污染场地健康风险评价及确定修复目标的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化发展的加快,城市规模不断扩大,大量农村人口进入城市,使得城市中的土地更显珍贵。许多城市制定发展规划时,要求原城区中的工厂和企业迁入工业集中区。这些措施实施后,对改善当地城市人居环境、促进经济快速发展起到了重要推动作用。然而在工业生产过程中,可能会对场区土壤造成污染。企业搬迁后,城区中留下了大量严重污染的土地,将会对当地环境产生长期的影响。鉴于此情,国家环境保护主管部门近几年来不断要求对污染场地进行风险评估和修复,并在《国家环境保护“十二五”规划》中明确要求“开展污染场地再利用的环境风险评估”,并且“禁止未经评估和无害化治理的污染场地进行土地流转和开发利用”。污染场地环境风险评估正式纳入我国环境保护工作的范畴。
     基于人体健康的场地风险评价是指在场地开发之前,对存在于场地中污染物可能造成的健康危害风险进行评价,以保证人体健康为目的确定污染物的修复目标。健康风险评价理念在场地管理中的引入,很好地克服了传统环境标准治理模式仅针对污染物的共性,而使得治理目标要求过高导致治理费用高昂、治理周期漫长等问题。相对于传统的基于环境标准的评价和治理模式,健康风险评价模式有其广泛的优越性。20世纪80年代以来,欧美国家先后建立了适合本国实际的污染场地健康风险评价体系,指导场地管理和修复。
     本文首先对污染场地的概念进行确定,分析和阐述了实施场地健康风险评价的优越性和健康风险评价的基础理论。其次,从模型概念、污染物迁移模型、相关特征参数和可接受的风险水平等方面,对美国《超级基金场地风险评价指南》RAGS模型、美国测试与材料协会RBCA模型、荷兰CSOIL2000模型及英国CLEA模型进行阐述、比较和分析。然后以RAGS和RBCA模型为基础,构建了我国污染场地健康风险评价的技术构架,并确立了制定场地修复目标值的方法。同时,根据我国相关数据和资料,对模型中的部分参数加以修正。应用文中建立的方法,以典型有机污染场地和重金属污染场地为例,开展场地环境调查和健康风险评价,确定场地的修复目标,并模拟雨水对修复后的土壤淋溶,验证修复目标的合理性。
     论文主要研究内容及结论如下:
     (1)对污染场地进行了定义:因堆积、储存、处理、处置或其他方式(如迁移)承载了危害物质的,对人体健康和环境产生危害,或具有潜在风险的区域,并将研究范围限定为某一地块内一定深度的土壤和地下水。从人体摄取污染物质的机制与剂量、化学物质毒性和污染物摄取量与人体不良健康效应之间的关系阐述了健康风险评价的基础理论。分析了健康风险评价的优点:就评价对象而言,主要是对支配土地利用的人类,评价污染物对人体健康的危害,针对性强;评价范围可以是具有完整生态系统的片区,也可以是具有特定用途的地块,灵活性较强;研究时间长,技术理论和方法标准比较完善,评价结果准确程度较高。
     (2)论文阐述了4种国外认可程度较高的场地健康风险评价模型,并分析了模型之间的差异。模型之间的不同首先表现在暴露途径的设定:①经口摄入途径,RAGS和RBCA模型综合考虑了土壤经口摄入量,CSOIL和CLEA模型则分室内、室外两种情况;②皮肤接触途径,RBCA和CLEA模型考虑了室外接触土壤,RAGS模型还考虑了游泳时接触污染地表水的情况,CSOIL模型则考虑洗澡时接触污染洗澡水也会产生暴露;③吸入土壤颗粒,CLEA和CSOIL模型综合考虑了室外和室内吸入土壤颗粒的情况,而RAGS和RBCA模型只考虑室外暴露的情况;④饮水暴露途径,CSOIL模型综合考虑了饮用污染的水所产生的暴露,RAGS模型更细分为地下水和地表水,RBCA模型则只考虑污染地下水被饮用时的情况,CLEA模型则未涉及;⑤吸入污染物蒸气是挥发性物质重要的暴露途径,RAGS、 RBCA和CLEA模型不仅考虑了室内和室外两种情景,更细分了污染物在表层土、深层土和地下水中挥发的情况,CSOIL模型还特别考虑了洗澡时吸入水中污染物这一路径;⑥饮食途径暴露,除RBCA模型未考虑该暴露途径,RAGS、CLEA和CSOIL模型都考虑了该途径,而RAGS模型同时包括食用植物和鱼类;⑦土壤和空气中的污染物通过雨水的淋溶作用进入地下水,从而引起污染,RAGS模型考虑了污染物垂直淋溶进入地下水,而RBCA模型还考虑了侧向迁移的情况,由于地下水风险评价另有技术规范,CLEA和CSOIL模型则都未涉及。
     场地健康风险评价模型之间的第二个差异是动力学模型的不同,主要涉及的动力学过程是土壤颗粒的挥发及污染物蒸汽的迁移。文中的模型都对这两个方面进行了分析。RAGS、RBCA和CLEA模型在土壤颗粒的挥发分析中使用的是基于场地地理环境及气象条件的实地扩散系数(Q/C);对于污染物蒸汽的迁移模块中则使用了Johnson&Ettinger模型进行分析。由于CSOIL模型默认了理想状态下的土壤参数值,在对土壤颗粒的挥发分析中,使用了受体导向的TSP浓度值来计算暴露量;而污染物蒸汽的迁移模块采用了基于逸度概念的Volasoil模型进行分析。Johnson&Ettinger模型和Volasoil模型的原理差异主要有三个方面:①三相平衡计算原理差异;②室外挥发模型中室外暴露浓度分布假定不同;③室内挥发模型中对于建筑物结构和运移过程分解不同。
     暴露参数的差异是引起评价结果差异的第三个因素。由于各国土地利用类型和污染场地产生的时间并不一致,因此,对于暴露场景和周期的考虑也不同。荷兰CSOIL模型将人群暴露划分为7种与人类活动相关的场景,敏感受体都是成人与儿童,危害周期则考虑终生70年,其中儿童暴露期为6年,成人为64年,并且不同季节的暴露情况是不同的。英国CLEA模型将暴露情景划分为3类,关注的敏感受体为女孩和成年女性,并将1-16岁中的每一年为一个暴露期,16-59岁和60-70岁分别为两个暴露期。美国的RAGS和RBCA模型在大体上将暴露情景分为住宅和非住宅两类,危害周期分致癌和非致癌考虑,致癌风险考虑终身70年危害效应,非致癌危害考虑暴露期30年内的危害,其中儿童6年,成人24年。
     污染场地情势和人口分布密度对场地风险水平的设定具有很大影响。美国RAGS和RBCA模型明确将污染物的危害分为致癌风险和非致癌危害,以日均单位体重摄入量和致癌斜率因子的乘积表示致癌风险CR,推荐使用10-6为单一污染物可接受的致癌风险水平,并且以10-4为累积致癌风险水平;以日均单位体重摄入量与慢性参考剂量的比值表示非致癌危害HQ,可接受非致癌风险水平以1为标准来衡量。荷兰CSOIL模型使用日均暴露量与最大可允许日均暴露量(MPR)的比值(Risk)来评价场地污染物的危害程度,当Risk≤1,说明风险是可接受的;当Risk>1,说明污染场地存在潜在的健康风险。MPR在制定的过程中同时考虑了化学物质的致癌效应和非致癌危害,对于非致癌危害也是以1为标准,致癌效应则以10-4为可接受的风险水平。英国CLEA模型的风险表征与CSOIL模型类似,以日均暴露量与健康标准值(HCV)进行比较,使用1作为判别风险的标准。HCV同样也考虑化学物质的致癌效应和非致癌危害,但致癌效应是以10-5为可接受的风险水平作为基准。
     (3)借鉴美国RAGS和RBCA模型所建立的系统的方法、技术和标准,构建我国污染场地健康风险评价技术框架。在此过程中,首先考虑我国污染场地的情况,将场地分为住宅用地、公共用地和工商业用地,其中住宅用地还考虑我国农村住宅的特征,分为城区和乡村两类。在对暴露途径的分析中,也对农村居民的生活习惯给予考虑,除经口摄入土壤、皮肤接触土壤、吸入土壤颗粒、吸入污染物蒸汽一般暴露途径,还特别考虑饮用污染的地下水和使用污染土地上的作物两个暴露途径。对于污染物的迁移分析模型,选择了压差驱动流情景下Johnson&Ettinger模型,并考虑了土壤污染物随雨水淋溶进入地下水的情景。基于现有的场地风险评价参数资料,对情景暴露参数、人体暴露参数、场地特征参数、建筑物参数、土壤与地下水参数按照不同用地方式进行了本土化的修正。在场地风险表征中,将污染物对人体的危害分为致癌风险和非致癌危害商,并分析了风险评价中的不确定性,建议以敏感性分析法来进行定量分析。在制定修复目标时,参照了美国环保局的方法,即以污染物引起的致癌风险为10-6时的浓度值与非致癌风险等于1时的浓度之间的倍数关系来确定。
     (4)论文以即将作为住宅社区开发的某省会城市炼油厂退役场地为目标,对场地环境开展调查。以美国环境保护局9区场地通用筛选值作为评价依据,识别出场地主要的污染物是土壤中的苯并[a]蒽和苯并[a]芘,二者的浓度范围分别为0.07-24.83mg/kg和0.13~4.91mg/kg,样品中超过对应标准的数量占总数的42.4%和37.9%。确定场地上敏感人群主要的暴露途径为:经口摄入土壤、皮肤接触土壤、吸入土壤颗粒和吸入土壤中的污染物蒸汽。根据污染物相关毒性数据的检索,从致癌风险和非致癌危害两方面进行风险值的计算,苯并[a]蒽的致癌风险为6.6E-05,非致癌危害为6.87,苯并[a]芘分别为13.03E-05和19.08,超过了单一物质可接受的致癌风险水平10-6和非致癌风险水平1,而场地累积风险则达到了19.63E-05和28.95。以10-6和1作为可接受的风险水平来推导两种污染物的修复目标值,确定苯并[a]蒽的修复目标值为0.34mg/kg,苯并[a]芘为0.032mg/kg。
     论文对中南地区某化工厂污染场地开展了健康风险评价。将场地环境监测结果与相关标准进行比较,场地土壤中锑污染较为普遍,最高浓度达到1262.7mg/kg,远高于风险筛选值31mg/kg,并有54%的测试土样超过该标准,主要集中在3m以上的地层中。根据场地未来的建设规划,确定了敏感人群为儿童和成人,所考虑的暴露途径为:经口摄入土壤、皮肤接触土壤、吸入土壤颗粒。检索现有锑的环境生物危害效应研究成果,锑被认为是“可能的人类致癌物,没有人类数据,动物致癌证据也有限的物质”。据此,对锑造成的非致癌危害进行评估,结果为:场地的代表性风险18.8,极端风险65.65,平均风险4.94,均超过1。以场地中锑的所有浓度值的95%置信区间的上限值作为污染物的代表性浓度,计算出了基于非致癌危害为1时,场地的修复目标值为19.3mg/kg,低于美国环保局9区初步修复目标值31mg/kg,但高于我国《展览会用地土壤环境质量评价标准(暂行)》A级标准12mg/kg。
     对依据论文建立的场地健康风险评价技术模型计算确定的场地修复目标设计淋溶实验行验证。实验配制了修复后的模拟场地土壤,以修复目标19.3mg/kg作为土壤污染物浓度值。以当地雨水中物质的浓度比例,按照pH分别为3.0、4.0、4.9、5.6和7.0的情况模拟雨水淋溶,以3-7天为间隔收集淋出液,共进行45天,淋出液中锑的浓度范围为3.0-7.1μg/L,优于场地地下水所执行的环境标准,进一步说明论文研究内容的具有实际可行性。
In the process of urbanization in China, most factories in the downtown areas in cities or suburbs of cities have been moved to the industry gardens or special zones for industry as planned. The factories located in the urban area move out successively, which leaving large amount of serious polluted land in the center of the city, and the land is a precious resource. Although it can ameliorate the quality of local air, water and noise after the enterprise being relocated, the polluted soil left behind in the process of production and development still has a long-term potential impact to the local environment. In view of this, the state environmental protection department constantly demands to have risk assessment and remediation to the contaminated land in recent years, and definitely requires to "developing environment risk assessment of recycling polluted area" in "the12th five-year plan of national environmental protection", and "prohibiting land circulation and utilization to the contaminated land without assessment and harmless treatment". Environmental risk assessment of contaminated sites has been formally incorporated into the category of our country environmental protection work.
     The assessment of the site basing on human health risk happened before developing the area and it assesses human health hazard risk caused by site pollutant and confirms the pollutant repair goal for the purpose of guaranteeing human health. The introduction of health risk assessment concept in site management overcomes the common character of just aiming at polluted point in traditional environmental standard management mode, which makes the requirements of the management objectives too high leading to high management cost, the deficiency of time-consuming management period and problems produced by it. Compared with traditional assessment and management mode basing on environmental standard, health risk assessment mode has its extensive superiority. Since the1980s, western countries have established health risk assessment system of polluted area which is appropriate to the reality of their own countries, to conduct the management and repair of the site.
     This paper first has an identification of the conception of polluted sites, analyzing and expounding the superiorities of implementing site health risk assessment and its basic theory. Secondly, it has expounded, compared and analyzed the U.S. Environmental Protection Agency 'Superfund site risk assessment guide'Risk Assessment Guidance for Superfund (RAGS) model, American Society for Testing and Materials Risk-Based Corrective Action (RBCA) model, Netherlands Ministry of Housing,Spatial Planning and the Environment CSOIL2000model and the Environment Agency Contaminated Land Exposure Assessment (CLEA) model, from aspects of the concept of the model, pollutant transport model, correlation characteristic parameter and the acceptable level of risk and so on. Then, basing on the RAGS and RBCA model, to build technical framework of China's health risk assessment of contaminated sites and establish the method of formulating the repair desired value of site. At the same time, to revise the parameters of the model according to our country related data and materials. It applies the method established in the paper and takes typical organic contaminated site and heavy metal contaminated site as examples, to carry out site environmental survey and health risk assessment, and establish the site repair goal. At the same time, imitate rainwater to leach the repaired soil and check the rationality of the repair goal.
     The major research contents and conclusions of the paper are listed as follows:
     (1) The contaminated site is defined as the area which has potential risks or causes harm to human health and the environment as a result of piling up, storing, handling, disposing of or carrying hazardous substances in other ways such as removing. The research range is restricted to the soil and ground water at a certain depth within a certain plot of land. The basic theory of the health risk assessment is elaborated in terms of the relationships between the mechanism for humans to absorb the pollutant, the dose of the absorbed pollutant, the toxicity of chemical substances, the pollutant intake and the adverse effects on human health. The advantages of the health risk assessment are analyzed:As far as the assessment targets are concerned, the humans who are in charge of the utilization of the land are the major targets and the harm that the pollutant has caused to humans is assessed. The assessment is well-targeted. The assessment range can be an area with a complete ecological system or a plot of land with a specific purpose. It is highly flexible. The research has lasted for a long time. The technological theories and methods and criteria have been well developed. The assessment result is very accurate.
     (2) In the dissertation, four health risk assessment models of contaminated sites that are widely recognized abroad are described and the differences between the models are analyzed. Their differences are first demonstrated in the setting of exposure pathways:①Direct oral intake. The models of RAGS and RBCA comprehensively consider the direct oral intake of soil. The models of CSOIL and CLEA make a difference between the indoor and the outdoor situation.②Skin contact. The models of RBCA and CLEA consider the skin contact with soil outdoors. The RAGS model also considers the skin contact with contaminated surface water in swimming. The CSOIL model considers the skin contact with contaminated bath water in the bath.③Intake of soil particles. The models of CLEA and CSOIL comprehensively consider the intake of soil particles indoors and outdoors, while the models of RAGS and RBCA only consider the exposure outdoors.④Exposure from the drinking water. The CSOIL model comprehensively considers the exposure from drinking contaminated water. The RAGS model classifies the water into ground water and surface water. The RBCA model only considers drinking the contaminated ground water. It is not considered in the CLEA model.⑤Intake of pollutant steam is an important exposure pathway of volatile substances. The models of RAGS, RBCA and CLEA not only consider the indoor and outdoor situations but also subdivide different situations when the pollutant volatilizes in the topsoil, deep soil and ground water. The CSOIL model also considers the intake of the pollutant in the water in the bath.⑥Exposure from food. Except the RBCA model, all models consider it, including RAGS, CLEA and CSOIL. The RAGS model includes eating plant and fish at the same time.⑦The pollutant in the soil and air enters the ground water by the leaching of the rain water and causes pollution. The RAGS model considers the situation when the pollutant enters the ground water by vertical leaching, while the RBCA model also considers lateral migration. Since there are technical norms for the risk assessment of ground water, it is not considered in the models of CLEA and CSOIL.
     (3)The second difference between the models of the health risk assessment of contaminated sites is the difference in the kinetic model.The major kinetic processes involved include the volatilization of soil particles and the migration of pollutant steam. All the models in this paper carry out analysis from those two aspects. In the analysis of the volatilization of soil particles, the models of RAGS, RBCA and CLEA use the diffusion coefficient (Q/C) based on the geographical environment and weather conditions of the site, In the module of the migration of pollutant steam, the Johnson&Ettinger model is used for analysis. Due to the default soil parameter under the ideal condition in the CSOIL model, in the analysis of the volatilization of soil particles, the exposure dose is calculated by using the receptor targeted TSO concentration value, while the Volasoil model based on the concept of fugacity is used for the analysis in the module of the migration of pollutant steam. There are three aspects of principle differences between the Johnson&Ettinger model and the Volasoil model:①The difference in the calculation principle of three-phase equilibrium.②The difference in the hypothesized outdoor exposure concentration distribution in the model of the outdoor volatilization③The difference in the decomposition of the architectural structure and the migration process in the model of the indoor volatilization.
     (4)The difference in the exposure parameter is the third factor that causes the differences in the assessment result. Since various countries have different land use types and their contaminated sites appear in different times. Therefore, they have different considerations about the exposure scene and period. The Dutch CSOIL model divides the population exposure into seven types of scenes related to human activities.Sensitive receptors include adults and children. The harm cycle is considered to be70years of one's whole life.The exposure period for children is6years and adults64years. The case is different in the exposure in different seasons.The British CLEA model divides the exposure scenes into three types.The targeted sensitive receptors are girls and adult females. Each year from one year old to sixteen years old is considered to an exposure period. The period from16years old to59years old and the period from60to70years old are considered to be two exposure periods. The American RAGS and RBCA models divide exposure scenes into residence and non-residence scenes generally. The harm cycle is considered from two aspects:the carcinogenic harm and non-carcinogenic harm. In terms of the carcinogenic risk, the harmful effect during70years of one's life is considered. In terms of the non-carcinogenic harm, the harm is considered within the exposure period of30years, six years for the children and24years for the adults.
     (5) The situation and population distribution density of contaminated site has a large impact on the setting of site risk level. The United States RAGS and RBCA models explicitly divides the hazards of pollutants into carcinogenic risk and non carcinogenic hazards, Use the product of average unit weight intake and carcinogenic slope factor to represent the carcinogenic risk CR,10-6is recommended to be used as the carcinogenic risk level that acceptable to single pollutant, and10-4is regarded as cumulative carcinogenic risk level; use the ratio of the average unit weight intake and chronic reference dose to present non carcinogenic hazards HQ, and the acceptable non-carcinogenic risk level is measured by the standard of1. Netherlands CSOIL model using the ratio (Risk) of average daily exposure and maximum allowable daily exposure amount (MPR) to evaluate the harm degree of site contamination, when Risk≤1,illustrates the risk is acceptable; when Risk>1,illustrates the contaminated sites exist the potential health risks. In the process of establishing MPR, having considered both chemical carcinogenic effect and non carcinogenic hazards, and1is the standard of non carcinogenic hazards, and10-4is the acceptable risk level of carcinogenic effect. The risk characterization of CLEA model is similar to CSOIL model, which has a compare between average exposure and health standard value (HCV) and applies1as standard to distinguish risk. HCV is also considering the carcinogenic effect and non carcinogenic hazards of the chemicals, but the carcinogenic effect takes10-5as standard of the acceptable risk level.
     (6) Absorbing the systematic method, technology and standard that the United States RAGS and RBCA models have established to construct the health risk assessment technical framework of our country's contaminated sites. In this process, first to consider the circumstance of the contaminated sites in China, and divide the site into residential land, commonland, and industrial and commercial land, and among which the residential land is further divided into urban and countryside in consideration of the characteristics of rural housing in our country. In the analysis of the route of exposure, it also considers the rural residents' living habits. In addition to general exposure pathways, including ingesting soil by mouth, skin contact, inhaling soil particles and pollutants steam, it also needs to consider the two exposure pathways of drinking contaminated groundwater and using crop grow on contaminated land. For the migration analysis model of the pollutants, it has chosen Johnson&Ettinger model under circumstances of differential pressure driven current, and also considering the situation of soil pollutants leaching into groundwater with rainwater. Basing on the existing parameter data of site risk assessment, it has a localized revision of episodic exposure parameters, human exposure parameters, site characteristic parameters, building parameters, and soil and groundwater parameters according to the different patterns in using land. In the site risk characterization, it divides the hazard of pollutants into carcinogenic risk and non carcinogenic hazard quotient, and analyzes the uncertainty in risk assessment, and suggests having a quantitative analysis by sensitivity analysis method. In the setting of repair target, it consults the method of the Bureau of American environmental protection, namely to use the multiple relationship between the concentration value at the time when the carcinogenic risk is10-6caused by pollutants and the concentration value when the non-carcinogens risk is equal to1to determine.
     (7) The article targeted at the ex-service refinery site in a provincial capital which is going to be developed as a residential community and carried out a survey to its environment. Benz[a]anthracene and benzo[a] pyrene in earth are recognized as the main pollutants in the site by applying the Region9'S Regional Screening Level (RSL) of United States Environmental Protection Agency as the evaluation standard with a concentration range of0.07~24.83mg/kg and0.13-4.91mg/kg respectively. The amounts of samples exceed the corresponding standard occupy42.4%and37.9%. The main exposure pathways of sensitive group are determined as mouth-intake-soil, skin-contact-with-soil, inhalation of soil particle, and inhalation of earth pollutant steam. According to the search on the relative toxicity data of pollutants and computed the value-at-risk from carcinogenic risk and non-carcinogenic risk, the carcinogenic risk and non-carcinogenic risk of benz[a] anthracene are6.6E-05and6.87, and13.03E-05and19.08for benzo[a] pyrene, both exceeding the acceptable carcinogenic risk10-6and non-carcinogenic risk1for single substance. However, the accumulated risk of the site reaches19.63E-05and28.95. The remediation goal values of these two pollutants are deduced by taking10-6and1as the acceptable risk level, concluding0.34mg/kg for benz[a]anthracene and0.032mg/kg benzo[a]pyrene.
     (8) The thesis conducted a health risk assessment on a chemical contaminated site in South-central China. Comparing the environmental monitoring results to relative standards and affirming there's extensive Sb pollution in earth with a maximum concentration as high as1262.7mg/kg, outclass the risk screening value of31mg/kg. In addition, there are54%soil samples exceed this standard, mainly concentrated on the stratum3m deep. In view of the construction planning of the site in future, children and adults are determined as sensitive population, and the considered exposure pathways are mouth-intake-soil, skin-contact-with-soil and inhalation of soil particle. Searching the existing research achievements on the environmental biological hazards effect of Sb, Sb is regarded as "possibly carcinogenic to humans, a substance without human data and limited animal carcinogenic evidence". Therefore, it evaluated the non-carcinogenic risk caused by Sb and got the result that the typical risk of the site values18.8, extreme risk of65.65, and average risk of4.94, all higher than1. Taking the95%upper confidence limit(UCL) of Sb in the site as the representative concentration, when the non-carcinogenic risk level values1, the target remediation value is computed as19.3mg/kg, lower than the initial remediation goal value of Block9of United States Environmental Protection Agency but higher than Chinese A standard.
     Using the site health risk assessment technical model established according to the paper to compute the determined remediation goal and then design the leaching experiment for verification. The experiment compounded the repaired simulated site soil and regarded the remediation goal19.3mg/kg as the concentration of soil pollutants. With the concentration proportion of substances in local rain, simulate the rain leaching according to the pH value of3.0,4.0,4.9,5.6and7.0, and collect leachate every3-7days for45days continuously. It witnessed3.0~7.1μg/L of Sb concentration in the leachate, better than the environmental standard of site underground water, which further indicates the practical feasibility of this research.
引文
[1]赵洪阳.土壤地下水污染现场健康风险评价技术对比研究[D].清华大学.2008
    [2]Colin C F. Assessing risk from contaminated sites:Policy and practice in 16 European countries [J]. Land Contamination and Reclamation,1999,7(2):33-54.
    [3]USEPA. Risk assessment guidance for superfund: Human Health Evaluation Manual(Part C, Risk Evaluation of Remedial Alternatives), EPA/540 /R-92 /003 [EB/OL].1991. http: //www. epa. gov.
    [4]李飞.污染场地土壤环境管理与修复对策研究[D].中国地质大学(北京).2011
    [5]庄绪亮.土壤复合污染的联合修复技术研究进展[J].生态学报,2007,27(11):4871-4876
    [6]郭朝晖,朱永官等.典型矿冶周边地区土壤重金属污染及有效性含量[J].生态环境,2004,13(4):553-555.
    [7]刘五星,骆永明,藤应等.我国部分油田土壤及油泥的石油污染初步研究[J].土壤,2007,39(2):247-251.
    [8]吴春发.复合污染土壤环境安全预测预警研究[D].浙江大学,2008.
    [9]赵其国.土壤资源大地母亲—必须高度重视我国土壤资源的保护、建设与可持续利用问题[J].土壤,2004,36(4):337-339.
    [10]陈敏建,陈炼钢,丰华丽.基于健康风险评价的饮用水水质安全管理[J].中国水利,2007,7
    [11]付在毅,许学工.区域生态风险评价[J].地球科学进展,2001,16(2):267-271.
    [12]陆雍森.环境评价(第二版)[M].上海:同济大学出版社,1999,4(6):17-21.
    [13]胡二邦.环境风险评实用技术和方法(第二版)[M].北京:中国环境科学出版社,2009.
    [14]NRC. Science and Judgment in Risk Assessment. Washington DC:National Academy Press.1994.
    [15]NAS. Risk Assessment in the Federal Government: Managing the Process. Washington,D.C: National Academy Press.1983
    [16]田裘学.健康风险评价的基本内容与方法[J].甘肃环境研究与监测,1997,10(4):32-36.
    [17]U.S.EPA. Guideline for Carcinogen Risk Assessment.1986, Federal Register,51 (185): 33992-34003.
    [18]U.S.EPA. Guidelines for Mutagen city Risk Assessment.1986, Federal Register,51(185): 34006-34012.
    [19]U.S.EPA. Proposed Guidelines for Female Reproductive Risk. Washington DC. http://www.epa.gov,1988.
    [20]U.S.EPA. Proposed Guidelines for Male Reproductive Risk. Washington DC. http://www.epa.gov,1988.
    [21]U.S.EPA. Risk Assessment Guidance for Superfund, Volume:Human Health Evaluation Manual (Part A).Interim Final. EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington D.C.1989.
    [22]U.S.EPA. Fact sheet for the RBCA Tool Kit for chemical releases [EB/OL]. Washington DC: U.S.EPA,2003 [2009-03-11]. http://www.environment-agency.gov.uk.
    [23]U.S.EPA. Soil Screening Guidance:Technical Background Document, Second Edition. (TBD) EPA/540/R-95/128, Office of Emergency and Remedial Response, Washington D.C. 1996.
    [24]U.S.EPA.NATO Committee on Challenges to Modern Society: NATO/CCMS Pilot Study Evolution of Demonstrated and Emerging Technologies for the Treatment and Clean Up of Contaminated Land and Groundwater. Phase III 2000 Special Session Decision Support. NATO/CCMS Report No 245.EPA Report:542-R-01-002 (Editors Bardos, R.P and Sullivan, T.),2001
    [25]李广贺,李发生,张旭等.污染场地环境风险评价与修复技术体系[M].北京:中国环境科学出版社,2010年第1版
    [26]Swartjes F A. Insight into the variation in calculated human exposure to soil contaminants using seven different European models[J].Integrated Environmental Assessment Management,2007,3(3):322-332
    [27]Pollard S, Rogeryearsley, Nickreynard, et al. Current directions in the practice of environmental risk assessment in the United Kingdom [J]. Environmental Science and Technology,2002,36(4):530-538
    [28]The Environment Agency, Department of Environment, Food and Rural Affairs. The contaminated land exposure assessment (CLEA) model:technical basis and algorithms (CLR10) [R]. London: the Environment Agency,2002:12-97.
    [29]UK EA. Updated technical background to the CLEA model. Science Report:SC050021/SR33 [R].London:Environmental Agency,2009.
    [30]Sekhar K C, Chary N S, Kamala C T, et al. Risk assessment and parthway study of arsenic in industrially contaminated sites of Hyderabad:a case study [J]. Environmental International,2003,29:601-611
    [31]Thorsen M, Refsgaard J C, Hansen S, et al. Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale [J] Journal of Hydrology,2001,242:201-227
    [32]Tixier J.Dusserre G.Salvi O, et al. Review of 62 risk analysis methodologies of industrial plants [J], Journal of Loss Prevention in the Process Industries,2002,15:291-303
    [33]Regional Screening Level for Chemical Contaminants[EB/OL].2010-05[2010-07-23]. http://www.epa.gov/region9/superfund/prg/rsl-table. html
    [34]Using Soil Guideline Values[EB/OL].Environmental Agency, UK, March 2009[2010-07-23]. http://www.environment-agency.gov.uk/research/planning/64015. aspx.
    [35]Environment Agency. Soil screening values for use in UK ecological risk assessment [S]. London:R&D Technical Report,2004.
    [36]Ministerie van Volkshursvesting. Rumtelyke orderning en Milieubeheer(VROM) [EB/OL]. [2011-04-03]. http://www.rijksoverheid.nl/ministeries/vrom.
    [37]Soil Remediation Circular 2009 [EB/OL].VROM, Dutch, amended on 1 October2008 [2010-07-23].http://international.vrom.n1/37765.
    [38]Carlon C. Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization[R]. Ispra: European Commission, Joint Research Centre,EUR 22805-EN,2007:306.
    [39]钟政林,曾光明,杨春平.环境风险评价研究综述[J].环境与开发,1998,13(1):3941-3946
    [40]田裘学.健康风险评价的基本内容与方法[J].甘肃环境研究与监测,1997,10(4):32-36
    [41]曾光明,卓利,李新民等.水环境健康风险评价模型[J].水科学进展,1998,9(3):212-217
    [42]胡二邦.环境风险评价实用技术和方法[M].北京:中国环境科学出版社,2000.
    [43]陈鸿汉,堪宏伟,何江涛等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,13(1):216-223.
    [44]祝慧娜,袁兴中,曾光明等.基于动态聚类分析的水环境健康风险综合评价[J].湖南大学学报(自然科学版),2010,37(9):73-78
    [45]季文佳,王琪,黄启飞等.危险废物贮存的地下水环境健康风险评价[J].环境科学与技术,2010,33(4):160-164
    [46]赵肖,廖岩,李适宇.太湖区域环境中基于PBPK模型的DDTs和HCHs混合健康风险[J].生态学杂志,2009,28(8):1624-1629
    [47]李燕,孙亚军,刘勇等.基于RAIS地下水源地健康风险评价[J].人民黄河,2011,33(5):48-50
    [48]胡英,祁士华,张俊鹏等.我国桂林毛村地下河重金属健康风险评价[J].环境化学,2010,29(3):392-395
    [49]胡英,祁士华,张俊鹏等.重庆地下河中多氯联苯的分布特征及健康风险评价[J].环境科学学,2011,31(8):1685-1690
    [50]张俊娥,潘俊,高艳艳.新民市柳河水源地水环境健康风险评价[J].工业安全与环保,2007,33(11):36-39.
    [51]李祥平,齐剑英,陈永亨.广州市主要饮用水源中重金属健康风险的初步评价[J].环境科学学报,2011,31(3):547-553
    [52]张可,胡志锋,张勇等.重庆市城区饮用水源健康风险评价[J].四川环境,2007,26(2):71-78
    [53]林亲铁,肖艳云,徐文彬.水泥厂大气污染物健康风险评价初探[J].环境监测管理与技术,2007,19(2):47-49.
    [54]林海鹏,谢满廷,武晓燕等.宣威市空气中多环芳烃污染健康风险评价对比研究[J].环境与健康杂志,2010,27(6):511-513
    [55]季文佳,王琪,刘茂昌等.危险废物贮存的大气环境健康风险评价[J].环境工程,2010,28(增刊):309-312
    [56]周裕敏等.北京城乡结合地空气中挥发性有机物健康风险评价[J].环境科学.2011,32(12):3566-3570
    [57]刘宜,黄成敏.土壤残留滴滴涕、六六六的人群健康风险评价——以江苏省无锡市为例[J].环境监测管理与技术,2009,21(4):17-22
    [58]车飞,于云江,胡成等.沈抚灌区土壤重金属污染健康风险初步评价[J].农业环境科学学报2009,28(7):1439-1443
    [59]郭广慧,宋波.城市土壤重金属含量及其对儿童健康风险的初步评价——以四川省宜宾 市为例[J].长江流域资源与环境,2010,19(8):943-952
    [60]冯焕银等.宁波土壤中多环芳烃的健康风险评价[J].农业环境科学学报,2011,30(10):1998-2004
    [61]冯雪等.吉林松花江沿岸土壤中有机氯农药残留特征及健康风险评价[J].环境化学,2011,30(9):1604-1610
    [62]张厚坚,王兴润,陈春云,等.典型铬渣污染场地健康风险评价及修复指导限值[J].环境科学学报,2010.30(7):1445-1450
    [63]李鹏,何江涛,陈鸿汉等.某农药厂场地土壤地下水污染修复指导值探讨[J].水文地质工程地质.2011,38(3):98-103
    [64]李青青.基于健康风险的土壤修复目标研究程序与方法——以多环芳烃污染土壤再利用工程为例[J].生态与农村环境学报,2010,26(6):610-615
    [65]郭观林,王翔,关亮,等.基于特定场地的挥发/半挥发有机化合物(VOC/SVOC)空间分布与修复边界确定[J].环境科学学报,2009.29(12):2597-2605
    [66]宋静,陈梦舫,骆永明等.制定我国污染场地土壤风险筛选值的几点建议[J].环境监测管理与技术,2011,23(3):26-33
    [67]曹云者,韩梅,夏凤英等.采用健康风险评价模型研究场地土壤有机污染物环境标准取值的区域差异及其影响因素[R].第三届全国农业环境科学学术研讨会论文集,2009,229-235
    [68]夏凤英,曹云者,李政一等.用RBCA和CLEA模型推导土壤中苯并[a]芘的标准值[J].环境科学研究,2009,22(12):1445-1451
    [69]吴以中,唐小亮,葛滢等RBCA和Csoil模型在挥发性有机物污染场地健康风险评价中的应用比较[J].农业环境科学学报,2011,30(12):2458-2466
    [70]张应华,刘志全,李广贺等.基于不确定性分析的健康环境风险评价[J].环境科学,2007,28(7):1409-1415
    [71]许海梁.环境风险评价的不确定性问题处理方法进展[J].环境科学与管理,2009,34(5):154-157
    [72]王永杰,贾东红.健康风险评价中的不确定性分析[J].环境工程,2003,21(6):66-69.
    [73]黄瑾辉等.污染场地健康风险评价中多介质模型的优选研究[J].中国环境科学2012,32(3):556-563
    [74]李广贺,李发生,张旭等.污染场地环境风险评价与修复技术体系[M].北京:中国环境科学出版社,2010
    [75]姜林,龚宇阳,张丽娜等.场地与生产设施环境风险评价及修复验收手册[M].北京:中国环境科学出版社,2011
    [76]尹大强,林志芬,刘树深等.生态风险评价(第二版)[M].北京:高等教育出版社,2011
    [77]毛小苓,倪晋仁.生态风险评价研究述评[J].北京大学学报(自然科学版),2005,4(41):646-654
    [78]U.S.EPA.Guideline for exposure assessment[R].Federal Register,1992,57(104):22888-22938.
    [79]U.S.EPA.Dermal exposure assessment: principles and applications[R].EPA/600/8-91001B, 1992,1-389.
    [80]Hanke J, Dutkiewicz T, piotrowski J. The absorption of benzene through human skin[J]. Med.Pr.1961,12:413-426.
    [81]Tsuruta H. Skin absorption of organic solvent vapors in nude mice in vivo[J]. Ind. Health, 1989,27:37-47.
    [82]MeDougal J N, Jepson G W, Clewell H J,et al. Dermal absorption of organic chemical vapors in rats and humans[J]. Fundam. APPI. Toxicol.,1990,14:299-308.
    [83]Tilson H. A.Neurotoxicology in the 1990s[J].Neurotoxicol Teratol,1990,12:293-300.
    [84]吴飞盈,廖海涛,韦义萍等.锰神经毒性的病理生理学研究[J].铁道劳动安全卫生与环保2009,36(6):292-295
    [85]倪坤,唐久来.铅对发育中的神经系统的影响[J].安徽医学,2011,32(5):695-697
    [86]张勤丽,牛侨.铝的神经毒性及其神经细胞死亡干预[M].北京:人民卫生出版社,2011.
    [87]徐珍,张玉芹,彭芳.汞神经毒性机制研究进展[J].中国职业医学,2010,7(6):503-507
    [88]张玉媛,周纯先.镉对神经系统毒性的研究进展[J].蚌埠医学院学报,2012,37(4):492-494
    [89]高宇,颜崇淮,沈晓明.多氯联苯对儿童神经毒性的研究进展[J].国外医学卫生学分册,2004,31(1):37-40.
    [90]赵玲玲,张洁,刘罗慧.有机磷农药所致神经发育毒性及机制[J].国际病理科学与临床杂志,2008,28(1):72-76
    [91]高岚岳,齐莹,金亚平.1,2-二氯乙烷的神经毒性[J].中国工业医学杂志,2012,25(1):42-43
    [92]王从荣,吴国忠,钟梅芳.丙烯酰胺神经系统毒性机制[J].生命的化学.2012,32(1):84-87
    [93]U.S.EPA. Guidelines for reproductive toxicity risk assessment[R]. Federal Register,1996, 61(212):56274-56322.
    [94]葛红雨,吴维光.环境污染物邻苯二甲酸酯类对睾丸间质细胞的雄性生殖毒性作用[J].医学研究生学报,2011,24(6):659-661
    [95]王珥梅,谈立峰.甲醛的雄性生殖毒性研究进展[J].环境与健康杂志,2009,26(9):840-842
    [96]周健,杨惠芳.氟的生殖、遗传毒性和对子代健康影响的研究进展[J].现代预防医学,2008,35(14):2640-2642
    [97]张兵,张爱君.砷的生殖毒性[J].中国地方病防治杂志,2009,24(6):411-413
    [98]林春芳,吕华东.有机锡的生殖毒性和遗传毒性研究进展[J].海峡预防医学杂志,2008,14(1):23-26
    [99]Butterworth B.E., Conolly R.B, Morgan K.T A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessments [J]. Cancer Lett.,1995, 93:129-146.
    [100]Monticello T.M., Swenberg J.A., Gross, E.A., et al. Correlation of regional and nonlinear formaldehydeinduced nasal cancer with Proliferating populations of cells[J]. Cancer Res., 1996,56:1012-1022.
    [101]Templin M.V., Constan A.A., Wolf D.C., et al. Patterns of chloroform-induced Regenerative cell proliferation in BDF1 mice correlate with organ specificity and doseresponses of tumor formation[J]. Carcinogenesis,1998,19:187-193.
    [102]Cattley R.C., Marsman D.M., Popp J.A.Age-related susceptibility to the carcinogenic effect of the peroxisome proliferators Wy-14,643 in rat liver[J]. Carcinogenesis,1991, 12:469-473.
    [103]CDC (Centers for Disease Control and Prevention). The health consequences of smoking: a report of the surgeon general[R]. Department of Health and Human Services, WashingtonD.C:http://www.cdc.gov.2004.
    [104]Murrell J.A, Portier C.J, Morris R.W, Characterizing dose-response, Ⅰ:critical assessment of the benchmark dose concept[J]. Risk Anal,1998,18(1):13-25.
    [105]Moolgavkar S.H, Knudson A.G. Mutation and cancer: a model for human carcinogenesis[J].J Nat 1 Cancer Inst,1981,66:1037-1052.
    [106]Chen C, Farland W.Incorporating cell proliferation in quantitative cancer risk assessment: approaches, issues, and uncertainties. Chemical induced cell proliferation:implications for risk assessment[J]. New York: Wiley-Liss,1991,481-499.
    [107]Gaylor D.W., Kodell R.L, Chen J.J., et al. Point estimates of cancer risk at low doses[J]. Risk Anal,1994,14(5):843-850.
    [108]Kimbell J.L, Whittemore A.S, Evans A.S, et al. Methods in observational epidemiology[M]. New York: Oxford University Press,2001.
    [109]Subramaniam R.P., Asgharian B., Freijer J.I, et al. Analysis of differences in particle deposition in the human lung[J]. Inhal Toxicol,2003,15:1-21.
    [110]U.S.EPA. Proposed guidelines for carcinogen risk assessment:Notice[R]. Federal Registry,1996,61:17960-18011.
    [111]U.S.EPA. Guidelines for Carcinogen Risk Assessment. EPA/630/P—03/001F Washington DC,2005,1-166.
    [112]Standard guide for risk-based corrective action[EB/OL].ASTM (American Society for Testing and Materials).[2011-02-22].http://www.astm.org/Standards/E2081.htm.
    [113]RIVM report 711701054/2007,CSOIL 2000:An exposure model forhuman risk assessment of soil contamination[S].2007.
    [114]中华人民共和国环境保护部.污染场地风险评估技术导则(征求意见稿).2009-09-29[2010-07-02].http://www.mep.gov.cn/gkml/hbb/gth/200910/t20091022_175070.htm.
    [115]段晓丽,张楷,王贝贝等.暴露参数的研究方法及其在环境健康风险评价中的应用[M].北京:科学出版社.2012.
    [116]Hong Kong SAR Government Environmental Protection Department.Background document on development of risk-based remediation goalsfor contaminated land management(Draft), section5:site andexposure parameters[R]. HongKong: SARGovernment Environmental Protection Department,2006.
    [117]USEPA. Region 9'S Regional Screening Level (RSL). United States Environmental Protection Agency.2011. http://www.epa.gov/region9/superfund/prg/rsl-table.html
    [118]USEPA. Region 9'S Preliminary Remediation Goals (PRG). United States Environmental Protection Agency.2004. http://www.epa.gov/region9/superfund/prg/index.html
    [119]罗皓,唐焕文,杜进林等.苯并(a)芘的毒性及其致癌机制研究现状[J].实用预防医学,2011,18(4):772-773
    [120]USEPA. Integrated Risk Information System (IRIS)[EB/OL].http://www. epa. gov
    [121]Frederik A D W. Antimony and health [J].British Medical Journal,1995,310:1216-1217
    [122]McCallum R I. Occupational exposure to antimony compounds [J]. Journal of Environmental Monitoring.2005,7(12):1245-1250.
    [123]Poon R, Chu I, Lecavalier P,et al. Effects of antimony on rats following 90-day exposure via drinking water[J]. Food and Chemical Toxicology.1998,36(1):21-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700