纵向磁场作用下铝合金MIG焊接实验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防锈铝合金5A05含镁为主要的合金元素,并含有少量的铜、锰、铁、硅和锌。这种合金锻造退火后是单相固溶体,腐蚀性能好,塑性好。但是铝镁合金焊接接头力学性能比较差,如果细化焊缝晶粒组织的方法来提高接头力学性能,铝镁合金将在较大的载荷下得到广泛的应用。
     电磁搅拌作用下MIG焊中,熔滴过渡在焊接过程中起着非常重要的作用。观察不同激磁电弧和频率下熔滴过渡的形态具有主要意义。但是在强烈的焊接弧光下,很难观察的熔滴过渡的过程。为了获得不同外加磁场与熔滴过渡之间的关系,利用高速摄像机拍摄了熔滴过渡过程和熔滴形态的变化。研究了不同外加磁场作用下的不同熔滴的过渡形式。结果表明在相同的焊接条件下,外加纵向磁场不仅影响熔滴过渡的形式,而且改变熔滴的形状。
     在对不同频率及强度的磁场作用下的5A05铝合金的微观组织研究中发现,并非任何的磁场处理都可细化晶粒,若所加磁场条件不合适,晶粒反而会比未经磁场处理的更粗大,提出这是由于磁场作用下,一方面强化对流,细化晶粒:另一方面,减小过冷度,粗化晶粒,所得到的凝固组织是这两种作用相互制约的结果。此外还有形核和长大两方面的共同作用。此外还有形核和长大两方面的共同作用。当磁场频率过高,或者磁场强度过高,晶粒尺寸有不同程度的增大的趋势。实践表明,利用外加磁场对焊接中电弧旋转、熔滴的过渡、熔池金属的流动、熔池的结晶形核及结晶生长等过程有显著作用,使MIG焊焊缝的一次结晶组织细化,减小化学不均匀性。激磁电流和磁场频率需要恰当匹配,而且还必须与焊接规范参数相适应,才能细化晶粒,从而提高焊缝的拉强度和延伸率。
     分析了电弧中带电粒子的运动,研究了电弧旋转的机理。在外加纵向交变磁场的作用下,电弧的形态和旋转的方向有关,当电弧顺时针旋转时,电弧呈现“钟罩形”。当电弧逆时针旋转时,电弧呈现“锥形”。与不加磁场的电弧形态相比较,不加磁场的电弧形态总是呈“锥形”。
     利用ANSYS有限元分析软件对外加磁场作用下,铝合金焊缝温度场等进行了数值模拟。模拟结果吻合双峰热源分布模型。
The aluminum alloy 5A05 contains magnesium as major alloying element and small amounts of copper, manganese, iron, silicon and zinc. This alloy is commonly used for welding parts working in liquid condition due to its good resistance to corrosion. However, the mechanical properties of joints are low. If the yield strength of the weld metal can be improved by some means it will be useful in increasing load.
     Metal transfer is an important phenomenon in Metal Inert Gas arc welding (MIG) with longitudinal alternating magnetic field. It is of great significance to observe the metal transfer modes under different excitatory currents and frequencies. However, it is very difficult to view the metal transfer process directly during welding, for the strong interference from the arc light. To obtain the relationship between the metal transfer modes and the different magnetic fields, a high-speed video camera was used to acquire the images of globules. Different metal transfer modes in the condition of different magnetic fields and welding parameters were studied. The experiment shows clear images of droplet transfer and how the longitudinal magnetic fields influence the metal transfer and the globule shape.
     The influence of different magnetic fields during MIG arc welding in 5A05 Al-alloy was studied. It was found that the structures of alloy could not be refined under any magnetic fields, the proper magnetic field conditions could largely reduce the grain size, and however, the improper magnetic field conditions would make the grain bigger than that without magnetic field. With application of magnetic field, on the hand, the convection becomes large and the grains were refined; on the other hand, the under cooling was decreased and the grain was coarsened. The solidification structure was the result of the restriction by these two actions. At the same time, the macrostructures was also determined by the other two actions, which were nucleation and growth. It was also found that the grain size was tended to enlarge when the frequency or the magnetic density was too big.
     Experience shows that the introduced magnetic field can give an effective intervention to the transition of droplet, flowing of molten bath metal, crystalline and nucleation of molten bath and the process of crystalline growth. The magnetic field promotes the refining degree of primary crystallization structure, decreases the chemistry non-homogeneity. The technique resulted in fine equaixed grains in weld metal and optimum parameters of electromagnetic stirring were suggested based on the extent of refinement. Fine-grained weld metal exhibited better yield strength and significant improvement in percent elongation.
     The paper compared different arc forms under pulsed and steady MIG arc welding and studied how the external magnetic field affected the shape of arc. In addition, the movement of charged particles in longitudinal magnetic field was analyzed, and the mechanism of arc rotation was studied. In reversed longitudinal magnetic field, the profile of arc forms bell shape when the direct of rotation is clockwise in helix while the arc shape is cone shape when it rotates in counter clockwise. Compared with the arc shape with external field, the arc without longitudinal field forms cone shape.
     By using the large-scale finite element analysis software-ANSYS based on equivalent thermal enthalpy finite element theory, the temperature field in the influence of magnetic stirring was simulated. The result of simulation in accordance with double-peak heat source.
引文
[1]孙丹丹,李文东.铝合金在汽车中的应用[J].山东内燃机,2003(1):34-3.
    [2]关绍康,姚波,王迎新.汽车铝合金车身板材的研究现状及发展趋势[J]机械工程材料,2001(5):12-18.
    [3]许倞等.抓住机遇,推动我国机车工业技术进步[J].世界汽车,2001(12)9-11.
    [4]冯超等.2000年全球汽车产量继续增长,中国产量居世界第8位[J].世界汽车,2001(4):37-38.
    [5]马力等.国外轿车车身技术发展现状[J].世界汽车,2000(3):1-2.
    [6]Irving.Bob.Auto industry gears up for aluminum[J].Welding Journa 2000,79(10):63-68.
    [7]钱人一.AudiA2车身铝合金空间构架[J].世界汽车,2001(4):8-15.
    [8]Vives C.Electromagnetic refining of aluminum alloys by the CREM process:Part Ⅰ.Working principle and metallurgical results[J],Metal Trans B,1989,20B:623-629.
    [9]崔忠圻.金属学与热处理[M],北京:机械工业出版社,1989,54-56.
    [10]王家火斤,黄积荣,林建生.金属的凝固及其控制[M],北京:机械工业出版社,1983,190-198.
    [11]Sigworth G K.Foundamentals of grain refining in aluminum alloy castings[J],Light Metals,1989,7:75-85.
    [12]Mats J,Lennart B.Nucleus in grain refined after addition of Ti-and B-containing master alloys[J],Z Metallkd,1992,83(11):774-780.
    [13]Mats J,Lennart B,Sigworth G K.Study of mechanism of grain refinement of Al after additions of Ti-and B-containing master alloys[J],Metal Trans A,1993,20A(2):481-491.
    [14]Cahoon J R,Tandon K N,Chatarued M C.Effect of gravity level on grain refinement in Al alloys[J],Metal Trans A,1992,23A(10):3399-3404.
    [15]路贵民,柯东杰.铝合金熔炼理论与工艺[M],沈阳:东北大学出版社,1999,179-184.
    [16]戴维斯G J.凝固与铸造[M],北京:机械工业出版社,1981,96-102.
    [17]大野笃美.金属凝固学[M],北京:机械工业出版社,1983,72-77.
    [18]胡汉起.金属凝固[M],北京:冶金工业出版社,1985,274-307.
    [19]Crossley F A,Fisher R D,Metcalfe A G.Viscous shear as an agent for grain refinement in cast metal[J],Trans Metal Soc AIME,1961,221:419-420.
    [20]P.fann W G,Wanger R S.Principle of field freezing[J],Trans Metal Soc AIME,1962,224(6):1139-1145.
    [21]Verhoeven J D.The effect of electric field upon the solidification of Bismuth-Tin alloys[J],Trans Met Soc AIME,1965,233(6):1156-1163.
    [22]Asai S.Effect of electric and magnetic force on solidified structure[J],Trans ISIJ,1978,18:754-760.
    [23]Misra A K.A novel Solidification technique of metals and alloys:under the influence of applied potential[J],Metal Trans A,1985,16A:1354-1355.
    [24]Misra A K.Misra technique applied to solidification of cast iron[J],Metal Trans.A,1986,17A:358-359.
    [25]Ahmed S,Bond R,Mc Kannan E.Solidification processing super alloys in an electric field[J],Adv Mater Proc,1991,10:30-32.
    [26]Ahmed S,Mc.Kannan E.Control of γ' morphology in nickel base super alloys through alloy design and densification processing under electric field[J],Mater Sci Tech.,1994,10:941-946.
    [27]李辉,边秀房,刘相法等,电流处理对铝合金组织及性能的影响[J],特种铸造及有色合金,1996,45(3):8-10.
    [28]常国威,袁自平,王自东.电流密度对定向凝固组织中柱状晶间距的影响[J],金属学报,2000,36(1):30-33.
    [29]Nakada M,Shiohara Y,Flemings M C.Modification of solidification structures by pulse electric discharging[J],ISIJ Inter 1990,30(1):27-33.
    [30]Barnak J P,Sprecher A F,Conrad H.Colony size reduction in eutectic Pb-Sn casting by electro pulsing[J],Scr Metal Mater,1995,32:879-884.
    [31]Li J M,Li S L,Li J et al,Modification of solidification structure by pulse electric discharging[J],Sci Metal Mater,1994,31(12):1691-1694.
    [32]何树先,王俊,孙宝德等.高密度脉冲电流对过共晶Al-Si合金凝同组织的影响[J],中国有色金属学报,2002,12(2):275-278.
    [33]何树先,王俊,孙宝德等.高密度脉冲电流对过共晶A356铝合金凝固组织的影响[J],中国有色金属学报,2002,12(3):426-429.
    [34]Johnston W C,Kotler G R,Tiller W A.The influence of electromagnetic stirring on the nucleation of Tin and Tin-tead alloy[J],Trans Metal Soc AIME,1963,227(4):890-896.
    [35]Johnston W C,Kotler G R,Tiller W A.Grain refinement via electromagnetic stirring during solidification[J],Trans Metal Soc AIME,1965,233(9):1856-1960.
    [36]Uhlmann D R,Seward T P,Chalmers B.The effect of magnetic fields on the structure of recta lalloy castings[J],Trans Meta Soc AIME,1966,236(4):527-535.
    [37]El-Bassyouni T A.Effect of electromagnetic forces on aluminum cast structure[J],Light Metals,1983,33(12):733-742.
    [38]Vives C.Solidification of Tin in the presence of electric and magnetic field[J],J Crystal Growth,1986,76:170-184.
    [39]毛大恒,严宏志.电磁搅拌对铝及其合金凝固和铸态组织的影响[J],轻合金加工技术,1991,19(4):10-16.
    [40]赵啸林,毛大恒,陈欠根.将电磁场引入连续铸轧的新技术探讨[J],中国有色金属学报,1995,5(4):145-149.
    [41]毛卫民,赵爱民,崔成林等.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律[J],金属学报,1999,35(9):971-974.
    [42]朱明原,史文,杨森龙等.电磁搅拌作用对铝合金显微组织的影响[J],中国有色金属学报,1999,S1:29-34.
    [43]李树索,赵爱民,毛卫民等.半固态过共晶Al-Si合金显微组织中近球形α相形成机理的研究[J],金属学报,2000,36(5):545-549.
    [44]毛为民,李树索,赵爱民.电磁搅拌Al-24%Si合金的显微组织[J],中国有色金属学报,2001,11(10):819-823.
    [45]Li T J,Nagaya S,Sassa K et al.Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field[J],Metal Meter Trans B,1995,26B:353-359.
    [46]李廷举,佐左健介,浅井滋生.间断高频磁场作用下连铸型内金属液的运动和铸坯的表面质量Ⅰ液体金属弯月面运动对铸坯表面质量的影响[J],金属学报,1997,33(5):524-528.
    [47]李廷举,佐左健介,浅井滋生.间断高频磁场作用下连铸型内金属液的运动和铸坯的表面质量Ⅱ金属液的运动特性[J],金属学报,1997,33(9):971-975.
    [48]Zi B T,Ba Q X,Cui J Z etal.Study on Axial Changes of As-cast Structures of Al-alloy Sample Treated by the Novel SPMF Technique[J],Sci Mater,2000,43:377-380.
    [49]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12铝合金凝固组织的比较[J],热加工工艺,2000,4:3-5.
    [50]訾炳涛,巴启先,崔建忠.强脉冲电磁场对金属凝固组织影响的研究[J],物理学报,2000,49(5):1010-1014.
    [51]Vives C.Effect of forced electromagnetic vibrations during the solidification of aluminium alloys:Part Ⅰ.Solidification in the presence of crossed altemating electric fields and stationary magnetic fields[J],Metal Mater Trans B,1996,27B:445-455.
    [52]Vires C.Effect of forced electromagnetic vibrations during the solidification of aluminium alloys:Part Ⅱ.Solidification in the presence of collinear variable and stationary magnetic fields[J],Metal Mater Trans B,1996,27B:457-464.
    [53]Radjai A,Miwa K.An investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloys melt[J],Metal Trans A,1998,29A:1477-1484.
    [54]Radjai A,Miwa K.Effect of intensity and frequency of electromagnetic vibration on themicrostructural refinement of hypoeutectic Al-Si alloys[J],Metal Trans A,2000,31A:755-762.
    [55]D.Rosenthal,H.Schmenber.Thermal Study of Arc Welding.Welding Journal,1938,17(4):8.
    [56]D.Rosenthal.Temperature distribution in cylinder heated by point source moving along its axis.American Society of Mechanical Engineers,1947,69(8):961-968.
    [57]H.H.雷卡林.焊接热过程计算.北京:中国工业出版社,1958,50-52.
    [58]C.M.Adams.Cooling Rate and Peak Temperature in Fusion Welding.Welding Journal,1958,37(7):34-37.
    [59]#12
    [60]稻恒道夫.构造用钢材溶接部の变质について.金属技术研究所报告,1960,3:24-25.
    [61]Z.Paley,P.D.Hibbort.Computation of Temperature in Actual Weld Disigns.Welding Journal,1975,54(3):12-17.
    [62]G.W.Krutz,L.J.Segerlined.Finite Element Analysis of Welded Structures.Welding Journal,1978,57(2):23-27.
    [63]Ushiom,D.A.Method of estimating the space-charge Voltage drop for thermionic are cathodes.J.Phys.D,Appl.Phys.,1994,27(3):561-566.
    [64]Ushio.M.Proc.Metallo-thermo-mechanics application to phase transformation incorporated processes.Theoretical predication in joining and welding.Osaka,1996,89-111.
    [65]B.K.Jones,A.F.Emery,S.I.Marburger.An analytical and exper-imental study of the effects of welding parameters on fusion welds.Welding Journal,1993,72(2):51-59.
    [66]Y.C.Kim,K.Garatani.Restraint stress and strain in circular patch welds.Transaction of JWRI,1994,23(1):85-92.
    [67]S.B.Brown,H.Song.Implications of three-dimensional numerical simul-ations of welding of large structures.Welding Journal,1992,71(2):55-56.
    [68]T.L.Teng,P.H.Chang,H.C.Ko,et al Finite element analysis of circular patch welds.Intermational Journal of Pressure Vessels and Piping,2000,77(11):643-650.
    [69]B.N.Napuohob.Novel technique for measuring the residual stress and the strain-optic coefficient profile of an optical fiber.Optical Society of America,1979(11):122-125.
    [70]陈楚.数值分析在焊接中的应用.上海:上海工业出版社,1985,20-2.
    [71]武传松,陈定华,吴林.TIG焊接熔池中的流体流动及传热过程的数值模拟.焊接学报,1988,9(4):263-267.
    [72]Wang Jianhua.Improvement in Numerical Accuracy and Stability of 3-D FEM Analysis in Welding.Welding Journal,1996.75(4):129-134.
    [73]武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990.
    [74]K.asubuchi.Prediction and control of residual stresses and distortion in welded structures.Proc.Theoretical Prediction in Joining and Welding,Osaka,Japan,Nov.1996:7-88.
    [75]K.S.Alfredsson and B.L.Josefson.Harmonic Response of a spot Welding Box Beam Influence of Welding Residual and Deformations,Proc IUTAM Symposium on the Mechanical Effects of welding LULEA,Sweden,June,1991:1-8.
    [76]J.Goldak.Thermal stress analysis of welds:from melting point to room temperature.Proc.Theoretical Proc.Theoretical Prediction in Joining and Welding,Osaka,Japan,Nov.1996:225-230.
    [77]汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟.上海交通大学学报,1994,28(6):59-65.
    [78]吕建民.温差形变法消除小直径管道焊接应力的研究:硕士学位论文.中国科学院金属研究所,2003.
    [79]常云龙,杨旭,张建民.焊接电磁搅拌装置的研制及其应用.焊接2006,(5):7-40.
    [80]常云龙,宋文清.逆变方波焊接磁搅拌电源研究及应用.焊接技术2005,Vol.34,(1):36-39.
    [79]安藤弘平.长谷川光雄.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985.
    [80]池长青 等编著,铁磁流体力学,北京航空航天大学出版社,1989:172-180.
    [81]梁百先编.电磁学教程.北京:高等教育出版社,1984,65-73.
    [82]Y.C.Kim,K.Garatani.Restraint stress and strain in circular patch welds.Transaction of JWRI,1994,23(1):85-92.
    [83]Hunt J D.Mater Sci Eng,1984;65:75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700