膜生物反应器(MBR)处理黄药废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选矿药剂厂的生产废水中含有极高浓度的黄原酸盐类化合物(俗称“黄药”),如果不进行处理随意排放会对生态环境产生极大的危害。研究表明:大量排放含有黄药的废水时,对水生动物胚胎会产生致畸作用。此外,黄药对人的神经系统和肝脏等器官也会产生毒害作用,而且在微酸性条件下黄药会分解产生二硫化碳(CS2),若进入大脑,会使神经系统产生病症;若进入血液,对造血系统也可产生不良影响。因此,寻找高效合理的黄药废水处理方法已迫在眉睫。
     目前,黄药废水的处理方法主要有吸附、分解、混凝沉降、化学沉淀法、生化、氧化等方法,但由于各种方法都存在着一定的弊端,处理结果不尽人意。针对这种现状,本研究首次利用膜生物反应器(MBR)对含有较高浓度的黄药废水进行处理研究,取得了较好的处理效果。
     在污泥驯化阶段,污泥颜色由开始时的灰褐色变为黄褐色。污泥浓度由接种时的6640mg/L最终增至9130mg/L,在驯化后期MLVSS/MLSS达到0.75。在反应器运行初期,反应器内混合液中的生物相主要为后生动物轮虫与钟虫等大量原生动物。而在驯化后期,由于黄药的生物毒性与入水pH值大于8,轮虫与钟虫均消失。经过33d的污泥驯化,容积负荷与污泥负荷分别上升至2.17kgCOD/(m3-d)和0.238kgCOD/(kgMLSS-d),黄药去除率>90%,COD去除率>80%,系统趋于稳定。
     针对水中惰性物质过多、活性污泥部分自身分解、污泥浓度降低这一问题,进行了反应器操作条件的优化实验。最终确定以0.5g/L的无水乙酸钠为外加碳源,水力停留时间24h,反应器温度保持在30。C的操作条件为优化条件。反应器运行至稳定状态后,出水水质良好,出水的COD平均为91.89mg/L, COD去除率>94%;出水的黄药浓度平均为1.452mg/L,黄药去除率>99.7%。达到较好的处理效果。
     此后,我们利用已稳定运行的MBR对铁岭选矿药剂厂的黄药生产废水进行了处理,系统出水的COD值平均为77.02mg/L,去除率均在94.5%以上,平均为95.71%。水质监测期内,出水COD值全部达到国家工业废水一级排放标准。出水黄药浓度平均为0.859mg/L,出水黄药含量最小值为0.707mg/L,最大值为0.974mg/L,去除率均在99.8%以上,平均为99.86%。已达到较好的去除效果,但仍未符合排放标准DB 21/1627-2008《辽宁省污水综合排放标准》,需进行后续处理。
     利用黄药在酸性条件下更为容易分解这一特性,本研究首先利用低浓度HC1调节出水pH值,然后采用双氧水为氧化剂,在酸性条件下处理MBR系统的出水。实验结果如下:黄药出水后续处理的最佳操作条件为,调节pH值至4左右,投加5mg/LH2O2,氧化40min,黄药浓度达到0.04mg/L,符合DB 21/1627-2008《辽宁省污水综合排放标准》。
     此外,反应器连续运行128d,仅在污泥驯化后期出现较为严重的膜污染现象。通过条件实验,将水力停留时间延长至24h,可大大降低膜污染程度。
Waste water of pharmacy beneficiation plant contains high concentrations of xanthenes compounds; it could make a great deal of harm if we do not deal with emissions. Study shows that:a large number of wastewater containing xanthenes will have an important role in animals'embryo with teratogenic effects. In addition, the xanthenes also have a poisoning effect to nervous system and liver and other organs of human. Under slightly acidic conditions, carbon disulfide (CS2) will be produced. Nervous system will have the diseases under the condition of CS2 enter into the brain; if entering the blood, it will also have adverse effects on the hematopoietic system. Therefore, it is extremely important to find a reasonable and efficient method treatment of xanthenes wastewater immediately.
     At present, all kinds of method of treatments xanthenes wastewater mainly contains adsorption, decomposition, coagulation, chemical precipitation, biological and chemical, oxidation and other methods. Although these treatment technologies are mature, there are a variety of drawbacks which bring unsatisfactory treatment results. In view of this status quo, it is the first time to dispose high concentrations of xanthenes wastewater by membrane bioreactor (MBR). In this study, we obtain an excellent result.
     In the sludge acclimation phase, the color of sludge turned to gray brown. The concentration of sludge turns from 6640mg/L at the time of inoculation final to 9130mg/L. In addition, MLVSS/MLSS reached 0.75 in the late domestication. In the early running phase, biologic facies of mixture in reactor mainly included large number of metazoan, such as Brachionus and Vorticella. In the late domestication, as a result of toxicity of xanthenes and the pH value of water was more than 8, both the Brachionus and Vorticella disappeared. After 33d of sludge acclimation, the sludge load and load capacity rosed to 2.17kgCOD/(m3-d) and 0.238 kgCOD/(kgMLSS-d), respectively. At this time, the system stabilized. Xanthenes removal efficiency was more than 90%; COD removal efficiency was more than 80%.
     In allusion to the condition of too much inert material in the water and parts of activated sludge broke up, we operated a series of experiment to optimize the operating conditions. Finally, the best operating conditions were 0.5g/L of anhydrous sodium acetate added into wastewater as additional carbon source, HRT kept to 24h, reaction temperature maintained at 30℃. In the steady state, the water quality was good, the average effluent of COD was 91.88mg/L, COD removal efficiency was more than 94%; average of the xanthenes concentration in the water was 1.5mg/L, xanthenes removal efficiency was more than 99.7%. Since then, we used this stable MBR to treat producing pharmaceutical wastewater from Tieling xanthenes beneficiation plant. An average of the COD value of the effluent water was 77.02mg/L, the removal rate was more than 94.5%, and in average was 95.71%. In the period of water quality monitoring, all of the effluent COD values were lower than the national-level industrial wastewater discharge standards. An average of xanthenes concentration in the effluent water was 0.859mg/L, removal efficiency was more than 99.8%, and in average was 99.86%. However, due to xanthenes concentration failed to meet water emission standards, whose name is "Liaoning Province Integrated Wastewater Discharge Standard.", still needed follow-up.
     In virtue of easier decomposition in acidic conditions, in this study at first we used 0.1mol/L HCl to change water pH, and then used hydrogen peroxide as oxidant under acidic conditions to deal with the effluent water from the MBR system. The experimental results were as follows:the best operating conditions is pH value is 4 or so, the concentration of H2O2 is 5mg/L, and oxidation time is 40min. After this treatment, water met the emission standards entirely. At this moment, xanthenes concentration in the effluent water is 0.04mg/L.
     In addition, membrane fouling phenomenon only deteriorated in the period of late sludge acclimation when reactor operated continuous of 128d. Through the conditions experiments, when the HRT were extended to 24h, membrane fouling can greatly reduced.
引文
1.刘天齐.环境保护通论,中国科学出版社[M],1997:1-7.
    2.杨肇蕃.城市和工业节约用水计划指标体系,中国建筑工业出版社[M],1993:1-5.
    3.见百熊.浮选药剂,北京:冶金工业出版社[M],1985:18.
    4.李辛夫.浮选剂黄药对蛙类胚胎的致畸毒性[J],环境科学学报,1990年6月,第10卷,第2期:212-216.
    5. R. W. Smith.选矿厂废水和废料的处理[J],国外金属矿选矿,1998,12:2-12.
    6. Mosevich M V et al.Chemical Abstracts,1977,87(24):266.
    7. R. E. Baarson, C. L. Ray. AIME Symposium, Dallas. Texas,1963:125-146.
    8.郭永文,崔顺姬.离子浮选法处理含重金属离子废水的研究[J],有色金属选矿,1986,2(4):18-23.
    9.林恒.用活性炭处理含黄药2#含油废水[J],黄金,1989,10(7):1-8.
    10.云南冶炼厂药剂车间[J],有色金属(选冶部分),1977年第24期:2.
    11.湖南冶金研究所.柿竹园多金属矿选矿总废水处理及综合利用大型文献试验报告,1980年7月:2-7.
    12.龙道湖.厂坝铝锌矿选矿废水综合治理[J],有色金属(选矿部分),2000,(5):40-67.
    13.朱潜力.黄药废水治理的新工艺研究[J],有色矿冶,1997,13(1):53-54,59.
    14.翁建浩,盛金华.硫铁矿选矿废水处理试验研究[J],化工矿物与加工,2001,30(7):6-8.
    15.李学东,张宝西.黄药废水的治理[J],环境保护,1990,(6):9-11,20.
    16.张建乐,陈万雄.改性膨润土对黄药吸附性能的研究[J],矿产保护与利用,1995,(5):27-30.
    17.张萍,孙水裕,徐劲.一株有机浮选药剂——黄原酸盐降解菌的特性研究[J],环境污染治理技术与设备,2006年2月,第7卷第2期:53-56.
    18.松全元谭.国外金属矿选矿[J],1977,30期:4.
    19. Frank, S. N., Bard, A. J.. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder[J], J. Am. Chem. Soc.,1977,99:303-304.
    20. Akira Fujishima, Tata N. Rao, Donald A. Tryk. Titanium dioxide photocatalysis [J], journal of photochemistry and photobiology C:Photochemistry Reviews,2000,1:1-21.
    21.付保军,陈建华.Ti02光催化降解黄药试验研究,矿产保护与利用,2005,4(2):43-47.
    22.高从楷.膜科学-可持续发展技术的基础[J],水处理技术,1998(1):14-19.
    23.韩怀芬,金漫彤,黄玉柱,等.膜生物反应器处理难降解有机废水研究[J],中国给水排水,2002,18(3):45-48.
    24.顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M],北京工业出版社,2002.
    25. Manem J, Sanderson R. Membrane Bioreactors in Water Treatment:Membrane Processes [M], New York:AWWARF, McGraw Hill 1996.
    26.徐又一,石灯水,王剑鸣,等.环保领域中聚丙烯中空纤维膜-生物反应的研究[J],膜科学与技术,2000,20(4):26-27.
    27.朱安娜,吴卓,荆一凤,等.纳滤膜分离洁霉素生产废水的试验研究[J],膜科学与技术,2000,20(4):47-49.
    28.相震.膜生物反应器联合工艺处理合成制药废水的中试[J],环境科学与技术,2005,8(28):27-28.
    29.邬向东,雍文斌,李力.膜生物反应器在石化污水处理与回用中的应用[J],中国的膜工业信息.2005,109(3):11-19.
    30.冯久鸿.高效膜生物反应器处理采油污水试验研究[J],石油规划设计,2003,15(3):14-16.
    31. Jing-Song Chang. Long-term operation of submerged membrane bioreactor for the treatment of high strength acrylonitrile-butadiene-styrene(ABS) wastewater:effect of hydraulic retention time, Desalination,2006(191):45-51.
    32.王庆生.微电解膜生物反应器组合工艺处理焦化废水[J],环境工程,2006,6(4):24-25.
    33.魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展[J],工业水处理,2003,23(01):1-7.
    34.刘锐,黄霞,钱易,等.一体式膜-生物反应器处理生活污水的中试研究[J],给水排水,1999,25(0)1:1-4.
    35. Cote P, Liu M M. MBR beats tertiary filtration for indirect water ruese. Intrnational Desalination and Water Reuse Quarterly[J]; Int Desalination Water Reuse Q,2004,13(4): 32.
    36. Cote P, Michel M, Diana M. Comparison of membrane options for water reuse and reclarmation[J], Desalination,2004,167(6):1-11.
    37.张宝杰,王刚,石玉明,等.MBR反应器出水水质研究[J],哈尔滨建筑大学学报,2002,35S(04):56-59.
    38.杜启云.聚偏氟乙烯中空纤维膜的研制和应用[J],膜科学与技术,2003,23(04)80-85.
    39. Owne G. Economic asesssment of membrane processes of waetr and wastewater treatment[J], Menblrane Sei,1995(102):77-91.
    40.迟娟,张国照.膜生物反应器处理生活污水的实验研究和工程设计[J],水处理技术,2005,31(10):76-78.
    41.杨昌柱,刘宏波.自生动态膜生物反应器处理城市污水[J],中国给水排水,2006,22(1):105-108.
    42. Chang I S, Kim S N. Wastewater treatment using membrane filtration-effect of bio-solids concentration on cake resistance[J], Process Biochem,2005,40(3-4):1307-1314.
    43.国家环境保护总局,水和废水监测分析方法编委会编.水和废水监测分析方法[M],中国环境科学出版社,2002(第四版):254-354.
    44.章非娟,徐竟成主编.环境工程实验[M],高等教育出版社,2006,1:135-138.
    45.张建丰编著.活性污泥法工艺控制[M],中国电力出版社,2007:58-59,71-94.
    46.周凤霞,陈剑虹编.淡水微型生物图谱[M],化学工业出版社,2005.
    47.张自杰.排水工程下册(第四版),中国建筑工业出版社,2000:94-105.
    48.张海清.黄药在水体中自净因素的试验研究,吉林冶金,1990,(4):33.
    49. Leja J, Surface chemistry of Froth Flotation, NewYork,1982:205-306.
    50. S.Yasutoshi.Filtration Characteristics of Hollow Fiber Microfiltration Membranes used in Menbrane Bioreactor for DomestieWastewater Treatment [J], Wat.Res.1996,30(100): 2385-2392.
    51. E. Tardieu, V. Grasmiek. Fouling Mechanisms in Membrane Bioreactors APPlied to Wastewater Treatment[J]. Budapest:Presented Paper for 7th Word Filtration Congress,1996: 20-23.
    52.梁国明,陆晓峰.聚醚酮超滤膜的污染及其对滤速影响的研究[J],水处理技术,1999,25(1):14-17.
    53.邹联沛,王宝贞,张捍民.膜生物反应器中的膜堵塞与清洗的机理研究[J],给水排 水,2000,26(9):73-75.
    54.刘锐,黄霞,汪诚文,等.一体式膜生物反应器长期运行中的膜污染控制[J],环境科学,2000,21(2):58-61.
    55.李剑平.扫描电子显微镜对样品的要求及样品的制备[J],分析测试技术与仪器,2007,13(1):74-77.
    56.谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J],电子显微学报,2005,24(4):440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700