations of Fe/Al and Ti/Al-Sheet Materials. Proceedings of the 1st International WLT-Conference on Laser in Manufacturing 2001
    64. J. Ding, F. Li, F. Qu, et al. Investigation on Laser Brazing AA6056 Al Alloy to XC18 Low-Carbon Steel. Chinese Optics Letters.2005,3(1):31-34
    65. A. Mathieu, R. Shabadi, A. Deschamps, et al.Dissimilar Material Joining Using Laser (Aluminum to Steel Using Zinc-Based Filler Wire). Optics & Laser Technology.2007,39(3): 652-661
    66. A. Mathieu, S. Mattel, A. Deschamps et al. Temperature Control in Laser Brazing of a Steel/Aluminium Assembly using Thermographic Measurements.NDT & E International. 2006,39(4):272-276
    67. A. Mathieu, S. Pontevicci, J. Viala, et al. Laser Brazing of a Steel/Aluminium Assembly with Hot Filler Wire (88% Al,12% Si). Materials Science and Engineering:A.2006,435-436: 19-28
    68. C. Dharmendra, K.P. Rao, J. Wilden, et al. Study on Laser Welding-Brazing of Zinc Coated Steel to Aluminum Alloy with a Zinc Based filler. Materials Science and Engineering:A. 2011,528 (3):1497-1503
    69. R. Borrisutthekul, T. Yachi, Y. Miyashita, et al.Suppression of Intermetallic Reaction Layer Formation by Controlling Heat Flow in Dissimilar Joining of Steel and Aluminum Alloy. Materials Science and Engineering:A.2007,467,(1-2):108-113
    70. M.Kutsuna, M. Rathod. Joining of Aluminium Alloy and Low Carbon Steel by Laser Roll Welding. Welding Journal.2004,83(1):25-32
    71. M.Kutsuna, M. Rathod. Use of Pulsed CO2 Laser in Laser Roll Bounding of A5052 Aluminium Alloy and Low Carbon Steel. Welding in the World,2005,50(7-8),28-36
    72. K. Nishimoto, Y. Okumoto, T. Harano and et al.Laser Pressure Welding of Zn-Coated Steel and Pure Aluminum. Proceedings of 26th International Congress on Application of Laser & Electro-Optics
    73. K. Nishimoto, H. Fujii. Nd:YAG Laser Clad Welding of Titanium on Steel Plate. First International Symposium on High-Power Laser Macroprocessing
    74. J. Wloka, H. Laukant, U. Glatzel et al. Corrosion Properties of Laser Beam Joints of Aluminium with Zinc-Coated Steel. Corrosion Science.2007,49(11):4243-4258
    75. H.Laukant, E. Guimaraens, U. Glatzel.Laser Beam Aluminum-Steel Joints-Mechanical and Dynamical Properties and Detailed Microstructure Analysis of Intermetallic FeAl-Phases. Proceedings of 26th International Congress on Application of Laser & Electro-Optics
    76.雷振,秦国梁,林尚扬等.铝/钢异种金属Nd:YAG激光-MIG复合热源熔-钎焊接工艺.焊接2006,6:35-37
    77.雷振,秦国梁,王旭友等.铝/镀锌板复合热源熔-钎接头的局部“未钎合”缺陷分析.焊接学报,2007,28(10):37-40
    78.雷振,于宁,游爱清等.5A02/Q235钢Nd:YA G激光—脉冲MIG复合热源熔—钎连接.焊接学报,2008,29(6):21-24
    79.封小松,李俐群,朱宝华等.铝/钛异种合金的激光熔钎.中国激光.2007,34:302-305
    80.倪加明,李俐群,陈彦宾等.铝/钛异种金属激光熔钎焊接头特性.中国有色金属学报.2007,17(4):617-622
    81.陈树海,李俐群,陈彦宾.铝/钛异种金属激光熔钎焊接头界面特性.中国有色金属学报.2008,18(6):991-996
    82.陈树海,李俐群,陈彦宾.光斑形式对Ti/Al异种合金激光熔钎焊特性的影响.焊接学报,2008,29(6):49-53
    83.陈树海,李俐群,陈彦宾.矩形光斑钛/铝异种合金激光熔钎焊.中国激光.2008,35(12):2036-2041
    84. S.Chen, L.Li,Y. Chen.Si Diffusion Behavior During Laser Welding-Brazing of Al Alloy and Ti Alloy with Al-12Si Filler Wire. Transactions of Nonferrous Metals Society of China.2010, 20(1):64-70
    85. Y. Chen, S. Chen, L. Li. Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing. Materials & Design.2010,31(1): 227-233
    86. S. Chen, L. Li, Y. Chen et al. Joining Mechanism of Ti/Al Dissimilar Alloys During Laser Welding-Brazing Process. Journal of Alloys and Compounds.2011,509(3):891-898
    87. WV. Vaidya, M. Horstmann, V. Ventzke et al. Structure-Property Investigations on a Laser Beam Welded Dissimilar Joint of Aluminium AA6056 and Titanium Ti6A14V for Aeronautical Applications Part I:Local gradients in microstructure,hardness and strength. Mat.-wiss. u. Werkstofftech.2009.40,(8):623-633
    88.曹娜.钛合金激光焊接头的研制.北京工业大学硕士学位论文.2006:27-39
    89.方洪渊,冯吉才编著.材料连接过程中的界面行为.哈尔滨工业大学出版社,2005:5-77
    90.B.P.里亚博夫著.王义衡,赵瑞湘译.铝及铝合金与其它金属的焊接.宇航出版社,1990:64-92
    91.G. Deyev, D. Deyev. Surface Phenomena in Fusion Welding Processes. Taylor & Francis,2006:88-100
    92. H. Baker (ed.), ASM Handbook, Vol.3, Alloy Phase Diagrams, ASM,1992
    93. J. C. Schuster, M. Palm. Reassessment of the Binary Aluminum-Titanium Phase Diagram. Journal of Phase Equilibria and Diffusion.2006,27(3)):255-277
    94. M. Zebardast, A. K. Taheri. The Cold Welding of Copper to Aluminum Using Equal Channel Angular Extrusion (ECAE) Process. Journal of Materials Processing Technology.2011,211 (6):1034-1043
    95. J. Ouyang, E. Yarrapareddy, R. Kovacevic.Microstructural Evolution in the Friction Stir Welded 6061 Aluminum Alloy (T6-temper condition) to Copper. Journal of Materials Processing Technology,2006,172(1):110-122
    96.戴锅生编.传热学.第二版.高等教育出版社,1999:1-66
    97.武传松编著.焊接过程与熔池形态.机械工业出版社,2008:1-27,83-96
    98. R. Wang, Y. Lei, Y. Shi. Numerical Simulation of Transient Temperature Field During Laser Keyhole Welding of 304 Stainless Steel Sheet. Optics & Laser Technology.2011,43(4):870-873
    99. A. Belhadja, J, Bessroura, J. Masseb, et al. Finite Element Simulation of Magnesium Alloys Laser Beam Welding. Optics & Laser Technology.2011,43(4):870-873
    100. S. A. Tsirkas, P. Papanikos, Th. Kermanidis. Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens. Journal of Materials Processing Technology.2003,134(1): 59-69
    101. K. Abderrazak, S. Bannour, H. Mhiri et al. Numerical and Experimental Study of Molten Pool Formation During Continuous Laser Welding of AZ91 Magnesium Alloy. Computational Materials Science,2009,44(3):858-866
    102. K. Kazemi, J. A. Goldak. Numerical Simulation of Laser Full Penetration Welding. Computational Materials Science.2009,44(3):841-849
    103. H. Du, L. Hu, J. Liu,et al. A Study on the Metal Flow in Full Penetration Laser Beam Welding for Titanium Alloy. Computational Materials Science.2004,29(4):419-427
    104. S. Bag, A. Trivedi, A. De. Development of a Finite Element Based Heat Transfer Model for Conduction Mode Laser Spot Welding Process Using an Adaptive Volumetric Heat Source. International Journal of Thermal Sciences.2009,48(10):1923-1931
    105. J. Montalvo-Urquizo, Z. Akbay, A. Schmidt. Adaptive finite element models applied to the laser welding problem. Computational Materials Science.2009,46(1):245-254
    106. C.S. Wu, H.L. Wang, Y.M. Zhang. Numerical Analysis of the Temperature Profiles and Weld Dimension in High Power Direct-Diode Laser Welding. Computational Materials Science.2009, 46(1):49-56
    107. Q. Liu, S. Mahdavian, D. Aswin, et al. Experimental Study of Temperature and Clamping Force During Nd:YAG Laser Butt Welding. Optics & Laser Technology.2009,41(6):794-799
    108. R. Spina, L. Tricarico, G. Basile. Thermo-Mechanical Modeling of Laser Welding of AA5083 Sheets. Journal of Materials Processing Technology.2007,191(1-3):215-219
    109. H. Al-Kazzaz, M. Medraj, X. Cao, et al. Nd:YAG Laser Welding of Aerospace Grade ZE41A Magnesium Alloy:Modeling and Experimental Investigations. Materials Chemistry and Physics.2008,109(1):61-76
    110.龚曙光,黄云清编著.有限元分析与ANSYS APDL编程及高级应用.机械工业出版社,2009:32-133,234-266
    111.龚曙光,谢桂兰,黄云清编著ANSYS参数化编程与命令手册.机械工业出版社,2009:82-312
    112. R. Fabbro, S. Slimani, F. Coste and et. al. Study of Keyhole Behaviour for full penetration Nd-Yag CW Laser Welding. Journal of Physics D:Applied physics.2005,38:1881-1887
    113. R. Fabbro, K. Chouf. Keyhole Description in Deep Penetration Laser Welding. Processings of SPIE 2000,3888:104-112
    114. X. Jin, L. Li, Y Zhang. A Study on Fresnel Absorption and Reflection in the Keyhole in deep penetration laser welding. Journal of Physics D:Applied Physics,2002,35:2304-2310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700