柔性衬底薄膜光伏电池相关材料制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染问题促进了太阳能光伏产业的快速发展,而降低成本、提高光电转化效率则是加快太阳能电池推广应用的重要手段。微晶硅薄膜因其低成本、高效率、无衰减等优点已经成为最有潜力的光伏材料之一。而以柔性材料为衬底的柔性微晶硅薄膜太阳能电池不仅可以实现卷轴式大规模生产,进一步降低成本,还具有可卷曲性和重量轻的特点,使其携带方便、应用更加广泛。但是,其仍存在吸收系数低、界面不稳定、结构均匀性不好等问题,这在一定程度上限制了柔性微晶硅薄膜太阳能电池的发展和应用,本文针对以上主要问题开展了研究。
     通过调节工艺参数、开发新材料和新方法来达到优化柔性薄膜太阳能电池的陷光结构、解决铝硅界面问题、改善硅薄膜质量等目的。首先,进行了聚酰亚胺(PI)衬底上制备具有织构表面铝背电极的研究,分析讨论了薄膜生长和表面织构形成的机理;其次,将铝镍合金用作柔性硅基薄膜太阳能电池的阻挡层,对铝电极和硅薄膜之间的互扩散有良好的阻挡效果,并对其阻挡机理进行了分析;再次,采用新的两步生长法有效改善了微晶硅薄膜的结构均匀性问题;最后,确定了透明氧化锌铝薄膜(ZnO:Al)的最佳沉积条件,分析讨论了薄膜结构变化的原因及其对性能的影响规律。上述研究为解决柔性微晶硅薄膜太阳能电池中存在的问题和提高电池的性能,提供了丰富的实验和理论基础。论文主要结论如下:
     1.绒面铝电极的制备及机理研究
     利用射频磁控溅射技术,室温条件下通过控制工艺参数,在PI柔性衬底上制备了具有表面织构的铝电极。高功率(300-450W)下制备的薄膜沉积速率高、电阻率较低同时具有较高的漫反射率,薄膜的平均漫反射率高达70%。随着工作气压的增加,薄膜的沉积速率降低,表面粗糙度减小,在工作气压为0.5Pa时,薄膜具有较低的电阻率和较高的漫反射率。分析表明:高的沉积功率、低的工作气压和斜向入射的沉积方式都可以提高粒子在薄膜生长表面的动能和迁移率,有利于粒子的聚集及表面岛的长大。而薄膜表面的柱状生长形貌则主要与粒子斜向入射和在沉积过程中的应变能释放有关。这种表面织构的制备方法工艺简单实用,同时还避免了高温对塑料柔性衬底的影响,具有较高的实用价值。
     2. AlxNiy薄膜制备及阻挡效果分析
     采用射频磁控双靶共溅射法制备了AlxNiy系列合金薄膜,通过调节靶的功率可以有效调控合金的比例,制备的合金薄膜成分也比较均一。Al、Ni比例为1:1和2:3的薄膜均为多晶结构,对Al、Si互扩散具有较好的阻挡效果,这与其属于置换固溶体,有较高的熔点、较低的自扩散系数有关。其中,AlNi合金对电极电阻的影响最小,与n-Si接触后形成的接触势垒更低,更有利于电子的传输。因此,AlNi合金更适合用来做阻止Al、Si互扩散的阻挡层材料。
     3.微晶硅薄膜制备工艺优化
     结合微波电子回旋共振等离子体增强化学气相沉积(ECR-PECVD)技术的特点,提出生长-刻蚀-再生长的两步生长法制备微晶硅薄膜。该方法也可以被称为籽晶层法,即:先生长厚度约为15nm的薄膜,用氢等离子体处理2min得到籽晶层后,继续生长得到微晶硅薄膜。该两步生长法有效消除了非晶孵化层,改善了微晶硅薄膜的纵向均匀性,使薄膜的晶化率从常规生长的24.3提高到了50.7%。结合实验结果,对氢等离子体诱导非晶硅晶化的机理进行了阐述,并提出了两步生长法制备微晶硅薄膜的生长模型。
     4. ZnO:Al薄膜的制备及结构变化分析
     采用射频磁控溅射技术以ZnO(含2wt.%Al203)陶瓷靶为溅射靶材制备了高c轴择优取向的ZnO:Al薄膜,并分析讨论了薄膜结构变化的原因及其对薄膜电性能的影响规律。实验结果表明:当溅射功率为100W、工作气压为0.3Pa、衬底温度为250℃时沉积得到的ZnO:Al薄膜有最佳的综合性能,可见光区的平均透过率在90%左右,薄膜电阻率约为3.1×10-3Ω.cm。利用GID-XRD和HRTEM对ZnO:Al薄膜的结构进行了深入研究,结果表明:ZnO:Al的晶格相对于未掺杂的氧化锌不仅在垂直于衬底方向变大,在其它方向上晶格也变大,这说明晶格常数变大除受薄膜应力影响外,还和掺杂本身有直接关系。掺杂量为2%时,除了替位掺杂外还有一部分铝和锌以填隙形式存在,从而使晶格在多个方向变大。通过理论计算证实了上述观点的正确性。
Energy supply problem and ecological consideration have taken over as main driving forces in promoting alternative energy sources, in particular, PV solar energy. The cost reduction and efficiency improvement are very essential to push the application of solar cell. Hydrogenated microcrystalline silicon (μc-Si:H) has been confirmed as a promising PV absorber material, owing to its low cost, high convension efficiency and good stablility. Flexibleμc-Si:H thin film solar cell (FMTFSC) can be manufactured in large scale through roll-to-roll process with low cost, and it is more convenient and widely used. However, there are still some disadvantages such as low absorption coefficient, interface interdiffusion, bad structural homogeneity, which restrict the developement and application of FMTFSC to some extent. The scope of this paper is to solve the problems mentioned above.
     Firstly, the study on the preparation of Al back electrode with texture surface was carried out on PI substrate. The mechanism of the formation of texture surface was discussed. Secondly, the AINi alloy was firstly used as the barrier layer in FMTFSC and the results showed that it had a good barrier effect on the interdiffusion of Al and Si film. Thirdly, a new two-step method was proposed, which can effectively improve the uniformity ofμc-Si:H thin film. At last, the optimism deposition parameters of tramsparent ZnO:Al were obtained and the variation mechanism of film structure and the influence of this variation on the properties were discussed. These studies provide abundant experimental and theoritical fundations to the solution of those problems in FMTFSC. The results of this paper are showed below:
     1. Study on the growth of texture surface of Al electrode and its mechanism
     Al electrode with texure suface was prepared at room temperature by r. f sputtering. The film deposited under high power (300-450W) had high depositon rate, low resistivity and high diffuse reflectivity. The average diffuse reflectivity of the film can be as high as 70%. The effect of deposition parameters on the shape and size of three-dimensional surface islands was discussed. High deposition rate, low working pressure and oblique incident can promote the particle kinetic energy and mobility on the film surface, which is favorable for the aggregation and growing up of surface islands. The columnar morphology of the surface is mostly ralated to the oblique incident and the release of strain energy during depositon. It is easy to prepare texture surface with this method and avoids the influence of high temperatur on plastic substrate, which illustrates a good prospect of application.
     2. Study on the AlxNiy alloys as the diffusion barriers between Al and Si
     AlxNiy thin films were prepared using r. f. magnetron co-sputtering technology. The chemical compositions of the films were controlled through adjusting the sputtering powers on Al and Ni targets. When the ratio of Al and Ni were 1:1 and 2:3, the structures of films were polycrystalline. Compared to Ni, AlxNiy alloys had the merits of good oxidation resistance and chemical stability. Among them, the AlNi film had the minimum sheet resistance, the best barrier performance to the interdiffusion between Al and Si, and the lowest contact potential with Si film. Thus, the AlNi film was more suitable in using as the barrier layer of flexible Si based thin film solar cells.
     3. Study on the uniformity ofμc-Si:H thin films
     Base on the ECR-PECVD technology, a new two-step growth method was proposed to deposite theμc-Si:H thin film without incubation layer. A very thin film in thickness of~15 nm was firstly deposited using ECR-PECVD and then it was treated with H2 plasma to get the seed layer, after that, normal parameters were used to depositμc-Si:H film on it. The uniformity in the longitudinal direction of theμc-Si:H thin film can be improved using this new two-step growth method, and the crystalline volume fraction of the films would be increased from 24.3% to 50.7%.. The mechanism of hydrogen-induced crystallization of amorphous silicon was discribed according to experimental results. And the growth model of the two-step growth method was proposed in this work.
     4. Preparation and structure analysis of ZnO:Al thin films
     Al-doped ZnO (ZnO:Al) thin films with high c-axis preferred grain orientation were deposited by radio frequency magnetron sputtering. The variation of structure were discussed, and were correlated to the electical properties of ZnO:Al films. The film, deposited at sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250℃performs high crystalline quality and good properties. The film exhibits a transmittance of about 90% in the visible region and a resistivity of 3.1×10-3Ω·cm. The further studies on structure were performed through GID-XRD and HRTEM. The results show that the interplanar spacings are enlarged in other directions besides the direction perpendicular to the substrate, Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping content of Al is 2 wt. %, the redundant Al atoms are incorporated into the interstitial position, which leads to the increase of crystal lattice. This viewpoint is also proved by first-principle calculations.
引文
[1]Shah A, Torres P, Tscharner R et al. Photovoltaic technology:the case for thin-film solar cells [J]. Science.1999,285(5428):692-698.
    [2]Markvart T, Castaner L. Solar Cells:Materials, Manufacture and Operation [M]. Oxford:Elsevier Science & Technology,2005.
    [3]Vetterl O, Finger F, Carius R et al. Intrinsic microcrystalline silicon:A new material for photovoltaics [J]. Solar Energy Materials and Solar Cells.2000,62(1-2):97-108.
    [4]徐慢,夏冬林,杨晟.薄膜太阳能电池[J].材料导报.2006,20:109-111.
    [5]钱伯章.薄膜光伏发展概述[J].化工新型材料.2008,36(10):54-55.
    [6]Guha S, Yang J. Progress in amorphous and nanocrystalline silicon solar cells [J]. Journal of Non-Crystalline Solids.2006,352(9-20):1917-1921.
    [7]Yang J, Banerjee A, Guha S. Amorphous silicon based photovoltaics—from earth to the "final frontier" [J]. Solar Energy Materials and Solar Cells.2003,78(1-4):597-612.
    [8]Kocka J, Mates T, Stuchlikova H. Characterization of grain growth, nature and role of grain boundaries in microcrystalline silicon-review of typical features [J]. Thin Solid Films.2006,501(1-2):107-112.
    [9]Fujiwara H, Kondo M. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells [J]. Applied Physics Letters.2007,90(1):013503.
    [10]Fujiwara H, Kondo H. Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells [J]. Journal of Applied Physics.2007,101(5):054516.
    [11]Wang T H, Iwaniczko E, Page M R. Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells [J]. Thin Solid Films.2006,501(1-2): 284-287.
    [12]Chittik R C, Alexander J H, Sterling H E. The preparation and properties of amorphous silicon [J]. Journal of the Electrochemical Society.1969,116(1):77-81.
    [13]Carlson D E, Wronski C R. Amorphous silicon solar cells [J]. Applied Physics Letters.1976,28: 671-673.
    [14]Carlson D E. Semiconductor device having a body of amorphous silicon:US, [P].1977.
    [15]Brodsky M H, Frisch M A, Ziegler J F et al. Quantitative analysis of hydrogen in glow discharge amorphous silicon [J]. Applied Physics Letters.1977,30(11):561-563.
    [16]Staebler D L, Wronski C R. Reversible conductivity change in discharge produced amorphous silicon [J]. Applied Physics Letters.1977,31(4):292-294.
    [17]Hanak J, Korsun V. Optical stability studies of a-Si solar cells. Proceedings of the 16th IEEE Photovoltaic Specialists Conference [J]. San Diego,1982:1381-1383.
    [18]Kroll U, Meier J, Keppner H et al. Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70MHz) glow discharge [J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films.1995,13(6):2742-2746.
    [19]Watanabe T, Azuma K, Nakatani M et al. Chemical vapor deposition of a-Si:H films utilising a microwave exited Ar plasma stream [J]. Japanese Journal of Applied Physics.1986,25(12):1805-1810.
    [20]Saito K, Sano M, Ogawa K et al. High efficiency a-Si:H alloy cell deposited at high deposition rate [J]. Journal of Non-Crystalline Solids.1993,164-166:689-692.
    [21]Wronski C R, Pearce J M, Koval R J et al. Light induced defect creation kinetics in thin film protocrystalline silicon materials and their solar cells [J]. Materials Research Society Symposium Proceedings.2002,715:A13.14.
    [22]Tawada Y, Okamoto H, Hamakawa Y. a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency [J]. Applied Physics Letters.1981,39(3):237-239.
    [23]Ishihara T, Terazono S, Sasaki H et al. High efficiency triple-junction amorphous solar cells. Proceedings of the 19th IEEE Photovoltaic Specialists Conference [J]. New Orleans,1987:749-755.
    [24]Nakamura G, Sato K, Ishihara T et al. Tandem type amorphous solar cells [J]. Journal of Non-Crystalline Solids.1983,59-60(1111-1114).
    [25]Yang J, Banerjee A, Lord K et al. Correlation of component cells with high efficiency amorphous silicon alloy triple-junction solar cells and modules. Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion [J]. Vienna,1998:387-390.
    [26]Spitzer M, Schewchun J, Vera E S et al. A high efficiency thin film silicon solar cell and module Proceedings of the 14th IEEE Photovoltaic Specialists Conference [J]. San Diego,1980:375.
    [27]Reif R. Plasma-Enhanced Chemical Vapor Deposition of Silicon Epitaxial Layers [J]. Journal of the Electrochemical Society.1984,131(10):2430-2435.
    [28]Morikawa S, Kawama Y, Matsuno Y. Development of high-efficiency thin-film Si solar cells using zone-melting recrystallization [J]. Solar Energy Materials and Solar Cells.2001,65(1-4):261-268.
    [29]Matsuyama T, Terada N, Baba T et al. High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method [J]. Journal of Non-Crystalline Solids.1996,198-200(Part 2):940-944.
    [30]Matsuyama T, Wakisaka K. Preparation of high quality n-type poly-Si films by the solid phase crystallization (SPC) method [J]. Japanese Journal of Applied Physics.1990,29:2327-2331.
    [31]Fattakhov Y V, Galyautdinov M F, L'vova T N. Investigation of structural-phase transitions dynamics on the surface of implanted silicon at rapid thermal processing [J]. Nuclear Instruments and Methods in Physics Research B.2007,257(1-2):222-226.
    [32]Nishida S, Nakagawa K, Iwane M. Si-film growth using liquid phase epitaxy method and its application to thin-film crystalline Si solar cell [J]. Solar Energy Materials and Solar Cells.2001,65(1-4): 525-532.
    [33]Morikawa H, Nishimoto Y, Naomoto H.16.0% Efficiency of large area (10 cm× 10 cm) thin film polycrystalline silicon solar cell [J]. Solar Energy Materials and Solar Cells.1998,53(1-2):23-28.
    [34]Bergmann R, Rinke T, Wagner T. Thin film solar cells on glass based on the transfer of monocrystalline Si films [J]. Solar Energy Materials and Solar Cells.2001,65(1-4):355-361.
    [35]Hong I-H, Hsu T-C, Yen S-C et al. In situ spectromicroscopic study of nickel induced lateral crystallization of amorphous silicon thin film using SPESM [J]. Surface Science.2007,601(2):301-307.
    [36]Kim J, Piwowar A M, Nowak R et al. Cobalt-induced polycrystalline silicon film growth [J]. Applied Surface Science.2007,253(6):3053-3056.
    [37]Maydell K v, Brehme S, Nickel N H et al. Electronic transport in P-doped laser-crystallized polycrystalline silicon [J]. Thin Solid Films.2005,487(1-2):93-96.
    [38]Wu A M, Deng W T, Qin F W et al. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films [J]. Science in China Series E:Technological Sciences.2009,52(1): 260-263.
    [39]Fujiwara H, Kondo M, Mastuda A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy [J]. Journal of Appllied Physics.2003,93:2400-2409.
    [40]Werner J, Bergmann R. Perspectives of crystalline silicon thin film solar cells. Technical Digest of 12th International Photovoltaic Science and Engineering Conference [J]. Sapporo,1999:923-925.
    [41]Richter H, Ley L. OPTICAL-PROPERTIES AND TRANSPORT IN MICROCRYSTALLINE SILICON PREPARED AT TEMPERATURES BELOW 400-DEGREES-C [J]. Journal of Applied Physics. 1981,52(12):7281-7286.
    [42]Rath J K. Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications [J]. Solar Energy Materials and Solar Cells.2003,76(4):431-487.
    [43]汪昌州,杨仕娥,卢景霄.硅基薄膜太阳电池窗口材料的研究进展[J].材料导报.2007,21(01):14-17.
    [44]Shah A, Vallat-Sauvain E, Torres P. Intrinsic microcrystalline silicon (uc-Si:H) deposited by VHF-GD (very high frequency-glow discharge):a new material for photovoltaics and optoelectronics [J]. Materials Science and Engineering B.2000,69-70:219-226.
    [45]Veprek S, Marecek V. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport [J]. Solid-State Electronics.1968,11(7):683-684.
    [46]Veprek S, Iqbal Z, Oswald H R et al. Properties of polycrystalline silicon prepared by chemical transport in hydrogen plasma at temperatures between 80 and 400 degrees C [J]. Journal of Physics C: Solid State Physics.1981, (3):295.
    [47]Iqbal Z, Webb A P, Veprek S. Polycrystalline silicon films deposited in a glow discharge at temperatures below 250 [degree]C [J]. Applied Physics Letters.1980,36(2):163-165.
    [48]Fang P H, Schubert C C, Bei P et al. Combined microcrystal and amorphous silicon cells [J]. Applied Physics Letters.1982,41(4):365-366.
    [49]Moustakas T D, Maruska H P, Friedman R. Properties and photovoltaic applications of microcrystalline silicon films prepared by rf reactive sputtering [J]. Journal of Applied Physics.1985,58(2): 983-986.
    [50]Meier J, Fluckiger R. Complete microcrystalline p-i-n solar cell--Crystallline or amorphous cell behavior? [J]. Applied Physics Letters.1994,65(7):860.
    [51]Yamamoto K, Nakajima A, Suzuki T. Thin-Film Polycrystalline Si Solar Cell on Glass Substrate Fabricated by a Novel Low Temperature Process [J]. Japanese Journal of Applied Physics.1994,33: 1751-1754.
    [52]Yamamoto K, Yoshimi M, Suzuki T. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature [J]. Journal of Applied Physics.1999,69(2):179-185.
    [53]Meier J, Kroll U, Vallat-Sauvain E et al. Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique [J]. Solar Energy.2004,77(6):983-993.
    [54]Yamamoto K, Nakajima A, Yoshimi M et al. A thin-film silicon solar cell and module [J]. Progress in Photovoltaics:Research and Applications.2005,13(6):489-494.
    [55]Otte K, Makhova L, Braun A et al. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application [J]. Thin Solid Films.2006,511-512:613-622.
    [56]郑君,吕宝堂.新型非晶硅太阳电池[J].能源研究与信息.2002,18(2):115-118.
    [57]Vijh A. Triple Junction Amorphous Silicon based Flexible Photovoltaic Submodules on Polyimide Substrates [D]. University of Toledo,2005.
    [58]柯伟.联苯型聚酰亚胺薄膜Upilex的概况[J].高分子材料.1990,(4):15-18.
    [59]Luke A. MacQueen J Z G D M L G C M R W. PECVD of Nanocrystalline Si Layers on High-Tg Polymer Substrates [J]. Plasma Processes and Polymers.2006,3(1):58-65.
    [60]Takano A, Kamoshita T. Light-weight and large-area solar cell production technology [J]. Japanese Journal of Applied Physics.2004,43(12):7976-7983.
    [61]Kessler F, Herrmann D, Powalla M. Approaches to flexible CIGS thin-film solar cells [J]. Thin Solid Films.2005,480-481:491-498.
    [62]Akihiro Takano T K. Light-weight and large-area solar cell production technology [J]. Japanese Journal of Applied Physics.2004,43(12):7976-7983.
    [63]Akihiro Takano M T, Makoto Shimosawa, Takehito Wada, Tomoyoshi Kamoshita. Excitation frequency effects on stabilized efficiency of large-area amorphous Silicon Solar Cells Using Flexible Plastic Film Substrate [J]. Japanese Journal of Applied Physics.2003,42(11A):L1312-L1314.
    [64]Kishi Y, Inoue H, Murata K et al. Ultralight Flexible Amorphous Silicon Solar Cell and Its Application for an Airplane. Technical Digest of the 5th International Photovoltaic Science and Engineering Conference [J]. Kyoto, Japan,1990:645-648.
    [65]Nishiwaki H, Uchihashi K, Takaoka K et al. Development of an ultralight, flexible a-Si solar cell submodule [J]. Solar Energy Materials and Solar Cells.1995,37(3-4):295-306.
    [66]Ichikawa Y, Yoshida T, Hama T et al. Production technology for amorphous silicon-based flexible solar cells [J]. Solar Energy Materials and Solar Cells.2001,66(1-4):107-115.
    [67]van den Donker M N, Rech B, Finger F et al. Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H-2 dilution:the role of the transient depletion induced incubation layer [J]. Progress in Photovoltaics.2007,15(4):291-301.
    [68]Hou G-F, Xue J-M, Guo Q-C et al. Formation mechanism of incubation layers in the initial stage of microcrystalline silicon growth by PECVD [J]. Chinese Physics.2007,16(2):553-557.
    [69]韩晓艳,张晓丹,侯国付et al非晶孵化层对高速生长微晶硅电池性能的影响[J].太阳能学报.2008,(08).
    [70]Li J S, Wang J X, Yin M et al. Highly crystallized silicon films grown on glass without amorphous incubation layers by inductively coupled plasma chemical vapor deposition [J]. Journal of Crystal Growth. 2008,310(19):4340-4344.
    [71]Roca i Cabarrocas P, Layadi N, Heitz T et al. Substrate selectivity in the formation of microcrystalline silicon:Mechanisms and technological consequences [J]. Applied Physics Letters.1995,66(26): 3609-3611.
    [72]Rath J K, F.D.Tichelaar, Meiling H et al. Hot-wire CVD poly-silicon films for thin film devices [J]. Materials Research Society Symposium Proceedings.1998,507:879-890.
    [73]Zhu X-H, Chen G-H, Zheng M-S. Influence of the deposition pressure on the preparation of [mu]c-Si:H thin films in hot-wire-assisted MWECR-CVD system [J]. Vacuum.2009,83(2):386-390.
    [74]Zhou J-H, Ikuta K, Yasuda T et al. Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition [J]. Applied Physics Letters. 1997,71(11):1534-1536.
    [75]Li Y-M, Li L, Selvan J A A et al. Effects of seeding methods on the fabrication of microcrystalline silicon solar cells using radio frequency plasma enhanced chemical vapor deposition [J]. Thin Solid Films. 2005,483(1-2):84-88.
    [76]Stuchlik J, Ledinsky M, Honda S et al. LiF enhanced nucleation of the low temperature microcrystalline silicon prepared by plasma enhanced chemical vapour deposition [J]. Thin Solid Films. 2009,517(24):6829-6832.
    [77]Yamamoto K. Very thin film crystalline silicon solar cell on glass substrate fabricated at low temperature [J]. IEEE Transactions on Electron Devices.1999, ED-46:2041.
    [78]Yamamoto K, Nakajima A, Yoshimi M et al. A high efficiency thin film silicon solar cell and module [J]. Solar Energy.2004,77(6):939-949.
    [79]Springer J, Poruba A, Mullerova L et al. Absorption loss at nanorough silver back reflector of thin-film silicon solar cells [J]. Journal of Applied Physics.2004,95(3):1427-1429.
    [80]Hupkes J, Miiller J, Rech B. Texture Etched ZnO:Al for Silicon Thin Film Solar Cells [M]. In:Hull R et al. Book. Texture Etched ZnO:Al for Silicon Thin Film Solar Cells. Springer Berlin Heidelberg,2008: 359-413.
    [81]Mariano A N, Hanneman R E. Crystallographic polarity of ZnO crystals [J]. Journal of Applied Physics.1963,34:384-388.
    [82]Heiland G, Kunstmann P. Polar surfaces of zinc oxide crystals [J]. Surface Science.1969,13(1): 72-84.
    [83]Nordheden K J. Quantum sensing and nanophotonic devices. Proceedings of the SPIE [J]. San Jose, 2004:
    [84]Bae J W, Jeong C H, Kim K et al. High-Rate Dry Etching of ZnO in BC13/CH4/H2 Plasmas [J]. Japanese Journal of Applied Physics.2003,42:535-537.
    [85]Yablonovitch E, Cody G D. Intensity enhancement in textured optical sheets for solar cells [J]. IEEE Transactions on Electron Devices.1982,29(2):300-305.
    [86]Deckman H, Wronski C R, Yablonovitch E. Optical enhancement of solar cells. Proceedings of the 17th IEEE Photovoltaic Specialists Conference [J]. Kissimmee,1984:955-960.
    [87]Banerjee A, Guha S. Study of back reflectors for amorphous silicon alloy solar cell application [J]. Journal of Applied Physics.1991,69(2):1030-1035.
    [88]Akihiro Takano, Masayoshi Uno, Masayuki Tanda et al. Highly texturized silver electrode deposition using roll-to-roll low-temperature sputtering process [J]. Japanese Journal of Applied Physics.2004, 43(2B):L277-L279.
    [89]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2003.
    [90]M. Shahidul Haque, H. A. Naseem, Brown W D. Interaction of aluminum with hydrogenated amorphous silicon at low temperatures[J]. Journal of Applied Physics.1994,75(8):3928-3934.
    [91]zhiming C. Amorphous semiconductor materials and devices [M]. Beijing:Science press,1991.
    [92]Chung H-C, Liu C-P. Effect of crystallinity and preferred orientation of Ta2N films on diffusion barrier properties for copper metallization [J]. Surface and Coatings Technology.2006,200(10): 3122-3126.
    [93]Yangqiu Liu, Tongxiang Liang, Zhiqiang Fu et al. Effect of heat treatment on TiN diffusion barriers in copper thin film metallization on PI substrates [J]. Rare Metal Materials and Engineering.2004,33(6): 662-665.
    [94]Lee C, Shin Y-H. Ta-Si-N as a diffusion barrier between Cu and Si [J]. Materials Chemistry and Physics.1998,57(1):17-22.
    [95]Kolawa E, Pokela P J, Reid J S et al. Amorphous Ta-Si-N diffusion barriers in Si/Al and Si/Cu metallizations [J]. Applied Surface Science.1991,53:373-376.
    [96]Pelleg J. Schottky barrier formation at Al/TiB2/TiSi2/Si and Cu/TiB2/TiSi2/Si interfaces [J]. Microelectronic Engineering.2004,75(4):413-422.
    [97]Saunderson J D, Swanepoel R, van Staden M J. The role of the ZnO buffer layer in Al/Si interdiffusion in [alpha]-Si:H solar cells on flexible substrates [J]. Solar Energy Materials and Solar Cells. 1998,51(3-4):425-432.
    [98]Cai H, Zhang D, Xue Y et al. Study on diffusion barrier layer of silicon-based thin-film solar cells on polyimide substrate [J]. Solar Energy Materials and Solar Cells.2009,93(11):1959-1962.
    [99]Wei H, Zhang H Y, Hou G C et al. On interdiffusion in the multicomponent [beta]-NiAl phase [J]. Journal of Alloys and Compounds.2009,481(1-2):326-335.
    [100]Chen M, Pei Z L, Wang X et al. Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering [J]. Journal of Vacuum Science & Technology, A:Vacuum, Surfaces, and Films.2001,19(3):963-970.
    [101]Jeong S H, Boo J H. Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering [J]. Thin Solid Films.2004,447-448:105-110.
    [102]Dagamseh A M K, Vet B, Tichelaar F D et al. ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells [J]. Thin Solid Films.2008,516(21):7844-7850.
    [103]Brehme S, Fenske F, Fuhs W et al. Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films [J]. Thin Solid Films.1999,342(1-2):167-173.
    [104]Minami T, Sato H, Sonohara H et al. Preparation of milky transparent conducting ZnO films with textured surface by atmospheric chemical vapour deposition using Zn (C5H7O2)2 [J]. Thin Solid Films. 1994,253(1-2):14-19.
    [105]Garnier J, Bouteville A, Hamilton J et al. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films [J]. Thin Solid Films.2009,518(4): 1129-1135.
    [106]Neogi S K, Ghosh R, Paul G K et al. Effects of Co doping on structural, morphological and transport properties of sol-gel AZO thin films [J]. Journal of Alloys and Compounds.2009,487(1-2):269-273.
    [107]Lee K E, Wang M, Kim E J et al. Structural, electrical and optical properties of sol-gel AZO thin films [J]. Current Applied Physics.2009,9(3):683-687.
    [108]Shukla R K, Srivastava A, Srivastava A et al. Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition [J]. Journal of Crystal Growth.2006,294(2):427-431.
    [109]Gledhill S, Grimm A, Allsop N et al. A spray pyrolysis route to the undoped ZnO layer of Cu(In,Ga)(S,Se)2 solar cells [J]. Thin Solid Films.2009,517(7):2309-2311.
    [110]Lee J, Lee D, Lim D et al. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications [J]. Thin Solid Films.2007,515(15):6094-6098.
    [111]李学丹,万英超,姜祥棋.真空沉积技术[M].杭州:浙江大学出版社,1994.
    [112]秦福文RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长[D].大连:大连理工大学,2004.
    [113]Cheng H, Wu A, Shi N et al. Effect of Ar on polycrystalline Si films deposited by ECR-PECVD using SiH4 [J]. Journal of Materials Science and Technology.2008,24(5):690-692.
    [114]Deng W, Wu A, Zhang G et al. Low temperature deposition process of polycrystal silicon thin films by PECVD [J]. Atomic Energy Science and Technology原子能科学技术.2007,41(Suppl.):64-68.
    [115]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006.
    [116]麦振洪.薄膜结构X射线表征[M].北京:科学出版社,2007.
    [117]R. Delhez, Th. H. de Keijser, Mittemeijer E J. Determination of crystallite size and lattice distortions through X-Ray diffraction line profile analysis [J]. Fresenius Zeitschrift fur Analytische Chemie.1982,312: 1-16.
    [118]Langford J I. A Rapid Method for Analysing the Breadths of Diffraction and Spectral Lines using the Voigt Function [J]. Journal of Applied Crystallography.1978,11:10-14.
    [119]Das D. Structural studies on Si:H network by Raman, micro-photoluminescence, electron microscopy and ultraviolet ellipsometry:effect of Ar dilution to the SiH4-plasma [J]. Thin Solid Films.2005,476(2): 237-245.
    [120]聂利飞.无扩散阻挡层Cu(C)和Cu(Ti)薄膜的制备及表征[D].
    [121]Van de Pauw L J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape [J]. Philips Research Report.1958,13(1):1-9.
    [122]王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展.2003,(01):1-61.
    [123]王恩哥.薄膜生长中的表面动力学(Ⅱ)[J].物理学进展.2003,(02):145-191.
    [124]Zhu W, Buatier de Mongeot F, Valbusa U et al. Adatom Ascending at Step Edges and Faceting on fcc Metal (110) Surfaces [J]. Physical Review Letters.2004,92(10):106102.
    [125]王振伟.非平衡反应磁控溅射迟滞效应的PID神经网络控制仿真研究[D].2009.
    [126]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions.2005,46(12):2817-2829.
    [127]Li P Y, Lu H M, Tang S C et al. An in-situ TEM investigation on microstructure evolution of Ni-25 at.% Al thin films [J]. Journal of Alloys and Compounds.2009,478(1-2):240-245.
    [128]Tsukimoto S, Moriyama M, Murakami M. Microstructure of amorphous tantalum nitride thin films [J]. Thin Solid Films.2004,460(1-2):222-226.
    [129]石德珂.材料科学基础[M].北京:机械工业出版社,1999.
    [130]Singleton M F, Murray J L, Nash P. Phase Diagrams of Binary Nickel Alloys [M]. the materials information society,1991.
    [131]Yang L Y, Zhang D H, Li C Y et al. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration [J]. Thin Solid Films.2004,462-463:176-181.
    [132]黄昆,韩淑琦.半导体物理基础[M].北京:科学出版社,1979.
    [133]Matsukawa T, Yasumuro C, Yamauchi H et al. Work function uniformity of Al-Ni alloys obtained by scanning Maxwell-stress microscopy as an effective tool for evaluating metal transistor gates [J]. Applied Physics Letters.2005,86(9):3.
    [134]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,1991.
    [135]Xu Y, Gu B, Qin F-W. Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-Ⅲ nitrides [J]. The Journal of Vacuum Science and Technology A.2004,22(2):302-308.
    [136]Zi J, Buscher H, Falter C et al. Raman shifts in Si nanocrystals [J]. Applied Physics Letters.1996, 69(2):200-202.
    [137]Sriraman S, Agarwal S, Aydil E S et al. Mechanism of hydrogen-induced crystallization of amorphous silicon [J]. Nature.2002,418(6893):62-65.
    [138]Sriraman S, Valipa M S, Aydil E S et al. Hydrogen-induced crystallization of amorphous silicon thin films. Ⅰ. Simulation and analysis of film postgrowth treatment with H[sub 2] plasmas [J]. Journal of Applied Physics.2006,100(5):053514-053511.
    [139]Valipa M S, Sriraman S, Aydil E S et al. Hydrogen-induced crystallization of amorphous Si thin films. Ⅱ. Mechanisms and energetics of hydrogen insertion into Si--Si bonds [J]. Journal of Applied Physics.2006,100(5):053515-053513.
    [140]Toyama T, Okamoto H. Structural and electrical studies of plasma-deposited polycrystalline silicon thin-films for photovoltaic application [J]. Solar Energy.2006,80(6):658-666.
    [141]Zhang D H, Ma H L. Scattering mechanisms of charge carriers in transparent conducting oxide films [J]. Applied Physics A:Materials Science & Processing.1996,62(5):487-492.
    [142]Birkholz M, Selle B, Fenske F et al. Structure-function relationship between preferred orientation of crystallites and electrical resistivity in thin polycrystalline ZnO:Al films [J]. Physical Review B: Condensed Matter and Materials Physics.2003,68(20):205-414.
    [143]Chen H X, Ding J J, Zhao X G et al. Microstructure and optical properties of ZnO:Al films prepared by radio frequency reactive magnetron sputtering [J]. Physica B:Condensed Matter (Amsterdam, Netherlands).2010,405(5):1339-1344.
    [144]Ding J, Chen H, Zhao X et al. Effect of substrate and annealing on the structural and optical properties of ZnO:Al films [J]. Journal of Physics and Chemistry of Solids.2010,71(3):346-350.
    [145]Sagar P, Kumar M, Mehra R M. Influence of hydrogen incorporation in sol-gel derived aluminum doped ZnO thin films [J]. Thin Solid Films.2005,489(1-2):94-98.
    [146]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review.1964,136(3B):B864.
    [147]Adolph B, Furthm, uuml et al. Optical properties of semiconductors using projector-augmented waves [J]. Physical Review B.2001,63(12):125108.
    [148]Kresse G, Furthm, uuml et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B.1996,54(16):11169.
    [149]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review.1965,140(4A):A1133.
    [150]Decremps F, Datchi F, Saitta A M et al. Local structure of condensed zinc oxide [J]. Physical Review B.2003,68(10):104101.
    [151]Jaffe J E, Snyder J A, Lin Z et al. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO [J]. Physical Review B.2000,62(3):1660.
    [152]Schleife A, Fuchs F, Furthm et al. First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs [J]. Physical Review B.2006,73(24):245212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700