表面纳米化处理对铝镁合金性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面纳米化技术是一种针对材料表面进行处理的加工工艺,它一方面使材料具有了纳米材料优良的表面性能,另一方面使材料仍保留心部粗晶材料较好的蠕变性能,因此近年来表面纳米化技术普遍受到材料学界的关注,同时表面纳米化技术也对纳米材料应用于实际生产生活创造了一条新路。
     本文重点研究高能喷丸对A04112铝合金和AZ91D镁合金表面纳米化后力学性能和电化学性能的改变。高能喷丸处理后,金属最表面层出现纳米结构晶粒,晶粒大小从基体区到表面层呈梯度变化,晶粒逐渐变小,表面硬度和强度也逐渐升高,表面电化学性质发生改变,更容易形成致密氧化膜,从而对基体有更好的保护作用。
     因此我们利用显微硬度分析、X射线衍射分析、光学显微镜和扫描电子显微镜分析、能谱分析和阳极极化方法分别对铝合金和镁合金喷丸后的性能进行了研究,得到以下结论:
     关于晶粒细化和力学性能的研究,可以发现A04112铝合金和AZ91D镁合金在喷丸后表面层的晶粒非常细小,无法分辨,但随着晶粒至表面间距离的增加,晶粒逐渐可以分辨,这表示晶粒已逐渐变大。通过对喷丸后最表层的XRD分析,可以计算出A04112铝合金喷丸后表层晶粒大约为109nm,AZ91D镁合金喷丸后晶粒大约为68nm,可见铝合金和镁合金喷丸后表层晶粒都得到了显著的细化。由OM照片和SEM照片还可以粗略估算出镁合金细化层的厚度在200μm左右,铝合金细化层的厚度约120μm,这与显微硬度分析得出塑性变形影响层的厚度基本一致。
     另外通过研究AZ91D镁合金在不同热环境下晶粒的长大情况和峰位偏移情况,可以分析出其喷丸后纳米结构的热力学稳定性在200℃以内,当温度再升高时,晶粒将出现以动态再结晶为特征的晶粒长大,晶格畸变情况有明显改善,表面纳米化层随之失效。
     关于电化学性能的研究,可以发现A04112铝合金和AZ91D镁合金在喷丸后自腐蚀电位有所提高,自腐蚀电流也相应降低,这说明喷丸后的铝合金和镁合金比喷丸前的耐蚀性能有较大的提高。通过能谱仪观察铝合金在喷丸后表面形成的氧化膜,可以发现其有较好的耐蚀性,对基体有很强的保护作用,镁合金喷丸后形成的氧化膜虽然蚀性能也有所提高,但并没有根本性地改变,在腐蚀环境下对基体仍不能形成有效保护。
Surface nano-technology is a kind of surface treatment in material processing technology, which can make the materials' surface have excellent performance of the nano-materials, and the treated materials can remain the anti-creep property of the coarse grained material. In recent years, surface technology has been the concern of academics, and the surface technology has created a new path for nano-materials used in daily life.
     In this paper, we focus on the change of mechanical and electrochemical properties taken by high-energy shot peening on the surface of Al and Mg alloy. After the shot peening, we can find that the grains on the most surface are so fine that it can't be distinguished. However, as the grains far away from the surface, the grains get bigger, and the surface hardness and stress decreased gradually, the electrochemical changes as the the size of grain increased at the same time.
     We use micro-hardness analysis, X-ray diffraction, optical microscope and scanning electron microscopy analysis, EDX analysis and anode polarization methods to study the performance of shot-peening Al and Mg alloy, and received the following conclusions:
     About the grain refinement and mechanical properties, we can find that the grains on the surface are so fine that the grains can not be distinguished, but with the distance to surface increased, the grain can be gradually distinguished, which means that the grain get bigger. Form the XRD analysis, it can be calculated that the grain in the most surface of Al alloy is around 109 nm, and it is about 68 nm in Mg alloy's surface. From OM and SEM photos, we can roughly estimated that Mg alloy's treated surface is about 200μm, and Al alloy's treated surface is about 120μm, which is according with the result of micro-hardness experiment.
     In addition, through the research on Mg alloy's grain grown up and the peak migration in different thermal environment, we can known that Mg alloy's nano-structure can stand within the 200℃, when the temperature go to rise, Grain appears to be crystallization of grown up, and lattice distortion situation has improved significantly, nano-surface failed at the same time.
     About the electrochemical properties, we can found the shot peening Al and Mg alloy's anode potential have increased, and the corrosion current correspondingly decreased, which indicating that shot peening Al and Mg alloy's Corrosion resistance have increased. Through the EDX of the shot peening Al alloy's surface, we find that it have a better corrosion resistance than before, and it has a strong protective effect to the matrix. Although the anti-corrosion properties of shot peening Mg alloy has been upgraded, but there is no fundamental change, and it still can not provide an effective protection to the matrix.
引文
[1]卢柯,周飞,纳米晶体材料的研究现状.金属学报.1997,33(1):99-105
    [2]许并社等,纳米材料及应用技术.北京:化学工业出版社,2004
    [3]Gleiter H,Nanocrystalline Materials.Prog.Mater.Sci.1989,33(7):223-228
    [4]王玉,张文礼,孙冬柏,非晶纳米晶复合材料的性能与制备.材料科学与工程学报.2006,24(2):292-296
    [5]Lu K,Nanocrystalline metals crystallized from amorphous solids Nanocrystallization structure and properties.Mater Sci Eng R.1996(16):161-221
    [6]李晓俊,刘丰,刘小兰,纳米材料的制备及应用研究.济南:山东大学出版社.2006
    [7]孙秀魁,丛洪涛,徐坚,纳米晶Al的制备及拉伸性能.材料研究学报.1998,12(6):645-650
    [8]钱聪,吴希俊,罗伟,纳米金属块体材料力学性能研究进展.材料导报.2003,17(7):1-6
    [9]刘刚,雍兴平,卢柯,金属材料表面纳米化的研究现状.中国表面工程.2001,14(3):1-5
    [10]吴敏,孙勇,铝及其合金表面处理的研究现状.表面技术.2003,32(3):13-15
    [11]师昌绪,李恒德,王淀佐,加速我国金属镁工业发展的建议.材料导报.2001,15(4):5-6
    [12]焦树强,旷亚非,陈金华,周海晖,镁及其合金的腐蚀与阳极化处理.电镀与环保.2002,22(3):1-4
    [13]边丽萍,梁伟,赵兴国,Mg-5Al-1.03Ti纳米复合材料的力学性能及微观组织.金属热处理.2004,29(11):8-10
    [14]张永君,严川伟,王福会,曹楚南,镁的应用及其腐蚀与防护.材料保护.2002,35(4):4-6
    [15]许越,陈湘,吕祖舜,镁合金表面的腐蚀特性及其防护技术.哈尔滨工业大学学报.2001,33(6):754-756
    [16]余刚,刘跃龙,李瑛,Mg合金的腐蚀与防护.中国有色金属学报.2002,12(6):1087-1098
    [17]蔡千华,铝的表面处理.国外金属热处理.2005,26(1):40-45
    [18]吴敏,孙勇,铝及其合金表面处理的研究现状.表面技术.2003,32(3):13-15
    [19]陈振华,镁合金.北京:化学工业出版社,2004
    [20]张士宏,许沂,王忠堂等,镁合金成形加工技术[J].世界科技研究与发展.2001,23(6):18-21
    [21]T.sato,T.yamamoto,H.Hasegawa,Effects of boron contents on microstmctures and microhardness in Cr_xAl_yN films synthesized by cathodic arc method,surface & coatings technology.2006(201):1348-1351
    [22]刘生发,郭洪河等,镁及其合金铸造组织的细化.材料导报.2003,17(10):24-25
    [23]卢柯,卢磊,金属纳米材料力学性能的研究进展.金属学报.2000,36(8):785-789
    [24]Mordyuk,Georgiy I.Prokopenk,Bohdan N.,Ultrasonic impact peening for the surface properties' management Sound and Vibration of Journal 308(2007)855-866
    [25]D.T.Asquith,A.L.Yerokhin,J.R.Yates,Effect of combined shot-peening and PEO treatment on fatigue life of 2024 A1 alloy.Thin solid films.2006,515(3):1187-1191
    [26]H.Guechichi,L.Castex,Fatigue limits prediction of surface treated materials,journal of materials processing technology.172(2006):381-387
    [27]shengping Wang,yongjun Li,mei Yao,Fatigue limits of shot-peening metals,journal of materials processing technology.73(1998):57-63
    [28]Koike J,Ohyama R,Kobayashi T,et al,Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523K[J].Materials Transactions.2003,44(4):445-451
    [29]石明华,张喜燕,纳米化处理对锆合金腐蚀性能的影响.广西大学学报.2007(32):41-44
    [30]雍兴平,刘刚,吕坚,卢柯,低碳钢表面纳米化处理及结构特征.金属学报.2002,38(2):157-160
    [31]王镇波,雍兴平,陶乃镕,表面纳米化对低碳钢摩擦磨损性能的影响.金属学报.2001,37021:1252-1255
    [32]Tong WeiPing,TAO NaiRong,WANG ZhenBo,Nitriding Iron and 38 CrMoAI Steel with a Nanostructured Surface Layer.中国科学院研究生院学报.2005,22(2)
    [33]张继魁,吴振凡,喷丸强化技术在汽车工业中的应用.重型汽车.1994,24(4):30-34
    [34]熊天英,刘志文,李智超,超音速微粒轰击金属表面纳米化新技术.材料导报.2003,17(3):69-71
    [35]张全勤,张继文,纳米技术新进展.北京:国防工业出版社.2005
    [36]W.H.Qi,M.P.Wang,G.Y.Xu,The particle size dependence of cohesive energy of metallic nanoparticles,chemical physics letters.372(2003):632-634
    [37]黄丹,陶伟明,郭乙木,分子动力学模拟单晶纳米铝丝的拉伸破坏.兵器材料科学与工 程.2005,28(3):1-4
    [38]N.R.Tao,Z.B.Wang,W.P.Tong,An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment.Acta Materialia.50(2002):4603-4616
    [39]M.Guagliano,L.Vergani,An approach for prediction of fatigue strength of shot peened components.Engineering Fracture Mechanics.71(2004):501-512,
    [40]M.Benedetti,T.Bortolamedi,V.Fontanari.Bending fatigue behavior of differently shot peened A1 6082 T5 alloy.International Journal of Fatigue 26(2004):889-897
    [41]Linehun Wang,D.Y.Li,Mechanical,electrochemical and tribological properties of nanocrystalline surface of brass produced by sandblasting and annealing.Surface and Coatings Technology 167(2003):188-196
    [42]胡兰青,李茂林,王科,铝合金表面纳米化处理及显微结构特征。中国有色金属学报.2004,14(12):2016-2019
    [43]Z.B.Wang,N.R.Tao,S.Li,Effect of surface nanocrystallization on friction and wear propertiesin low carbon steel.Materials Science and Engineering.A352(2003):144-149
    [44]唐振廷,韩海军,防锈铝表面喷丸强化冲击试验.研究物理测试.2006,24(3):19-21
    [45]纪红,许越,吕祖舜,铝合金激光表面强化的研究进展.材料科学与工艺.2003,11(2):220-224
    [46]师昌绪,徐浜士,张平,21世纪表面工程的发展趋势.中国表面表面工程.2001,50(1):2-8
    [47]徐滨士,纳米表面工程.北京:化学工业出版社.2004
    [48]师昌绪,徐滨士,张平,21世纪表面工程的发展趋势.中国表面工程.2001(14):2-7
    [49]徐滨士,马世宁,朱绍华等,表面工程与再制造工程的进展.中国表面工程.2001(14)8-14
    [50]赵振东,强力喷丸强化技术及其对齿轮的应用,国外金属热处理,1996,17(4)42-47
    [51]N.R.Tao,M.L.Sui,J.Lu,K.Lu,SURFACE NANOCRYSTALLIZATION OF IRON INDUCED BY ULTRASONIC SHOT PEENING;NanoStructured Materials.1999,11[4]
    [52]G.Liu,J.Lu,K.Lu,Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening.Materials Science and Engineering.A286(2000):91-95
    [53]R.M'Saoubi,J.C.Outeiro,Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels.Journal of Materials Processing Technology.96(1999):225-233
    [54]吴建生,王德尊,姜传海,铸态SiCw/Al复合材料的表面喷丸强化.机械工程材料.2002,26(8):32-34
    [55]张志建,姚枚,李金魁,喷丸强化件表象疲劳极限优化研究.机械工程材料.2003,27(10);7-10
    [56]G.H.Farrahi,H.Ghadbeigi,An investigation into the effect of various surface treatments on fatigue life of a tool steel.journal of materials processing technology 174(2006):318-324
    [57]Nguyen Q.Chinh,Peter Szommer,Tamas Csanadi,Terence G.Langdon,Flow processes at low temperatures in ultrafine-grained aluminum.Materials Science and Engineering.A434(2006):326-334
    [58]赵麦群,雷阿丽,金属的腐蚀与防护.北京:国防工业出版社.2002
    [59]张继魁,吴振凡,喷丸强化技术在汽车工业中的应用.重型汽车.1994,24(4):30-34
    [60]胡兰青,李茂林,卫英慧,铝合金高能喷丸表层纳米化的TEM观察.电子显微学报.2004 23(4):386
    [61]张洪旺,刘刚,黑祖昆,吕坚,卢柯,表面机械研磨诱导AISI304不锈钢表面纳米化.金属学报.2003,39(4),342-346
    [62]曾元松,黄遐,李志强,先进喷丸成形技术及其应用与发展塑性.工程学报.2006,13(3):23-29
    [63]Z.B.Wang,N.R.Tao,Effect of surface nanocrystallization on friction and wear properties in low carbon steel.Materials Science and Engineering A352(2003):144-149
    [64]L.Huang,J.Lu,M.Troyon.Nanomechanical properties of nanostructured titanium prepared by SMAT.Surface & Coatings Technology.201(2006):208-213
    [65]Y.T.Zhu,J.Y.Huang.Matrials Rsearch Society.2003 18(8)1908-1916
    [66]M.Jin,A.M.Minor,Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature.Acta Materialia,52(2004):5381-5387
    [66]胡兰青,李茂林,铝合金表面高能喷丸纳米化过程中析出相的返溶.材料热处理学报,2005,26(3)
    [68]Zuogui Zhang,Shigemistu Hosoda,Grain refining performance for Al and Al-Si alloy casts by addition of equal-channel angular pressed Al-5 mass%Ti alloy.Materials Science and Engineering.A 425(2006):55-63
    [69]A.L.M.Carvalho,H.J.C.Voorwald.Influence of shot peening and hard chromium electroplating on the fatigue strength of 7075-T7451 aluminum alloy.Int J.Fatigue 2006
    [70]K.Y.Zhu,Nanostructure formation mechanism of α-titanium using SMAT Acta Materialia.52(2004):4101-4110
    [71]K.Y.Zhu,A.Vassel,F.Brisset.Nanostructure formation mechanism of α-titanium using SMAT.Acta Materialia,2004 52:4101-4109
    [72]朱祖芳等,铝合金阳极氧化与表面处理技术.北京:化学工业出版社.2004
    [73]李瑛,王福会,表面纳米化对金属材料电化学腐蚀行为的影响,腐蚀与防护,2003 24(1)
    [74]Adel Mahmood Hassan,Amer M.S.Momani,Further improvements in some properties of shot peened components using the burnishing process.International journal of Machine Tool & Manufacture.40(2000):1775-1786
    [75]X.Y.Wang,D.Y.LI,Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel.Electrochimica Acta,47(2002):3939-3947
    [76]訾炳涛,王辉,镁合金及其在工业中的应用.稀有金属.2004 28(1)。
    [77]魏宝明,金属腐蚀理论及应用.北京:化学工业出版社.1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700