新型低能量输入电弧焊接系统及其过程控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车工业的发展需要,汽车所用板材越来越薄,薄板的焊接需要降低能量输入。根据汽车薄板的焊接工艺要求,提出了新型低能量输入焊接法,即NLEI焊接法。其基本思路为:首先设定焊丝的运动曲线,使其周期性的做前进-回抽的往复运动,焊接过程不需在线调整,然后使焊接电源配合焊丝的运动输出相应的电流、电压波形,实现稳定的推拉丝短路过渡,达到降低焊接过程能量输入的目的。
     根据这一思路,设计了基于推拉丝短路过渡的低能量输入电弧焊接系统,简称NLEI焊接系统。该系统由焊接电源和送丝系统两部分组成,并由软件实现焊接过程的控制。焊接电源的控制核心采用数字信号处理器TMS320F2812,充分利用DSP运算速度快、精度高、数据处理能力强、I/O口资源丰富等优势,用软件编程实现复杂焊接过程的控制,减少了复杂的硬件控制电路,使焊接设备向柔性化控制方向发展;送丝系统由交流伺服电机及其控制系统组成,可以根据实际需要灵活的编制焊丝前进-回抽运动曲线;通过送丝机接口电路实现了焊接电源和送丝系统的连接,保证了焊接过程中二者的通讯与协调。
     针对NLEI焊接法推拉丝短路过渡的特点,设计了专门的波形控制方案,包括送丝控制和电流波形控制两方面。预先离线设定焊丝运动曲线,在实际焊接过程中通过电流波形与焊丝运动进行配合完成焊接。试验证明,二者配合良好,焊接过程稳定可靠。
     设计了专门的弧长调节模糊控制方案,以平均电压的变化及其变化率为输入,以燃弧脉冲峰值电流的校正量为输出,通过调整焊丝的熔化来对弧长的变化进行调节。通过试验表明,所设计的弧长调节模糊控制方案,能根据弧长的变化进行自动调整,使弧长保持在一个稳定的范围内,具有较强的适应能力,保证了焊接过程的稳定。分析了NLEI焊接法推拉丝短路过渡过程,对比了传统短路过渡和推拉丝短路过渡的熔滴受力情况。与传统短路过渡依靠较大短路电流产生电磁收缩力使液体金属形成颈缩和短路小桥过热爆断相比,NLEI法熔滴过渡是在较小短路电流下主要依靠焊丝回抽拉断熔滴,从而大大降低了焊接过程能量输入。
     分析了燃弧脉冲峰值电流Iap和短路后期电流Ih的参数匹配对于实现焊接参数和焊丝运动协调控制的影响。通过试验得到了Iap和Ih的参数匹配区间,在这一区间内,可以实现焊接参数和焊丝运动的协调工作,获得稳定的焊接过程。通过对焊接过程熔池能量输入的计算与检测,找到了NLEI焊接法推拉丝短路过渡的能量分配规律:由于电阻热的影响,短路后期能量Qh对于熔化焊丝有重要作用,是熔化焊丝能量的重要组成部分,而对于加热熔池的贡献很小;由于电弧热的影响,燃弧脉冲峰值能量Qap是加热熔池的最主要能量来源,对于熔化焊丝形成熔滴也起着重要的作用。
     根据该规律可知:NLEI焊接法推拉丝短路过渡除了通过短路后回抽焊丝拉断熔滴,从而靠外加能量完成熔滴过渡降低能量输入外;还可以通过选择不同的参数匹配方式,采用较低燃弧脉冲峰值电流Iap、较大的短路后期电流Ih来实现进一步降低焊接过程能量输入的目的。
     采用NLEI焊接法,对薄板钢铝异种金属焊接进行了探索性研究,通过分析接头的界面组织,测试接头的力学性能,发现采用NLEI法可以得到性能良好的薄板钢铝异种金属焊接接头。
     探讨了焊接工艺参数及合金元素锌对于钢铝异种金属接头性能的影响:焊枪位置对于焊接钢铝异种金属搭接焊缝非常重要,稍有偏差就会造成焊接失败,焊枪位置以选在正对焊缝中间处为最佳;焊接速度越快,温度梯度越大,线能量越低,金属间化合物层厚度越小,但是焊接速度过快时会影响焊缝金属的润湿,造成焊接失败,当送丝速度为2.16m/min时,焊接速度选在0.4m/min~0.5m/min为宜;锌很好的起到了促进焊缝金属在钢板上润湿铺展的作用,在一定范围内锌层越厚对铝和钢的焊接越有利。
With the development of automobile industry, the sheet material used in automobile is thinner. So the welding of thin plate need reducing heat input. According to the welding process required by thin plate used in automobile, a new low energy input welding, named NLEI welding was put forward. The following are the principles. First, the moving curve of the welding wire is preset to make the wire moved forward and back periodicaly. The process of welding doesn’t need on-line adjustment, and the power supply is made to provide homologous waveforms of the current and voltage correspond with the movement of the welding wire. NLEI welding can implement steady push-pull short-circuit transfer and meet the demand of reducing welding energy input.
     According to NLEI welding, author has designed a NLEI arc welding system based on push-pull short-circuit transfer. The system consists of a welding power supply and a wire feeding system, and implements the control of the welding process by software. The control center of the welding process is based on digital signals processor TMS320F2812, which is a high speed and precision DSP with abundance of I/O ports. Hardware circuit is simplified by using software to control complicated welding process. Wire feeding system is based on AC servo-actuator and its control system, the push-pull moving curve of the wire can be programmed smartly according to the actual needs. The connecting of welding power supply and wire feeding system by interface circuit ensures the communication and coordination in the welding process.
     The waveform control project is designed, including the control of wire feeding and current waveform. By corresponding with current waveform and the wire movement in the actual welding process, the weld is achieved. The experiment proves that, the cooperation is good and the welding process is stable and reliable.
     A fuzzy control project used to adjust the arc length is specially designed taking the change and the change rate of the average voltage as the input, and the correction value of the pulse current during arc period as the output. In welding process, the arc length is stable with the help of the fuzzy control system.
     NLEI push-and-pull short-circuit transfer process is analyzed. In traditional short-circuit transfer process, the drops are transferred by electromagnetism force under the big short-circuit current. Compared with that, NLEI push-pull short-circuit transfer can reduce energy input, because it depends on pull of the welding wire to snap the drop under the small short-circuit current.
     The parameter matching of arcing pulse peak current (Iap ) and the evening short-circuit current(Ih) is very important. The range of parameter matching is gained by experiments. In this range, the coordinate control of welding parameter and welding wire movement can come true and the steady welding process can be gained. The energy distribute regularity in NLEI welding push-pull short-circuit transfer is discovered by calculating and measuring the energy input in the welding pool. The evening short-circuit energy which is the important ingredient of melted welding wire energy has important effect in melted welding wire. But it has little effect on heating welding pool. Because of the arcing heat, arcing pulse peak energy is the mainly energy source in heating welding pool, and it has important effect on heating welding wire too.
     According to the rules, NELI welding has two ways to reduce the energy input in welding process. The first is the pulling of the welding wire to snap the drop under the small short-circuit current. The second is using lower Iap and higher Ih .
     Aim to application of aluminum alloy and galvanized steel for automobile industry, the dissimilar joint between galvanized steel sheet and aluminum alloy during NLEI welding has been analyzed. It is proved that dissimilar metal overlap joint with good property can be gained by using NLEI welding.
     By means of microstructure and mechanical properties analysis of the dissimilar joints, the parameters of NLEI welding process were optimized. When welding speed is increased, the intermetallic layer between the weld metal and galvanized steel is decreased. When heat input is increased, the thickness of interface layer increases.
     When wire feeding speed 2.16m/min, welding speed 0.4-0.5m/min, welding torch in the middle, continuous, uniform and best shape joint was formed.
     By the analysis of the effect of different thickness zinc layer on the joint, zinc element effectively promotes molten aluminum wetting the steel sheet, which is good to dissimilar joints between aluminum alloy and galvanized steel when the zinc layer is thick enough.
引文
1 林尚扬,杜兵. 焊接行业现状与自主创新战略[J]. 焊接,2006(6).
    2 殷树言,徐鲁宁,丁京柱. 熔化极气体保护焊的高效化研究[J]. 焊接技术,2000,S1:4-7.
    3 张孔群,周国胜. 美国高效焊接技术一瞥[J]. 造船技术,1997.10(2):7-10.
    4 庄建清. 高效 MAG 焊的应用[J]. 焊接技术,1991,5:29-32.
    5 林尚扬,关桥. 《我国制造业焊接生产现状与发展战略研究》总结报告. 中国工程院咨询项目.2003.
    6 中国机械工程学会工作总部. 汽车制造中的焊接科学与技术[C]. 2003 汽车焊接国际论坛论文集,上海,2003:1-9
    7 袁绮声,苗振. 汽车制造中的焊接技术[J]. 电焊机,1994,(3):1-7.
    8 铃木励一,中野利彦. 汽车薄板用 MAG 焊丝和焊接方法的开发动向[C]. 2003 汽车焊接国际论坛论文集.上海,2003:108-119.
    9 殷树言. 气体保护焊技术问答[M]. 北京:机械工业出版社,2004.
    10 殷树言. 波形控制的 CO2 焊接[J]. 焊接,1987,(8):1-5.
    11 殷树言. 从不同的控制方式中探索短路过渡 CO2 焊接的飞溅问题[J]. 焊接学报,1986,7(12):187-192.
    12 张军红,张晓囡,黄石生等. CO2 焊波形控制方法的发展现状[J]. 电焊机,1999,29(1):5-8.
    13 殷树言,张九海. 气体保护焊工艺[M]. 哈尔滨:哈尔滨工业大学出版社,1989:84-204.
    14 仝 红 军 , 上 山 智 之 . 低 频 调 制 型 脉 冲 MIG 焊 接 方 法 的 工 艺 特 点 [J]. 焊接,2001(11):33~36
    15 Pasi Hiltunen,于克勤. KemppiPro 增强型双脉冲与铝焊接[C]. 熔接新技术及应用研讨会论文集.2003.11:159~162
    16 王伟明. 逆变式 GMA 单脉冲和双脉冲焊机数字控制系统研究[D]. 北京工业大学博士学位论文,2004.
    17 杭争翔,殷树言,方臣富. AC MIG 与 DC MIG 焊接工艺及控制的分析[J]. 电焊机,2001,31(9):17-21.
    18 都岛贞雄,滕田治男,岩见博志. 大电流 AC-MIG 溶接法の开发(第一报)[J]. 溶接学会论文集,1992,10(1):83-87.
    19 都岛贞雄,滕田治男,岩见博志. 大电流 AC-MIG 溶接法の开发(第二报)[J]. 溶接学会论文集,1992,10(1):88-94.
    20 T.Hongjun,T.Ueyama,S.Harada,et al. Quality and productivity improvement in aluminium alloy thin sheet welding using alternating current pulsed metal inert gas welding system[J].Science and Technology of Welding and Joining,2001,6(4):203-208.
    21 T.Ueyama,T.Hongjun,S.Harada. Improve Sheet Metal Welding Quality & Productivity with AC Pulsed MIG Welding System[C]. IIW DOC.Ⅻ-1629-00.
    22 上山智之,原田章二,三田常夫. 交流 GMA 溶接にぉける日本の现状につぃて[J]. 轻金属溶接,2000,38(8):1-7.
    23 杭争翔. AC PMIG 焊接设备及工艺特性的研究[D]. 北京工业大学博士学位论文,2003.
    24 廖平. 薄板铝合金 VP PMIG 焊接设备及电弧稳定性研究[D]. 北京工业大学博士学位论文,2006.
    25 A.Frings,S.Stockel. Fully Mechanized inert-gas metal-arc brazing of galvanized thin steel sheet[J]. Schweien und Schneiden,1986,38(12):624-629.
    26 P.Hedmen,H.Rohde. Innovations in welding technology in 1998[J]. Welding and cutting, 1999,51(5):85-98.
    27 R.V.Hughes,J.Dickersbach. Braze welding galvanized sheets[J]. Schweien und Schneiden., 1998,54(4):351-354.
    28 H.Hackl. MIG-brazing of galvanized steel sheets[J]. Schweien und Schneiden,1996,48(6): 344-349.
    29 H.Hackl. Advantage for MIG brazing galvanized sheet[J]. Technich,1998,47(25/26):54-58.
    30 H.Hackl. MIG-brazing of galvanized thin sheets and profiles[J]. Schweien und Schneiden, 1998,50(6):351-354.
    31 N.V.Han,H.Hackl. MIG brazing the automatic industry[J]. Lastechnick,1998,64(110):11-12.
    32 U.Dillthey. 欧洲汽车工业技术发展趋势及未来前景[J]. 焊接,2006(3):6-11.
    33 K.Haraga. Strength properties of aluminum/aluminum and aluminum/steel joints for light weighing of automotive body[J]. Welding in the world,2000,44(4):23-27.
    34 李亚江,王娟,刘鹏. 异种难焊材料的焊接及应用[M]. 北京:化学工业出版社,2004.
    35 中田一博. 异材熔接新动向[J]. 熔接学会志,2002,71.
    36 M.Aritoshi. Friction Welding of Dissimilar Metals[J]. Welding International,2003,Vol17
    37 熊井泰. 异种金属摩擦压力焊性质研究[J]. 轻金属熔接,1997,15(10):17-23.
    38 S.Eliiott,E.R.Wallach. Joining aluminium to steel, part 2-friction welding[J]. Metal Constrution,1981(4):221-225
    39 A.Elrefaey,M.Takahashi. Friction-stir-welding lap joint of aluminum to zinc-coated steel[C].熔接协会论文集,2005,23(2):186-193.
    40 B.S.Zlobin. Explosion Welding of steel with Aluminum[J]. Combustion,Explosion,and Shock Waves,2002,38.
    41 郑远谋. 爆炸焊与异种金属焊接[J]. 焊接技术,2001,30(5):25-26.
    42 狄建华,吕春玲,宋新社. LY12 铝合金与 A3 钢爆炸焊接条件的确定[J]. 华北工学院学报,2001,22(1):66-69.
    43 V.S.Sedykh. Mechanical properties of explosion welding steel-aluminum joints[J]. Welding Production,1985,32(2):28-30
    44 尹衍升,施忠良,刘俊友. 铁铝金属间化合物[M]. 上海:上海交通大学出版社,1996.
    45 B.P.里亚博夫. 铝及铝合金与其它金属的焊接. 北京:宇航出版社,1990.
    46 D.R.G.Achar,Madras,J.Runge,et al. Metallurgical and mechanical investigations of aluminium-steel fusion weld (Ⅰ). Aluminium.1980,(6):391-397.
    47 D.R.G.Achar,Madras,J.Runge,et al. Metallurgical and mechanical investigations of aluminium-steel fusion weld (Ⅱ ). Aluminium.1980,(7):465-469.
    48 D.R.G.Achar,Madras,J.Runge,et al. Metallurgical and mechanical investigations of aluminium-steel fusion weld (Ⅲ ). Aluminium.1980,(8):533-536.
    49 E.Schubert,M.Klassen,I.Zerner,et al. Light-Weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry[J]. Journal of Materials Processing Technology,2001,115:2~8.
    50 E.Schubert,I.Zerner,G.Sepold. New Possibilities for Joining by Using High Power Diode Laser[C]. Laser Materials Processing-solid-State & Diode Laser Applications, Electronics, Processing, and William Steen Tribute.Orlando,1998:111~120.
    51 M.J.Rathod,M.Kutsuna. Joining of Aluminum Alloy 5052 and Low-Carbon Steel by Laser Roll Welding[J]. Welding Journal,2004,(1):16~26.
    52 F.Wagner,I.Zerner,M.Kreimeyer,et al. Characterization and Properties of Dissimilar Metal Combinations of Fe/Al and Ti/Al-Sheet Material[C]. 20th International Congress on Applications of Laser & Electro-Optic.Jacksonville,2001,90(10):15-18.
    53 F.Wagner,I.Zerner,M.Kreimeyer,et al. Phase Formation during Laser Welding of Fe/Al-Joints[C]. 6th International Conference in Brazing, High Temperature Brazing and Diffusion Welding.Aachen,2001:93~98
    54 M.Kreimeyer,F.wagner,G.Sepold. Combined Welding-Brazing Process for Joining Aluminum-Steel-Tailored Blanks with High Power Laser Sources[C]. International Body Engineering Conference and Exhibition.Paris,2002
    55 M.Kreimeyer,G.Sepold. Processing of Joined Aluminum-Steel Tailored in Overlap and Butt Joint Configuration[C]. 21st International Congress on Applications of Laser & Electro-Optic,2002
    56 M.Kreimeyer,F.Wagner,F.Vollertsen. Effects of Zinc-Coatings during Laser Joining of Aluminium-Steel Overlap Joints[J]. Schweissen im Anlagen-und Behalterbau,2004,231.
    57 M.Kreimeyer. Laser Welding/Brazing for Joining Tailored Blanks[J]. Industrial Laser Solution,2002, (11).
    58 K.Saida,W.Song,L.Nishimoto. Diode laser brazing of aluminium alloy to steels with aluminium filler metal[J]. Science and Technology of Welding and Joining, 2005,10(2): 227-235.
    59 H.Laukant,C.Wallmann,M.Muller,et al. Fluxless laser beam joining of aluminium with zinc coated steel[J]. Science and Technology of Welding and Joining,2005,10(2):219-226.
    60 A.Mathieu,S.Mattei,A.Deschamps,et al. Dissimilar material joining using laser(aluminum to steel using zinc-based filler wire)[J]. Optics & Laser Technology,2005,(10):1-10
    61 A.Mathieu,S.Mattei,A.Deschamps,et al. Temperature control in laser brazing of a steel aluminium assembly using thermographic measurements[J]. NDT&E International,2006, 39(4):272-276
    62 S.Katayama. Laser welding of aluminium alloys and dissimilar metals[J]. Welding International,2004,18(8):618-625.
    63 K.Saida,W.Song,L.Nishimoto. Laser brazing of alumimum alloy to steels with aluminum filler metals[J]. Schweissen im Anlagen - und Behalterbau,2004,231:232-337.
    64 D.Jianjun,L.Feiqun,Q.Feng,et al. Investigation on laser brazing AA6056 Al alloy to XC18 low-carbon steel[J]. Chinese Optics Letters,2005,3(1):31-34.
    65 R.Pieters,I.M.Richardson. Laser welding of zinc coated steel in overlap configuration with zero gap[J]. Science and Technology of Welding and Joining,2005,10(2):142-144.
    66 J.P.Bergmann,J.Wilden,M.Dolles. Working zinc-coated steels and making steel-aluminium alloy joins using high power lasers-brazing and braze welding[J]. Welding International,2006,20(1):37-44.
    67 雷振,秦国梁,林尚扬等. 铝/钢异种金属Nd:YAG激光-MIG复合热源熔-钎焊工艺[J]. 焊接,2006(6):35-37.
    68 李君. 激光焊接钢-铝薄板焊缝材料的研究[J]. 焊接技术,2006,35(4):25-27.
    69 J.Sungmin, K.Youngpy, B.Hansur. Welding of Steel and Aluminum by Nd-YAG Laser[J]. Key Engineering Materials,2004,270(2):2389-2399
    70 T. Murakami. Dissimilar Metal Joining of Aluminum by Lap Joint MIG Arc Brazing[J]. Transactions of Joining and Welding Research Institute, Osaka University,2003,32
    71 T. Murakami,K.Nakata,T.Honjun. Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire[J]. ISIJ International,2003,43(10): 1596~1602
    72 R.Vranakova,U.Fussel,J.Zschetzsche. Arc welding of joints between zinc coated steel and aluminium[J]. Welding in the World,2005,49(9):105~109.
    73 张洪. 有效控制电弧能量的冷弧焊[J]. 现代焊接工程,2006,(6):44-45.
    74 J.Bruckner. The CMT-process and its possible applications, especially joining of steel with aluminum[C]. 7th international conference on brazing.High Temperature Brazing and Diffusion Welding, Aachen, Germany, 2004.
    75 J.Bruckner. Cold metal transfer has a future joining steel to aluminum[J]. Welding Journal, 2005,84(6):38-40.
    76 P.Johne. CMT welding: Sputter-free welding thanks to controlled energy and material transfer[J]. Aluminium,2006,82(10):938-943.
    77 K.Furukawa. New CMT arc welding process-welding of steel to aluminium dissimilar metalsand welding of super-thin aluminium sheets[J]. Welding International,2006,20(6):440 -445
    78 H.Pinto,A.Pyzalla,H.Hackl. A Comparative Study of Microstructure and Residual Stresses of CMT-, MIG- andLaser-Hybrid Welds[J].Materials Science Forum,2006,524/525:627-632
    79 Volkswagen corporation. Getting autobody welding down cold metal transfer helps Volksw -agen meet customer demands[J]. The fabricator,2006,36(4):54-55.
    80 J.Bruckner. Cold Metal Transfer/Een revolutie in kortsluitbooglassen[J]. Lastechniek,2005, 71(3):6-9.
    81 杨修荣. 超薄板的 MIG/MAG 焊-CMT 冷金属过渡技术[J]. 电焊机,2006,(6):5-7.
    82 杨修荣. 钢与铝的焊接[J]. 航空制造技术,2004, (12):96.
    83 加藤 淳. アルミニウム-鋼接合技術の開発[J]. 溶接学会論文集,2005,23(1):169-174.
    84 J.Bruckner. Considering Thermal Processes for dissimilar metals[J]. The Fabricator,2003, 33(8):34-36
    85 Й.БРУКНЕР. Arc joining of steel with aluminium[J]. Автоматическая Сварка,2003, (10-11):185-187.
    86 H.T.Zhang,J.C.Feng,P.He,et al. Interfacial microstructure and mechanical properties of aluminium-zinc-coated steel joints made by a modified metal inert gas welding-brazing process[J]. Materials Characterization,2006
    87 石常亮. 铝和镀锌钢 CMT 法 MIG 钎焊工艺研究[D]. 哈尔滨工业大学硕士学位论文,2006.
    88 L.A.Jones.Investigations of drop detachment control in gas metal arc welding.Massachusetts Institute of Technology:1009-1013.
    89 H.E.Weinschenk. Steverung des werkstoffubergangs beim schvtzgaslicht-bogenschweiβen durch tvlsierenden elekrodenvorschub[J]. Schweiβtechnik,1980,30(6):265-267.
    90 曹道钧,孙子健. 半周脉动送丝 CO2 气体保护焊的特点[J]. 焊接学报,1984,5(1):43-51.
    91 马季. Φ1.6 焊丝 PPM CO2 焊接设备集工艺[D]. 郑州机械研究所硕士学位论文,1987.
    92 里强. CO2 气体保护焊实时回抽焊丝短路过渡控制研究[D]. 哈尔滨工业大学博士学位论文,1996.
    93 张雄伟. DSP 芯片的原理与开发应用[M]. 北京:电子工业出版社,1997:2~10.
    94 苏 奎 峰 , 吕 强 , 耿 庆 等 . TMS320F2812 原 理 与 开 发 [M]. 北 京 : 电 子 工 业 出 版社,2005:156-225.
    95 赵家瑞. 逆变焊接与切割电源[M]. 北京:机械工业出版社,1995:200-234.
    96 彭启琮,管庆. DSP 集成开发环境[M]. 北京:电子工业出版社,2004:8-175.
    97 H.M.Deitel,P.J.Deitel. C 程序设计教程[M]. 薛万鹏译.北京:机械工业出版社,2004:41-92.
    98 刘和平,王维俊,江渝等. TMS320LF240x DSP C 语言开发应用[M]. 北京:北京航空航天大学出版社,2003:236-238.
    99 陶永华. 新型 PID 控制及其应用[M]. 北京:机械工业出版社,2003:2-17.
    100 马德,殷树言,刘嘉等. 脉冲 MIG 焊铝工艺特性的研究[J]. 电焊机, 2004,34(5):44-46.
    101 孙庚山,兰西柱. 工程模糊控制[M]. 北京:机械工业出版社,1995.
    102 殷树言,冯雷,卢振洋等. 短路过渡 CO2 焊过程中能量分配的研究[J]. 材料科学与工艺, 1999,7(6):11-14.
    103 张文钺. 金属熔焊原理及工艺(上册)[M]. 北京:机械工业出版社,1980:6-10.
    104 周世权,熊惟皓. 工艺参数对液态铝与钢界面层及其性能的影响[J]. 特种铸造及有色合金, 2000, (2):16-17.
    105 于治水,李瑞峰,祁 凯等. 铝/钢电弧钎焊界面现象及行为[J]. 华东船舶工业学院学报(自然科学版),2005,19(4):77-81.
    106 王兴庆,隋永江,吕海波. 铁铝原子在金属间化合物形成中的扩散[J]. 上海大学学报(自然科学版),1998,4(6):661-665.
    107 祝汉良. 压铸模与铝铸件间的焊合机理及其影响因素的研究[D]. 哈尔滨工业大学博士学位论文,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700