生物质基丁酮经由Baeyer-Villiger氧化转化生成乙醇的途径及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素类生物质作为地球上资源量最丰富的一类可再生资源,其水解后可用于生产重要平台化合物乙酰丙酸,乙酰丙酸经脱羧反应可以得到丁酮,丁酮经Baeyer Villiger氧化得到乙酸乙酯,乙酸乙酯还原可生成乙醇。因此,通过上述方法探讨木质纤维素原料的有效能源化利用途径,对于拓展燃料乙醇的多元化生产方法,缓解我国能源危机、粮食危机等具有重要的意义。
     论文以来源于生物质的丁酮为原料,在Baeyer Villiger氧化体系中以过氧三氟乙酸、间氯过氧苯甲酸、过硫酸氢钾硅胶及氧气为氧化剂,氧化丁酮为乙酸乙酯,乙酸乙酯在镍基催化剂和铜锌铝催化剂的催化加氢作用下被还原得到乙醇。论文在丁酮氧化和乙酸乙酯还原工艺优化的基础上,对相关反应的机理进行了初步探讨,探索生物质基丁酮转化为燃料乙醇的新工艺。
     论文首先以三氟乙酸酐、三氟乙酸、过碳酰胺和30 %过氧化氢为原料制备液体过酸过氧三氟乙酸,将制备的过氧三氟乙酸用于丁酮的Baeyer Villiger氧化。研究发现用不同原料组合制备出的过氧三氟乙酸,对丁酮均具有氧化效果,过氧三氟乙酸对丁酮的氧化,除得到了目标产物乙酸乙酯外,还得到了副产物丙酸甲酯、三氟乙酸、三氟乙酸乙酯、乙酸、三氟乙酸甲酯和丙酸等。不同原料组合氧化效果由高到低依次为:三氟乙酸酐/过碳酰胺>三氟乙酸酐/过氧化氢>三氟乙酸/过碳酰胺>三氟乙酸/过氧化氢。以三氟乙酸酐/过碳酰胺为原料时制备出的过氧三氟乙酸对丁酮氧化能力最强。在缓冲剂添加前后,乙酸乙酯的得率分别为70.45 %和76.54 %,远高于其它组合。
     以间氯过氧苯甲酸和过硫酸氢钾硅胶两种固体过氧酸为氧化剂,研究其对丁酮的氧化效果。在添加和不添加助剂的情况下,间氯过氧苯甲酸氧化丁酮,除得到目标产物乙酸乙酯外,还生成了副产物丙酸甲酯、乙酸乙酯、间氯苯甲酸甲酯、丙酸、间氯苯甲酸乙酯和乙酸。添加助剂后,丁酮的转化率和乙酸乙酯得率均得到不同程度的提高。各种助剂促氧化效果由高到低的顺序依次为:三氟甲烷磺酸>甲烷磺酸>三氟乙酸酐>三氟乙酸。其中添加三氟甲烷磺酸后,反应2 h丁酮转化率和乙酸乙酯得率最高可达95.72 %和80.35 %。与未添加三氟甲烷磺酸的反应相比,丁酮转化率和乙酸乙酯得率最大值分别提高了41.05 %和42.3 %。通过浸渍法制备的非均相催化剂过硫酸氢钾硅胶,在室温下氧化丁酮时,仅得到目标产物乙酸乙酯,没有其它的副产物生成,但反应的得率不高,室温下反应30 h,乙酸乙酯得率为60.21 %。
     以氧气为氧化剂,苯甲醛为助氧化剂,丁酮在铜硅胶和镍硅胶的催化下,除了生成主要产物乙酸乙酯外,还生成了副产物苯甲酸乙酯、乙酸、苯甲酸苯酯、苯甲酸、苯酚和联苯。以镍硅胶2为催化剂,研究了不同醛为助氧化剂的效果,助氧化效果由高到低顺序依次为:苯甲醛>异戊醛>乙醛>异丁醛>特戊醛。在所有反应溶剂体系中,以苯作溶剂乙酸乙酯的得率最高。以镍硅胶2为催化剂氧化丁酮的最佳反应条件为:温度80℃、氧气压力5 MPa、苯甲醛:丁酮摩尔比为3:1、催化剂0.2 g、溶剂苯为40 mL,反应时间16h。在最优条件下,12 mmol的丁酮转化为乙酸乙酯的得率最高可达71.39%。研究还发现Ni和Cu的3个不同负载量的催化剂中,负载中间剂量的Ni和Cu催化剂催化活性最好。氧化镍和氧化铜催化氧化丁酮,丁酮转化率和乙酸乙酯的得率低于镍硅胶催化剂,高于铜硅胶催化剂。不添加任何催化剂时,得到28.42 %的丁酮转化率和15.46 %的乙酸乙酯得率。以钴硅胶和锰硅胶为催化剂时,得不到乙酸乙酯。
     以Fe MCM 48和Fe MCM 41 DHT为催化剂,氧气为氧化剂,苯甲醛为助氧化剂催化氧化丁酮,得到的产物与金属硅胶的催化产物相同。除生成主产物乙酸乙酯外,还生成了副产物苯甲酸苯酯、乙酸、苯甲酸、苯酚及苯甲酸甲酯等。对比6种不同Fe含量的介孔分子筛Fe MCM 48和1个Fe MCM 41 DHT,发现硝酸铁用量为1.8 g时,丁酮转化率和乙酸乙酯得率最大,分别为58.08 %和50.34 %。Fe MCM 41 DHT催化氧化效果并不高,仅得到35.89 %的丁酮转化率和30.09 %的乙酸乙酯得率。优化条件下,以三氧化二铁为催化剂时,仅得到42.23 %的丁酮转化率和34.51 %的乙酸乙酯得率。空白实验表明,不使用催化剂时,丁酮的氧化也会发生,但仅得到25.29 %的丁酮转化率和20.51 %的乙酸乙酯得率。在反应中添加壬烷时,反应的氧化效果会降低。
     来自于镍铝水滑石的镍基催化剂在催化氢化条件下能有效地催化乙酸乙酯的加氢还原。在所制备出的镍基催化剂中,RE1NASH 110 3的催化氢化效果最好,对乙酸乙酯氢化还原生成乙醇的选择性和得率分别可达68.2 %和61.7 %。乙酸乙酯催化加氢还原生成乙醇,乙醇的生成经过半缩醛C O断裂和乙氧基加氢过程。在镍基催化剂的催化作用下,乙酸乙酯的加氢除得到主产物乙醇外,还生成了副产物乙醛、甲烷、乙烷、乙醚和乙酸丁酯。
     乙酸乙酯在铜锌铝催化剂的催化加氢还原作用下,不但得到主产物乙醇,还得到少量的副产物正丁醇、仲丁醇、乙酸丁酯、丁酸乙酯和乙酸。以RE1CZASR 20 1.5为催化剂,最佳催化氢化条件为:温度280℃、氢气压力9 MPa、催化剂用量1 g、反应3 h。在最优条件下,乙酸乙酯的转化率和乙醇得率分别可达88.06 %和85.36 %。在制备出的所有铜基催化剂中,RE1CZAR 80 20是催化氢化活性最高的催化剂,其乙酸乙酯转化率和乙醇得率分别高达90.09 %和87.89 %。其它的催化剂,如雷尼镍、铝镍合金、镍铝水滑石还原物、钌碳、钯碳、亚铬酸铜(国标)、亚铬酸铜(企标)催化乙酸乙酯的氢化反应醇得率均低于50 %。
Biomass is the most abundant and renewable resource in nature, which can be used to produce levulinic acid through a series of hydrolysis process. As an important platform material, levulinic acid can be decarboxylated to form butanone. Butanone can be converted to ethyl acetate through Baeyer Villiger oxidation, ethyl acetate is further reduced to ethanol. Consequently, the research with respect to the above conversion steps from biomass to versatile fuels develops a new pathway to produce bio ethanol, and also becomes increasingly significant to resolve energy crisis and food shortage and so on, which can also supplement or gradually replace the oil based chemicals or energy.
     The oxidation reactions of biomass derived butanone to ethyl acetate through Baeyer Villiger oxidation with trifluoroperacetic acid, meta chloroperbenzoic acid(mCPBA), potassium hydrogen persulfate silica gel and oxygen as oxidant were studied respectively. Ethyl acetate was catalyzed by Ni based catalyst and Cu Zn Al catalyst in the presence of hydrogen, and finally was reduced to ethanol. In addition, the mechanisms of butanone oxidation and ethyl acetate reduction were investigated based on reactions process optimization. And the new oxidative and reductive pathways of butanone to bio ethanol were explored in this paper.
     Trifluoroperacetic acid, which was made with trifluoroacetic anhydride, trifluoroacetic acid(TFA), percarbamide and 30 % peroxide, was firstly used as oxidant for Baeyer Villiger oxidation of butanone. With the prepared oxidants, ethyl acetate as main product and methyl propionate, ethyl trifluoroacetate, acetic acid, TFA and propionic acid as by products could be formed. The effects of butanone oxidation varied with different preparation methods of trifluoroperacetic acid, the order from high to low were as following trifluoroacetic anhydride/percarbamide, trifluoroacetic anhydride/peroxide, TFA/percarbamide and TFA/peroxide, respectively. When trifluoroacetic anhydride/percarbamide as raw materials for preparation of trifluoroperacetic acid, the yield of ethyl acetate could attain to 70.45 % and 76.54 % before and after adding buffer.
     The butaone oxidation was then studied with mCPBA and potassium hydrogen persulfate silica gel as oxidant. The butanone oxidation with mCPBA could produce ethyl acetate, methyl propionate, methyl 3 chlorobenzoate, propionic acid, ethyl 3 chlorobenzoate and acetic acid with or without adding additives. Both ethyl acetate yield and butanone conversion rate rose with adding additives such as trifluoromethane sulfonic acid, methanesulfonic acid, trifluoroacetic acid and TFA, and among these additives, trifluoromethane sulfonic acid influenced most. The reaction lasted 2 hours and the butanone conversion rate and ethyl acetate yield could attain to 95.72 % and 80.35 %, respectively, which improved by 41.05 % and 42.3 % compared with that without adding of trifluoromethane sulfonic acid. Still, potassium hydrogen persulfate silica gel was made by impregnation method. At the room temperature, butanone was oxidated by potassium hydrogen persulfate silica gel for 30 hours and only ethyl acetate was produced with a yield of about 60.21 %.
     Butanone was catalyzed with Cu silica gel and Ni silica gel in the presence of oxygen as oxidant and benzaldehyde as pro oxidant, which caused ethyl acetate as the main product and ethyl benzoate, acetic acid, phenol benzoate, benzoic acid, phenol and diphenyl as by products. The effects of pro oxidants and solvents were also studied. It was found that benzaldehyde and benzene were the most effective for the reaction. Ethyl acetate yield could attain to 71.39 % when the reaction was operated at temperature of 80℃for 16h, with oxygen pressure of 5 Mpa, Ni silica gel 2 mass of 0.2 g, benezene volume of 40mL and molar ratio of benzaldehyde and butanone of 3:1. It was also found that the dosage of Ni and Cu in catalyst would affect butnanone oxidation. The butanone conversion rate and ethyl acetate yield catalyzed with nickel oxide and cupric oxide were lower than that of Ni silica gel but higher than Cu silica gel. Moreover, the butanone conversion rate and ethyl acetate yield were 28.42 % and 15.46 % repsectively without any catalyst, and no ethyl acetate was detected about butanone oxidation with Co silica gel and Mn silica gel as catalyst.
     The oxidation products of butanone by Fe MCM 48 and Fe MCM 41 DHT in the presence of oxygen as oxidant and benzaldehyde as pro oxidant were analyzed by GC/GC MS, and the main product was ethyl acetate and by products included phenol benzoate, acetic acid, benoic acid, phenol and methyl benzoate et al. It was found that with ferric nitrate dosage of 1.8 g, the butanone conversion rate and ethyl acetate yield could attain to 58.08 % and 50.34 % repsectively. The reaction catalyzed by Fe MCM 41 DHT got a lower butanone conversion of 35.89 % and ethyl acetate yield of 30.09 %. At the optimum conditions, the butanone conversion rate and ethyl acetate yield could attain to 42.23 % and 34.51 % repsectively with ferric oxide as catalyst. Meantime, oxygen and benzaldehyde could directly oxidize butanone to form ethyl acetate, the butanone conversion and ethyl acetate yield of were about 25.29 % and 20.51 %, respectively.
     In the presence of hydrogen, ethyl acetate was effectively reduced to ethanol by Ni based catalyst, especially with RE1NASH 110 3 the selectivity and yield of ethanol could attain to 68.2 % and 61.7 % respectively. The hydrogenated reduction of ethyl acetate to ethanol firstly involved the break of hemiacetal C O bond and then the generated oxyethyl group was hydrogenated. With ethanol as the main product, acetaldehyde, methane, ethane, ethyl ether and butyl acetate were also detected.
     The hydrogenation of ethyl acetate by Cu Zn Al catalyst was also studied. The results analyzed with GC/GC–MS showed that ehtanol was the main product, and 1 butanol, 2 butanol, butyl acetate, ethyl butyrate and acetic acid were also detected. Catalyzed with RE1CZASR 20 1.5, the reaction was carried out at 280℃for 3 hours with hydrogen pressure of 9Mpa, catalyst mass of 1 g, the ethyl acetate conversion rate and ethanol yield could attain to 88.06% and 85.36% respectively. Among the Cu based catalysts, RE1CZAR 80 20 was the best catalyst for ethyl acetate catalytic hydrogenation, the ethyl acetate conversion and ethanol yield could attain to 90.09 % and 87.89 % respectively. As for other catalysts, such as Raney Ni, aluminonickel, Ni Al houghite, Ru/C, Pd/C, copper chromite(GB) and copper chromite(QB) all could catalyze ethyl acetate to ethanol, but the yield of ethanol was lower than 50 %.
引文
[1]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].化学工业出版社, 2005.
    [2]彭良才.论中国生物能源发展的根本出路[J].华中农业大学学报(社会科学版), 2011, 92(2): 1 6.
    [3]路鹏,江滔,李国学.木质纤维素乙醇发酵研究中的关键点及解决方案[J].农业工程学报, 2006, 22(009): 237 240.
    [4]林鹿,薛培俭,庄军平等编著.生物质基乙酰丙酸化学与技术[M].北京,化学工业出版社,2009
    [5]林鹿,何北海,孙润仓,等.木质生物质转化高附加值化学品[J].化学进展, 2007, 19(7): 1206 1216.
    [6] Zhang B, Lin L, Zhuang J, et al. Hydrogenation of Ethyl Acetate to Ethanol over Ni Based Catalysts Obtained from Ni/Al Hydrotalcite Like Compounds [J]. Molecules, 2010, 15(8): 5139 5152.
    [7]雷自强,张青花,罗居杰.催化氧化Baeyer Villiger反应的研究进展[J].化学通报, 2004, 6:(1 7.
    [8] Renz M, Meunier B. 100 years of Baeyer Villiger oxidations [J]. European journal of organic chemistry, 1999, 1999(4): 737 750.
    [9] Pillai U R, Sahle demessie E. Sn exchanged hydrotalcites as catalysts for clean and selective Baeyer Villiger oxidation of ketones using hydrogen peroxide [J]. Journal of Molecular Catalysis A: Chemical, 2003, 191(1): 93 100.
    [10]冯小明,彭云贵. Baeyer―Villiger反应中的氧化剂[J].合成化学, 1999, 7(004): 374 381.
    [11] Zarrabi S, Mahmoodi N, Tabatabaeian K, et al. Baeyer Villiger oxidation of cyclic ketones utilizing potassium peroxydisulfate (K2S2O8) or sodium perborate (NaBO3) in acidic media [J]. Chinese Chemical Letters, 2009, 20(12): 1400 1404.
    [12] Emmons W D, Lucas G B. Peroxytrifluoroacetic Acid. V. The Oxidation of Ketones to Esters1 [J]. Journal of the American Chemical Society, 1955, 77(8): 2287 2288.
    [13] Stephan E. Baeyer Villiger Oxidation of lndan I Ones : Monitoring of the Reaction by VPC and IR Spectroscopy [J]. Journal of chemical education, 1995, 72( 12): 1142 1143.
    [14] Hudrlik P F, Hudrlik A M, Nagendrappa G, et al. Silicon directed Baeyer Villiger reactions. Stereospecific synthesis of olefinic acids and esters [J]. Journal of the American Chemical Society, 1980, 102(22): 6894 6896.
    [15] Yakura T, Kitano T, Ikeda M, et al. Remarkable rate acceleration of the solvent free Baeyer Villiger reaction on the surface of NaHCO3 crystals for sterically congested cyclic and acyclic ketones [J]. Tetrahedron letters, 2002, 43(39): 6925 6927.
    [16] Canan koch S, Chamberlin A. Modified Conditions for Efficient Baeyer Villiger Oxidation with m CPBA [J]. Synth Commun, 1989, 19:829 833.
    [17] Kotsuki h, Arimura K, Araki T, et al. Sc (OTf)~ 3 and TfOH Catalyzed Baeyer Villiger Oxidation of Carbonyl Compounds with m Chloroperbenzoic Acid [J]. Synlett, 1999, 462 464.
    [18] Choudary B, Sridhar C, Sateesh M, et al. Microencapsulated bismuth (III) triflate catalyst for organic transformations [J]. Journal of Molecular Catalysis A: Chemical, 2004, 212(1 2): 237 243.
    [19] Olah g A, Yamato T, Iyer P S, et al. Nafion HR catalyzed baeyer villiger oxidation and ritter reaction [1] [J]. Materials chemistry and physics, 1987, 17(1 2): 21 30.
    [20] Kaneda K, Yamashita T. Heterogeneous Baeyer Villiger oxidation of ketones using m chloroperbenzoic acid catalyzed by hydrotalcites [J]. Tetrahedron letters, 1996, 37(26): 4555 4558.
    [21] Sugimura T, Fujiwara Y, TAI A. Asymmetric Baeyer Villiger reaction: Diastereodifferentiating peracid oxidation of chiral acetal in the presence of Lewis acid [J]. Tetrahedron letters, 1997, 38(34): 6019 6022.
    [22] Kobayashi S, Tanaka H, Amii H, et al. A new finding in selective Baeyer Villiger oxidation of a fluorinated ketones; a new and practical route for the synthesis of a fluorinated esters [J]. Tetrahedron, 2003, 59(9): 1547 154752.
    [23] Pande C, Jain N. Polymer Supported Persulfonic Acid as Oxidising Agent [J]. Synthetic Communications, 1989, 19(7): 1271 1279.
    [24] Hashemi M M, GhazanfarI D, Ahmadibeni Y, et al. Oxidation of aldehydes and ketones into carboxylic acids and esters using 4 amino 2 chloroperbenzoic acid supported on silica gel [J]. Synthetic Communications, 2005, 35(8): 1103 1107.
    [25] Ghazanfari D, Hashemi M M, Shahidi zandi M. ChemInform Abstract: Efficient Method for Oxidation of Ketones to Esters with 4 Aminoperoxybenzoic Acid Supported on Silica Gel [J]. ChemInform, 2008, 39(45): no no.
    [26] Chrobok A. The Baeyer Villiger oxidation of ketones with Oxone(R) in the presence of ionic liquids as solvents [J]. Tetrahedron, 2010, 66(32): 6212 6216.
    [27] Gonzalez nunez M E, Mello R, Olmos A, et al. Baeyer villiger oxidation with potassium peroxomonosulfate supported on acidic silica gel [J]. The Journal of Organic Chemistry, 2005, 70(26): 10879 10882.
    [28]田良春.苯甲酸苯酯合成方法研究[J].曲阜师范大学学报, 2008, 34(1): 89 91.
    [29]杨志旺.锡化合物催化剂的合成及催化酮类Baeyer Villiger氧化反应研究[D].西北师范大学, 2006.
    [30] Ruiz J R, Jimenez sanchidrian C, Llamas R. Hydrotalcites as catalysts for the Baeyer Villiger oxidation of cyclic ketones with hydrogen peroxide/benzonitrile [J]. Tetrahedron, 2006, 62(50): 11697 11703.
    [31] Corma A, Nemeth L T, Renz M, et al. Sn zeolite beta as a heterogeneous chemoselective catalyst for Baeyer Villiger oxidations [J]. Nature, 2001, 412(6845): 423 425.
    [32] Gavagnin R, Cataldo m, Pinna F, et al. Diphosphine Palladium and Platinum Complexes as Catalysts for the Baeyer Villiger Oxidation of Ketones: Effect of the Diphosphine, Oxidation of Acyclic Ketones, and Mechanistic Studies [J]. Organometallics, 1998, 17(4): 661 667.
    [33] Hao X, Yamazaki O, Yoshida A, et al. Tin (IV) bis (perfluoroalkanesulfonyl) amide complex as a highly selective Lewis acid catalyst for Baeyer Villiger oxidation using hydrogen peroxide in a fluorous recyclable phase [J]. Tetrahedron letters, 2003, 44(27): 4977 4980.
    [34] Sgarbossa P, Scarso A, Pizzo E, et al. Synthesis, characterization and Baeyer Villiger oxidation of ketones by the bis cationic platinum (II) complex [Pt ([mu] OH)(Pom Pom)] 2 [BF4] 2 [Pom Pom=(OMe) 2PCH2CH2P (OMe) 2] [J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 202 206.
    [35] Bernini R, Coratti A, Fabrizi G, et al. CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer Villiger reaction [J].Tetrahedron letters, 2003, 44(50): 8991 8994.
    [36] Murahashi S I, Oda Y, Naota T. Fe2O3 catalyzed baeyer villiger oxidation of ketones with molecular oxygen in the presence of aldehydes [J]. Tetrahedron letters, 1992, 33(49): 7557 7560.
    [37] Kawabata T, Ohishi Y, Itsuki s, et al. Iron containing MCM 41 catalysts for Baeyer Villiger oxidation of ketones using molecular oxygen and benzaldehyde [J]. Journal of Molecular Catalysis A: Chemical, 2005, 236(1 2): 99 106.
    [38] Subramanian H, Nettleton E G, Budhi S, et al. Bayer Villiger Oxidation of Cyclic Ketones Using Fe Containing MCM 48 Cubic Mesoporous Materials [J]. Journal of Molecular Catalysis A: Chemical, 2010: 1 7
    [39] Belaroui L S, Sorokin A B, Figueras F, et al. Comparative Baeyer Villiger oxidation of cyclohexanone on Fe pillared clays and iron tetrasulfophthalocyanine covalently supported on silica [J]. Comptes Rendus Chimie, 2010, 13(4): 466 472.
    [40] Yamada T, Takahashi K, Kato K, et al. The Baeyer Villiger Oxidation of Ketones Catalyzed by Nickel (II) Complexes with Combined Use of Molecular Oxygen and an Aldehyde [J]. Chemistry Letters, 1991, 20(4): 641 644.
    [41] Chisem I C, Chisem J, Rafelt J S, et al. Environmentally friendly liquid phase oxidation: enhanced selectivity in the aerial oxidation of alkyl aromatics, epoxidations and the Baeyer Villiger oxidation using novel silica supported transition metal ions [J]. Journal of Chemical Technology & Biotechnology, 1999, 74(10): 923 930.
    [42] Zhao W, Qian Y L, Huang J L. Chiral and achiral bis (2 oxazolinylphenolato) nickel (II) complexes synthesis, crystal structure, and catalytic properties [J]. Chinese Journal of Chemistry, 2004, 22(7): 732 737.
    [43]张萍.环氧化和Baeyer Villiger氧化反应的研究及超声的影响[D];南京工业大学, 2006.
    [44] Bolm C, Schlingloff G, Weickhardt K. Optically Active Lactones from a Baeyer Villiger Type Metal Catalyzed Oxidation with Molecular Oxygen [J]. Angewandte Chemie International Edition in English, 1994, 33(18): 1848 1849.
    [45] Bolm C, Schlingloff G, Bienewald F. Copper and vanadium catalyzed asymmetric oxidations [J]. Journal of Molecular Catalysis A: Chemical, 1997, 117(1 3): 347 350.
    [46]彭云贵,蒋耀忠,冯小明,等.手性Salen Cu (Ⅱ)和唑啉Cu (Ⅱ)配合物催化2苯基环己酮的不对称Baeyer Villiger反应研究[J].高等学校化学学报, 2001,22(2):223 227
    [47] Zhang J, Leitus G, Bendavid Y, et al. Efficient homogeneous catalytic hydrogenation of esters to alcohols [J]. Angewandte Chemie, 2006, 118(7): 1131 1133.
    [48] Matteoli U, Menchi G, Bianchi M, et al. Structure and catalytic activity of phosphine substituted ruthenium carbonyl carboxylates [J]. Journal of organometallic chemistry, 1995, 498(2): 177 186.
    [49] Teunissen H T, Elsevier C J. Ruthenium catalysed hydrogenation of dimethyl oxalate to ethyleneglycol [J]. Chem Commun, 1997, 7): 667 668.
    [50] Grey R A, Pez G P, Wallo A. Anionic metal hydride catalysts. 2. Application to the hydrogenation of ketones, aldehydes, carboxylic acid esters, and nitriles [J]. Journal of the American Chemical Society, 1981, 103(25): 7536 7542.
    [51] Teunissen H T. Homogeneous ruthenium catalyzed hydrogenation of esters to alcohols [J]. Chem Commun, 1998, 13): 1367 1368.
    [52]关士友,黄美玉,江英彦.无机高分子Ru M双金属络合物在苯甲酸乙酯氢化生成环已基甲醇反应中的催化作用[J].分子催化, 1993, 7(4): 269 276.
    [53] Santos S, Silva A, Jordao E, et al. Hydrogenation of dimethyl adipate over bimetallic catalysts [J]. Catalysis Communications, 2004, 5(7): 377 381.
    [54] Brands d S, Poels E K, Bliek A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts [J]. Applied Catalysis A: General, 1999, 184(2): 279 289.
    [55]李竹霞,钱志刚,赵秀阁,等. Cu/SiO2催化剂上草酸二甲醋加氢反应的研究[J].化学反应工程与工艺, 2004, 20(2): 121 128.
    [56] Kaneda K, Ueno S, Imanaka T. Catalysis of transition metal functionalized hydrotalcites for the Baeyer Villiger oxidation of ketones in the presence of molecular oxygen and benzaldehyde [J]. Journal of Molecular Catalysis A: Chemical, 1995, 102(3): 135 138.
    [57] Velu S, Swamy C. Selective C alkylation of phenol with methanol over catalysts derived from copper aluminium hydrotalcite like compounds [J]. Applied Catalysis A: General, 1996, 145(1 2): 141 153.
    [58] Antonyraj C A, Kannan S. Influence of co bivalent ions in Cu containing LDHs andsolvent on hydroxylation of benzene to phenol [J]. Applied Clay Science, 2011,53(2):297 304
    [59] Behrens M, Kasatkin I, Kuhl S, et al. Phase Pure Cu, Zn, Al Hydrotalcite like Materials as Precursors for Copper rich Cu/ZnO/Al2O3 Catalysts [J]. Chemistry of Materials, 2009, 22(2): 386 397.
    [60] Centi G, Fornasari G, Gobbi C, et al. NOx storage reduction catalysts based on hydrotalcite: Effect of Cu in promoting resistance to deactivation [J]. Catalysis today, 2002, 73(3 4): 287 296.
    [61] Mokhtar M, Ohlinger C, Schlander J, et al. Hydrogenolysis of dimethyl maleate on Cu/ZnO/Al2O3 catalysts [J]. Chemical engineering & technology, 2001, 24(4): 423 426.
    [62] Marchi A J, Gordo D A, Trasarti A F, et al. Liquid phase hydrogenation of cinnamaldehyde on Cu based catalysts [J]. Applied Catalysis A: General, 2003, 249(1): 53 67.
    [63] Velu S, Suzuki K, Vijayaraj M, et al. In situ XPS investigations of Cu1 xNixZnAl mixed metal oxide catalysts used in the oxidative steam reforming of bio ethanol [J]. Applied Catalysis B: Environmental, 2005, 55(4): 287 299.
    [64] Idem R O, Bakhshi N N. Kinetic modeling of the production of hydrogen from the methanol steam reforming process over Mn promoted coprecipitated Cu Al catalyst [J]. Chemical engineering science, 1996, 51(14): 3697 3708.
    [65]陈满英.镍基催化剂加氢脱氧性能的研究[D].暨南大学, 2005.
    [66] Adkins H, Billica H R. The Hydrogenation of Esters to Alcohols at 25 150 [J]. Journal of the American Chemical Society, 1948, 70(9): 3121 3125.
    [67] Ronchin L, Vavasori A, Bernardi D, et al. Selective hydrogenation of ethyl benzoylacetate to 3 hydroxy 3 phenyl propionate catalyzed by Pd/C in EtOH as a solvent in the presence of KOH: The role of the enolate ion on the reaction mechanism [J]. Applied Catalysis A: General, 2009, 355(1 2): 50 60.
    [68] Figueiredo F, Jordao E, Carvalho W. Adipic ester hydrogenation catalyzed by platinum supported in alumina, titania and pillared clays [J]. Applied Catalysis A: General, 2008, 351(2): 259 266.
    [69]蒋达荣.关于氢化铝锂和硼氢化钠还原醛酮成醇的反应式[J].大学化学, 1997,12(4): 53 54.
    [70]于世钧,郭宏. LiAIH4和NaBH4的还原反应[J].辽宁师范大学学报(自然科学版), 2003, 26(1): 56 58.
    [71]吕布,王松涛.氢化铝锂的合成和应用[J].安徽化工, 1999, 25(004): 18 20.
    [72]李洋,王峰,曹小平.氢化铝锂还原α,β不饱和羰基化合物的新反应一种合成1, 3二醇的简便方法[J].化学学报, 2003, 61(2): 279 284.
    [73] Periasamy M, Thirumalaikumar M. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis [J]. Journal of organometallic chemistry, 2000, 609(1 2): 137 151.
    [74] Brown H, Rao B C S. A new powerful reducing agent sodium borohydride in the presence of aluminum chloride and other polyvalent metal halides [J]. J Am Chem Soc, 1956, 78:2582.
    [75] Soai K, Oyamada H, Ookawa A. Sodium borohydride t butyl alcohol methanol as an efficient system for the selective reduction of esters [J]. Synthetic Communications, 1982, 12(6): 463 467.
    [76] Soai K, Oyamada H, Takase M, et al. Practical procedure for the chemoselective reduction of esters by sodium borohydride. Effect of the slow addition of methanol [J]. Bulletin of the Chemical Society of Japan, 1984, 57(7): 1948 1953.
    [77] Boechat N, Da costa J C S, De souza mendon A J, et al. A simple reduction of methyl aromatic esters to alcohols using sodium borohydride methanol system [J]. Tetrahedron letters, 2004, 45(31): 6021 6022.
    [78]杨大伟,林中祥.对羟基苯乙酸酯还原法制备对羟基苯乙醇的工艺研究[J].精细化工中间体, 2008, 38(001): 22 26.
    [79]吴春丽,孙默然,刘艳凯,等.硼氢化钾对酯和羧酸的还原反应的研究[J].化工中间体, 2007, (1): 20 21.
    [80] Lambert A, Elings J, Macquarrie D J, et al. The Baeyer Villiger oxidation of ketones using HMS supported peroxycarboxylic acids [J]. Synlett, 2000, 1052 1054.
    [81] Bolm C, Schlingloff G, Weickhardt K. Optically Active Lactones from a Baeyer Villiger Type Metal Catalyzed Oxidation with Molecular Oxygen [J]. Angewandte Chemie International Edition in English, 1994, 33(18): 1848 1849.
    [82]李凤艳,赵天波,汪燮卿,等.红外光谱法研究硅胶表面固载硅氧烷的键合反应[J].石油化工高等学校学报, 2003, 16(2):20 24
    [83] Corma A, ForneS V, Iborra S, et al. One pot synthesis of phenols from aromatic aldehydes by Baeyer Villiger oxidation with H2O2 using water tolerant Lewis acids in molecular sieves [J]. Journal of Catalysis, 2004, 221(1): 67 76.
    [84]余志刚,陈育平. DMAP催化合成苯甲酸苯酯的研究[J].化学试剂, 2001, 23(2): 110.
    [85]刘彩华,王雯娟,程文萍,等.含稳定骨架铁的Fe MCM 41介孔分子筛的合成与表征[J].无机材料学报, 2008, 001): 171 174.
    [86]许俊强.掺杂介孔MCM 41分子筛的制备,表征及其催化性能研究[D].四川大学, 2007.
    [87] Schumacher K, Grun M, Unger K. Novel synthesis of spherical MCM 48 [J]. Microporous and mesoporous materials, 1999, 27(2 3): 201 206.
    [88]李圭,钟玲,袁霞,等. Sn掺杂MCM 41介孔分子筛催化环己酮Baeyer Villiger氧化[J].化学反应工程与工艺, 2010, 002): 162 166.
    [89]闰明涛,张大余,吴刚.介孔分子筛MCM 48的室温合成与表面修饰[J].无机化学学报, 2005, 21(008): 1165 1169.
    [90]张扬健,赵杉林,孙桂大, et al. W MCM 48中孔分子筛的微波合成与表征[J].催化学报, 2000, 21(4): 345 349.
    [91]柏珊珊,岳秀丽,马放,等. MCM 41的化学修饰及其对Cu2+的吸附性能[J].哈尔滨工业大学学报, 2010, (6): 954 957.
    [92]黄晨,胡孝中,彭文贇,等.纯硅MCM 48介孔材料的快速合成及其表征[J].河南化工, 2010, (11): 34 36.
    [93] Chen C Y, Li H X, Davis M E. Studies on mesoporous materials:: I. Synthesis and characterization of MCM 41 [J]. Microporous materials, 1993, 2(1): 17 26.
    [94] Busio M, J nchen J, Van hooff J. Aluminum incorporation in MCM 41 mesoporous molecular sieves [J]. Microporous materials, 1995, 5(4): 211 218.
    [95] Beck J, Vartuli J, Roth W, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992,
    [96]何农跃,曹洁明,鲍书林,等.含铁介孔分子筛的烷基化反应性能[J].催化学报, 1998, 19(3): 273 276.
    [97] Saudan C, Saudan L. Hydrogenation of esters or carbonyl groups with phosphino oxide based ruthenium complexes [M]. WO Patent WO/2010/038,209. 2010.
    [98] Miyake T, Makino T, Taniguchi S, et al. Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru Sn and Rh Sn catalysts [J]. Applied Catalysis A: General, 2009, 364(1 2): 108 112.
    [99] Cavani F, Trifiro F, Vaccari A. Hydrotalcite type anionic clays: preparation, properties and applications [J]. Catalysis today, 1991, 11(2): 173 301.
    [100] Bocchini S, Morlat therias S, Gardette J L, et al. Influence of nanodispersed hydrotalcite on polypropylene photooxidation [J]. European Polymer Journal, 2008, 44(11): 3473 3481.
    [101] Choudary B M, Kantam M L, Rahman A, et al. Selective reduction of aldehydes to alcohols by calcined Ni Al hydrotalcite [J]. Journal of Molecular Catalysis A: Chemical, 2003, 206(1 2): 145 151.
    [102] Xu W, Liu X, Ren J, et al. A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation [J]. Catalysis Communications, 2010, 11(8): 721 726.
    [103] Jimenez sanchidrian C, Hidalgo J M, Ruiz J R. Reduction of heterocyclic carboxaldehydes via Meerwein Ponndorf Verley reaction [J]. Applied Catalysis A: General, 2006, 303(1): 23 28.
    [104] Adkins H, Connor R. The Catalytic Hydrogenation of Organic Compounds over Copper Chromite [J]. Journal of the American Chemical Society, 1931, 53(3): 1091 1095.
    [105] Monzon A, Romeo E, Royo C, et al. Use of hydrotalcites as catalytic precursors of multimetallic mixed oxides. Application in the hydrogenation of acetylene [J]. Applied Catalysis A: General, 1999, 185(1): 53 63.
    [106] Bournonville J P, Candy J P, Mabilon G. Process for producing alcohols by hydrogenolysis of carboxylic acid esters in the presence of a catalyst containing nickel and tin, germanium or lead [M]. US Patents. 2093159, 1986.
    [107]谢鲜梅,刘洁翔,宋健玲,等.含铜三元类水滑石化合物的合成及其性质[J].催化学报, 2003,24(8): 569 573.
    [108]程淑艳,谢鲜梅,廖家友,等.铜铬类水滑石的表征及其催化性能[J].无机化学学报, 2009, 012): 2220 2224.
    [109]庞海霞,周曙春,宋滨湖.含铜过渡金属类水滑石化合物的合成与表征[J].安徽化工, 2005, 31(6): 23 25.
    [110]李忠,刘岩,何忠,等. Cu/Zn比对微波辐射老化制备CuO/ZnO/Al2O3催化剂结构和活性的影响[J].化学学报, 2011, 6(5): 570 576.
    [111] Aristizabal A, Kolafa M, Contreras S, et al. Catalytic activity and characterization of Pt/calcined CuZnAl hydrotalcites in nitrate reduction reaction in water [J]. Catalysis today, 2011,
    [112] Kannan S, Rives V, Knozinger H. High temperature transformations of Cu rich hydrotalcites [J]. Journal of Solid State Chemistry, 2004, 177(1): 319 331.
    [113] Benito P, Guinea I, Labajos F, et al. Microwave hydrothermally aged Zn, Al hydrotalcite like compounds: Influence of the composition and the irradiation conditions [J]. Microporous and mesoporous materials, 2008, 110(2 3): 292 302.
    [114] Tang Y, Liu Y, Zhu P, et al. High performance HTLcs derived CuZnAl catalysts for hydrogen production via methanol steam reforming [J]. AIChE Journal, 2009, 55(5): 1217 1228.
    [115] Gunter M M, Ressler T, Jentoft R E, et al. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X ray diffraction and absorption spectroscopy [J]. Journal of Catalysis, 2001, 203(1): 133 149.
    [116]汤颖,刘晔,路勇,等. CuZnAl水滑石衍生催化剂上甲醇水蒸气重整制氢Ⅰ.催化剂焙烧温度的影响[J].催化学报, 2006, 27(010): 857 862.
    [117] Fierro G, Lo jacono m, Inversi M, et al. Study of the reducibility of copper in CuO ZnO catalysts by temperature programmed reduction [J]. Applied Catalysis A: General, 1996, 137(2): 327 348.
    [118] Agrell J, Boutonnet M, Melian cabrera I, et al. Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part I. Catalyst preparation and characterisation [J]. Applied Catalysis A: General, 2003, 253(1): 201 211.
    [119]郑良科,徐成华,梁文标,等.以类水滑石为前驱体的含Cu催化剂催化糠醛加氢反应[J].催化学报, 2010, 31(4): 461 465.
    [120]潘伟雄.由正丁醇或正丁醛一步合成丁酸丁酯[J].石油化工,1993,2:111 114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700