SrTiO_3光催化材料光吸收边调控及其光催化产氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的过度使用带来了两大问题:能源危机和环境污染。寻找新型清洁可再生能源是解决这两大问题的有效途径。光催化技术能够利用光催化材料吸收太阳光转化为光生电子-空穴对诱发水氧化-还原反应制备氢气。以氢能为能量载体,其能量释放后的产物为水,避免了传统化石能源所带来的环境问题,因此半导体光催化分解水产氢是太阳能转化与利用的新能源技术,具有潜在的应用前景。
     构建高效的光催化分解水反应体系是实现光催化技术走向实用化的基本前提条件。高效转化太阳能为氢能的核心问题是高效光催化材料的开发。SrTiO3是一种传统的光催化材料,具有良好的电子-空穴分离与输运特性。SrTiO3光催化材料的主要缺点是带隙较宽(3.2eV),只能利用占太阳光谱5%的紫外光,太阳能利用率较低。拓宽光响应范围以提高光催化产氢性能是开发面向应用的SrTiO3光催化材料所需解决的首要问题。SrTiO3具有Sr、Ti两个阳离子替代位和一个O阴离子替代位,具有较强的功能可调节性。本文围绕元素掺杂SrTiO3光催化材料展开研究工作,发展制备高品质的元素掺杂SrTiO3光催化材料的溶胶凝胶-水热法;探索元素掺杂对晶体缺陷形成的影响及元素掺杂的热力学基础;利用原子电子轨道强相互作用拓宽光催化材料的光学吸收范围。本文所得主要结论如下:
     溶胶-凝胶水热法是制备高性能Cr掺杂SrTiO3光催化材料的有效方法。含3d轨道电子的过渡族元素Cr(Cr3+)可以在SrTiO3带隙内形成杂质能级,有效拓展SrTiO3的光吸收至可见光区。Cr3+掺杂SrTiO3样品的合成,以往是利用高温固相烧结法,所得样品比表面积较小、晶体缺陷较多,因而光催化性能较低。发展高结晶性、大比表面积的光催化材料制备方法有利于实现高效的光催化反应。本文发展了溶胶凝胶-水热法制备具有大比表面积、高结晶性的Cr3+掺杂SrTiO3样品,其基本过程如下:以乙二醇为溶剂充分溶解钛酸四丁酯、锶盐和铬盐,在合适的温度下干燥成凝胶,以此凝胶为原料,在碱性条件下水热反应获得高结晶性、大比表面积的Cr3+掺杂SrTiO3样品。此方法结合了溶胶-凝胶法和水热法两种制备方法的优势:通过形成溶胶-凝胶实现前驱物原子级别的充分混合,有利于掺杂元素的均匀掺杂;碱性溶液可以使锶、钛和铬离子以氧化物的形式存在,从而降低金属元素前驱物之间反应活性差异,实现以水热反应控制元素掺杂获得单相高结晶性的Cr掺杂SrTiO3样品。高结晶性可以有效降低样品中的缺陷,降低电子-空穴复合几率;较大的比表面积可以提供更多的光催化反应位,提高光催化反应效率。因此,溶胶-凝胶水热法制备出的Cr3+掺杂SrTiO3光催化分解水产氢效率达到82.6μmol/ho
     阴、阳离子共掺杂有利于降低空位缺陷,提高SrTiO3光催化材料的催化性能。对于Cr3+掺杂SrTiO3样品,由于掺杂在A位的Cr3+与A位Sr2+价态不同,为了保持电荷平衡容易导致在SrTiO3晶格内产生Sr空位缺陷。缺陷作为复合中心增加了光生电子和空穴的复合几率,降低了光催化性能。本文利用元素共掺杂法平衡电荷以降低晶体缺陷,同时实现了光吸收范围的拓宽。以尿素为氮源,利用溶胶凝胶-水热法合成了Cr3+离子A位和N3-离子O位共掺杂SrTiO3。实验及理论结果显示,Cr3+掺杂可以有效降低N3-掺杂进入SrTiO3晶格的反应势垒,有利于N3-掺杂进入SrTiO3晶格。N3-替代O2-与Cr3十替代Sr2+可以保持SrTiO3电荷平衡减少Sr空位缺陷,有效降低电子-空穴对复合几率。N2p与Cr3d之间的p-d电子轨道排斥作用提高Cr3d能级位,从而提高价带顶的位置而减小带隙,拓宽了SrTiO3可见光吸收范围。由于缺陷数量的减小和可见光吸收范围的拓宽,Cr3+、N3-共掺杂SrTiO3光催化分解水产氢效率高于Cr3+掺杂SrTiO3,其可见光光催化分解水产氢性能达到106.7μmol/h,在420nm波长处表观量子转换效率达到3.1%。
     阴离子p轨道和阳离子d轨道之间的p-d电子轨道排斥作用可以提升杂质能级位,拓展半导体材料的光吸收范围。p-d电子轨道排斥作用与p、d轨道的轨道能量差有关,轨道能量差越小,排斥作用越强,杂质能级提升越大。与N2p轨道能量相比,B2p与Cr3d的轨道能量差更小,意味着B2p与Cr3d之间存在更强的p-d电子轨道排斥作用,Cr、B共掺杂有望进一步拓展SrTiO3的光吸收范围。本文利用TiB2为Ti源,通过一步水热法成功合成了Cr3+离子Ti位和B-离子O位共掺杂SrTiO3。紫外可见吸收光谱显示Cr3+、B-共掺杂显著拓宽了SrTiO3光吸收范围,Cr3+、B-共掺杂SrTi03的光吸收边红移至600nm,带隙减小为2.07eV。理论计算所得的光吸收谱及态密度图显示,Cr3d与B2p之间的p-d电子轨道强排斥作用提升了Cr3d的能级位,使SrTiO3的吸收边发生红移。光吸收范围的拓宽使得Cr3+、B-共掺杂SrTiO3光催化分解水产氢的效率(15.4μmol/h)比利用相同水热法制备的Cr3+掺杂SrTiO3(9.3μmol/h)提高了近66%。
The excessive utilization of fossil fuels has brought two major issues:energy crisis and environmental pollution. Looking for a new energy, which is clean and renewable, is an effective method to solve the two issues. Photocatalysis technique is to use the photogenerated electrons and holes after absorbing the sunlight of the semiconductor-based photocatalyst to split water into H2and O2. Hydrogen as the carrier of energy can avoid the environmental problem brought by utilization of traditional fossil fuels, because the production is water after hydrogen releasing the chemical energy. Thus photocatalytic water splitting is a new technology for the conversion and utilization of solar energy and has a potential prospect.
     The prerequisite for practical application of photocatalytic water splitting is to construct a photocatalytic reaction system which is highly efficient for converting solar energy into hydrogen energy. To explore the efficient photocatalytic materials is the key goal for achieving efficient solar conversion by photocatalysis. SrTiO3as one photocatalyst has attracted many attentions, because it has better character in the separation and transfer of photoinduced electrons and holes. The major shortcoming for SrTiO3is that it only responds to UV light (5%of natural sunlight), due to its large band gap (3.2eV). Such large band gap means the low utilization of solar energy. To broaden the region of light absorption of SrTiO3is the most important task for developing application-oriented SrTiO3-based photocatalysts. SrTiO3has excellent adjustable function, owing to that it has two cationic sites (Sr and Ti sites) and one anionic site which can be replaced by doping elements. This dissertation was mainly centered on visible-light-response SrTiO3based photocatalysts for water splitting: synthesizing element doped SrTiO3with better crystal quality by a sol-gel hydrothermal method, exploring the effect of element doping on crystal defects and the thermodynamic basis of elemental doping, broadening the region of optical absorption by using the interaction between atomic orbitals. The main conclusions are as follows:
     Sol-gel hydrothermal method is a good method to synthesize Cr-doped SrTiO3with high photocatalytic activity. Cr3+, which contains3d orbital electrons, can effectively broaden the optical absorption of SrTiO3into visible light region by forming a impurity level in the band gap. Cr3+-doped SrTiO3was usually synthesized by solid state reaction (SSR) at high temperatures. Samples synthesized by SSR had smaller specific surface areas and more crystal defects, thus their photocatalytic activities are low. Developing a method, which can synthesize samples with good crystallinity and large specific surface area, is benefit for obtaining high photocatalytic activities. In our dissertation, Cr-doped SrTiO3with good crystallinity and large specific surface area was obtained by a sol-gel hydrothermal method. The synthetic process is as follows:tetrabutyl titanate, strontium and chromium salts were dissolved in ethylene glycol, then the solution became gel at the suitable temperature. Under basic condition, the gel was transferred into Cr-doped SrTiO3with good crystallinity and larger surface areas by hydrothermal reaction. This method combines the advantages of sol-gel and hydrothermal method:1) Precursors were mixed atomically during forming the sol and gel, which is benefit to achieve the uniformly doping.2) Under basic condition, Sr2+,Cr3+and Ti4+exist as metal hydroxide. This is benefit to decrease the difference in reactivity between metal containing precursors, thus obtaining the purity-phase, high crystalline Cr-doped SrTiO3after hydrothermal treatment. High crystallinity can decrease the amount of crystal defects, thus suppressing the recombination of electrons with holes. Large specific surface area enhances the photocatalytic activity through providing more active sites. The optimized hydrogen evolution rate over Cr-doped SrTiO3synthesized by sol-gel hydrothermal method is82.6μmol/h.
     Codoping SrTiO3with a cantion and an anion can enhance the photocatalytic activities by decreasing the amount of vacancy defects. For Cr-doped SrTiO3, in order to keep the charge balance in SrTiO3, Sr vacancies were formed in the lattice of SrTiO3due to the difference in valance state of Cr3+and Sr2+. Sr vacancies as recombination sites can enhance the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activities. In our dissertation, element codoping not only can keep the charge balance to reduce the Sr vacancies, but also broaden the region of optical absorption. Cr3+,N3"-codoped SrTiO3was successfully synthesized by the sol-gel hydrothermal method using urea as the N source. The experimental analysis and theoretical calculation showed that the doping of Cr into crystal lattice of SrTiO3can decrease the reaction barrier of doping N into crystal lattice of SrTiO3. Substituting N3-and Cr3+for O2-and Sr2+in SrTiO3can reduce the amount of Sr vacancies due to the charge balance, thus decreasing the chance of recombination between photogenerated electrons and holes. The p-d repulsion between N2p and Cr3d can decrease the band gap by enhancing position of Cr3d level and broaden the region of optical absorption for SrTiO3. Cr,N-codoped SrTiO3has higher photocatalytic activity than Cr-doped SrTiO3, due to the reduction of Sr vacancies and the enhancement of visible light absorption. The optimized hydrogen evolution rate over Cr,N-codoped SrTiO3is106.7μmol/h. The IPCE is3.1%at420nm.
     The p-d repulsion between p orbits of anion and d orbits of cation can broaden the optical absorption region by enhancing the position of impurity level. The intensity of p-d repulsion is related to the difference of orbital energy between p orbits and d orbits. The smaller difference between orbital energy means the stronger p-d repulsion. The strong p-d repulsion will induce the enhancement of impurity level Comparing the difference of orbital energy for N2p with Cr3d, the difference of orbital energy for B2p with Cr3d is smaller, meaning that the interaction between B2p and Cr3d will be stronger. In our dissertation, Cr,B-codoped SrTiO3was synthesized by a hydrothermal method using TiB2as the precursor of B. For Cr,B-codoped SrTiO3, to keep chare balance, the Cr3+and B-was incorporated into the Ti4+and O2-site of SrTiO3, respectively. UV-Vis spectra show that the absorption edge for Cr,B-codoped SrTiO3was shifted to600nm, corresponding to the band gap of2.07eV. Theoretical calculation indicates that the strong p-d repulsion of B2p and Cr3d levels was responsible for the red shift of absorption edge by enhancing the position of Cr3d level. Cr,B-codoped SrTiO3photocatalyst exhibits higher photocatalytic activities (15.4μmol/h) for hydrogen production than Cr-doped SrTiO3(9.3μmol/h), owing to the enhancement of visible light absorption.
引文
[1]2010 survey of Energy Resource, World Energy Council. www.worldenergy.org/documents/ser_2010_report_1.pdf.
    [2]J. A.Turner, Science 305,972 (2004).
    [3]J. M. Herrmann, Top. Catal.53,115 (1999).
    [4]A. Fujishima, Nature 238,37 (1972).
    [5]M.A. Fox and M.T.Dulay, Chem. Rev.93,341-357 (1993).
    [6]A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev.95,735-758 (1995).
    [7]李敦钫,郑菁,陈新益,邹志刚,化学进展,19,464(2007).
    [8]D. W. Bahnemann, M. Hilgendorff and R. Memming, J. Phys. Chem. B 101,4265 (1997).
    [9]L. Q. Jing, J. Zhou, J. R. Durrant, J. W. Tang, D. N. Liu and H. G. Fu, Energy Environ. Sci.5, 6552(2012).
    [10]J. Chen, D. F. Ollis, W. H. Rulkens and H. Bruning, Wat. Res.33,669 (1999).
    [11]N. Serpone, D. Lawless, J. Disdier and J. M. Herrmann, Langmuir 10,643 (1994).
    [12]S. T. Martin, C. L. Morrison and M. R. Hoffmann, J. Phys. Chem.98,13695 (1994).
    [13]R. Janisch, P. Gopal and N. A. Spaldin, J. Phys. Condens. Matter 17, R657 (2005).
    [14]S. Klosek and D. Raftery,J. Phys. Chem. B 105,2815 (2001).
    [15]X. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi and T. Ishigaki,J. Phys. Chem. B 110,6804(2006).
    [16]S. Ray, P. Mahadevan, S. Mandal, S. Krishnakumar, C. S. Kuroda, T. Sasaki, T. Taniyama and M. Itoh, Phys. Rev. B 77,104416 (2008).
    [17]S. W. Bae, P. H. Borse and J. S. Lee, Appl. Phys. Lett.92,104107 (2008).
    [18]X. B. Chen and C. Burda, J Am. Chem. Soc.130,5018 (2008).
    [19]S. Sato, Chem. Phys. Lett.123,126 (1986).
    [20]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293,269 (2001).
    [21]S. Sakthivel and H. Kisch, Angew. Chem.Int. Ed.42,4908 (2003).
    [22]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett.81,454 (2002).
    [23]W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, J. Am. Chem. Soc.126,4782 (2004).
    [24]K. Yang, Y. Dai and B. B. Huang, J. Phys. Chem. C 111,18985 (2007).
    [25]B. F. Gao, T. M. Lim, D. W. P. Subagio and T. T. Lim, Appl. Catal. A 27,1103 (1999).
    [26]R. Niishiro, H. Kato and A. Kudo, Phys. Chem. Chem. Phys.7,2241 (2005).
    [27]H. Kato and A. Kudo, J. Phys. Chem. B 106,5029 (2002).
    [28]D. Li, H. Haneda, S. Hishita and N. Ohashi, Chem. Mater.17,2596 (2005).
    [29]S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright and R. M. Lambert,J. Am. Chem. Soc.129,13790 (2007).
    [30]Y. Gai, J. Li, S. S. Li, J. B. Xia and S. H. Wei, Phys. Rev. lett.102,036402 (2009).
    [31]W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. H. Gu, G. Eres and Z. Y. Zhang, Phys. Rev. lett.103,226401 (2009).
    [32]U. I. Gaya and A. H. Abdullah, J. Photochem. Photobio. C 9,1 (2008).
    [33]R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik and S. Bharadwaj, Int. J. Hydrogen Energy 34,3621 (2009).
    [34]Y. Liu, L. Guo, W. Yan and H. Liu, J. Power Sources 159,1300 (2006).
    [35]H. Yang, L. Guo, W. Yan and H. Liu, J. Power Sources 159,1305 (2006).
    [36]D. Wang, Z. G. Zou and J. H. Ye, Chem. Mater.17,3255 (2005).
    [37]J. Lv, T. Kako, Z. Li, Z. G. Zou and J. H. Ye, J. Phys. Chem. C 114,6157 (2010).
    [38]R. Brahimi, Y. Bessekhouad, A. Bouguelia and M. Trari, Catal. Today 122,62 (2007).
    [39]D. Wang, Z. G. Zou and J. H. Ye, Chem. Phys. Letters 384,139 (2004).
    [40]J. H. Yum, P. Chen, M. Gratzel and M. K. Nazeeruddin, ChemSusChem 1,699 (2008).
    [41]B. O'regan and M. Grfitzeli, Nature 353,24 (1991).
    [42]K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama and H. Arakawa, Langmuir 17,5992 (2001).
    [43]P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Graetzel, J. Am. Chem. Soc.126,13590 (2004).
    [44]N. Robertson, Angew. Chem. Int. Ed.47,1012 (2008).
    [45]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, J. Am. Chem. Soc.127,16835 (2005).
    [46]M. K. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. D. Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai and M. Graetzel, J. Photochem. Photobiol, A:Chem.185,331 (2007).
    [47]E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Graetzel, J. Am. Chem. Soc.103,6324 (1981).
    [48]W. Zhang, J. Hong, J. Zheng, Z. Huang, J. Zhou and R. Xu, J. Am. Chem. Soc.133,20680 (2011).
    [49]T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley and R. Eisenberg, J. Am. Chem. Soc.131,9192 (2009).
    [50]T. M. McCormick, B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty and R. Eisenberg, J. Am. Chem. Soc.132,15480 (2010).
    [51]J. Moser and M. Graetzel,J. Am. Chem. Soc.106,6557 (1984).
    [52]K. Maeda, M. Eguchi, W. J. Youngblood and T. E. Mallouk, Chem. Mater.20,6770 (2008).
    [53]R. Abe, K. Sayama, K. Domen and H. Arakawa, Chem. Phys. Lett.344,339 (2001).
    [54]M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Chem. Phys. Lett. 452,120 (2008).
    [55]R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun.29,3829 (2005).
    [56]K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, Chem.Commun.23,2416 (2001).
    [57]K. Maeda, M. Higashi, D. Lu, R. Abe and K. Domen, J. Am. Chem. Soc.132,5858 (2010).
    [58]Y. Sasaki, A. Iwase, H. Kato and A. Kudo, J. Catal.259,133 (2008).
    [59]H. Kato, M. Hori, R. Konta, Y. Shimodaira and A. Kudo, Chem. Lett.33,1348 (2004).
    [60]J. Yin, Z. G. Zou and J. H. Ye, Chem. Phys. Lett.378,24 (2003).
    [61]D. Wang, Z. G. Zou and J. H. Ye, Chem. Phys. Lett.373,191 (2003).
    [62]S. Ouyang, Z. Li, Z. Ouyang, T. Yu, J. H. Ye and Z. G. Zou, J. Phys. Chem. C 112, 3134(2008).
    [63]J. H. Ye, Z. G. Zou and A. Matsushita, Int. J. Hydrogen Energy 28,651 (2003).
    [64]W. Yao, C. Huang and J. H. Ye, Chem. Mater.22,1107 (2009).
    [65]D. Li, J. Zheng and Z. G. Zou, J. Phys. Chem. Solids 67,801 (2006).
    [66]S. Sun, W. Wang, H. Xu, L. Zhou, M. Shang and L. Zhang, J. Phys. Chem. C 112,17835 (2008).
    [67]J. Yin, Z. G. Zou and J. H. Ye, J. Phys. Chem. B 107,4936 (2003).
    [68]J. H. Ye, Z. G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai and T. Shishido, Chem. Phys. Lett.356,221 (2002).
    [69]D. Wang, J. Tang, Z. G. Zou and J. H. Ye, Chem. Mater.17,5177 (2005).
    [70]H. Liu, R. Nakamura and Y. Nakato, ChemPhysChem 6,2499 (2005).
    [71]R. Konta, H. Kato, H. Kobayashi and A. Kudo, Phys. Chem. Chem. Phys.5,3061 (2003).
    [72]H. Kato, H. Kobayashi and A. Kudo, J. Chem. Phys. B 106,12441 (2002).
    [73]J. Tang, Z. G. Zou, M. Katagiri, T. Kako and J. H. Ye, Catal. Today 93,885 (2004).
    [74]J. W. Tang, Z. G. Zou and J. H. Ye, Chem. Mater.16,1644 (2004).
    [75]J. W. Tang, Z. G. Zou and J. H. Ye, Angew. Chem. Int. Ed.43,4463 (2004).
    [76]X. Li and J. H. Ye, J. Phys. Chem. C 111,13109 (2007).
    [77]Z. G. Zou, J. H. Ye and H. Arakawa, J. Phys. Chem. B 106,517 (2002).
    [78]D. W. Hwang, J. S. Lee, W. Li and S. H. Oh, J. Phys. Chem. B 107,4963 (2003).
    [79]T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, Chem. Mater.9,1063 (1997).
    [80]M. Tian, W. Shangguan, J. Yuan, L. Jiang, M. Chen, J. Shi, Z. Ouyang and S. Wang,Appl. Catal. A:General 309,76 (2006).
    [81]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature Mater.8,76 (2008)
    [82]T. L. Thompson and J. T. Yates, Top. Catal.35,197 (2005)
    [83]C. Zhang and Y. Zhu, Chem. Mater.17,3537 (2005).
    [84]H. Fu, C. Pan, W. Yao and Y. Zhu, J. Phys. Chem. B 109,22432 (2005).
    [85]D. Chen and J. H. Ye, Adv. Funct. Mater.18,1922 (2008).
    [86]Y. Q. Wang, Z. J. Zhu, Y. Zhu, Z. C. Li, R. Vajtai, L. J. Ci and P. M. Ajayan, ACS Nano 2, 1492 (2008).
    [87]D. Chen, S. X. Ouyang and J. H. Ye, Nanoscale Res. Lett.4,274 (2009).
    [88]S. M. Sun, W. Z. Wang, L. Zhou and H. L. Xu, Ind. Eng. Chem. Res.48,1735 (2009).
    [89]M. Shang, W. Z. Wang and H. L. Xu, Cryst. Growth Des.9,991 (2009).
    [90]J. H. Ye and Z. G. Zou, J. Phys. Chem. Solids 66,266(2005)
    [91]W. Wei, Y. Dai, M. Guo, L. Yu and B. Huang, J. Phys. Phys C 113,15046 (2009).
    [92]M. Miyauchi, M. Takashio and H. Tobimatsu, Langmuir 20,232 (2004).
    [93]T. Ohno, T. Tsubota, Y. Nakamura and K. Sayama, Appl. Catal. A:General 288,74 (2005).
    [94]J. S. Wang, H. Li, H. L. Li, S. Yin and T. Sato, Solid State Science 11,182(2009).
    [95]J. Wang, S. Yin, Q. Zhang, F. Saito and T. Sato, J. Mater. Chem.13,2348 (2003).
    [96]H. Irie, Y. Maruyama and K. Hashimoto, J. Phys. Phys C 111,1847 (2007).
    [97]D. Wang, T. Kako and J. H. Ye, J. Phys. Phys C 113,3785 (2009).
    [98]J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito and T. Sato, J. Photochem. Photobiol. A: Chem.165,149 (2004).
    [99]K. Iwashina and A. Kudo, J. Am. Chem. Soc.133,13272 (2011).
    [100]X. Qiu, M. Miyauchi, H. Yu, H. Irie and K. Hashimoto, J. Am. Chem. Soc.132,15259 (2010).
    [101]L. Chen, S. Zhang, L. Wang, D. Xue and S. Yin,J. Cryst. Growth 311,735 (2009).
    [102]T. Ishii, H. Kato and A. Kudo, J. Photochem. Photobiol. A:Chem.163,181 (2004).
    [103]Q. I. Rahman, M. Ahmad, S. K. Misra and M. Lohani, J. Nanosci. Nanotechno.12,7181 (2012).
    [104]Z. Zhang, Q. Lin, S.-T. Zheng, X. Bu and P. Feng, Chem. Commun.47,3918 (2011).
    [105]J. Zhang, J. H. Bang, C. Tang and P. V. Kamat, ACS Nano 4,387 (2009).
    [106]J. Ng, S. Xu, X. Zhang, H. Y. Yang and D. D. Sun, Adv. Funct. Mater.20,4287 (2010).
    [107]J. Luo and P. A. Maggard, Adv. Mater.18,514 (2006).
    [108]H. W. Kang, S. N. Lim, D. Song and S. B. Park, Int. J. Hydrogen Energy 37,4026 (2012).
    [109]H. Zhang, S. Ouyang, Z. Li, L. Liu, T. Yu, J. H. Ye and Z. G. Zou, J. Phys. Chem. Solids 67, 2501 (2006).
    [110]A. Paracchino, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Nature Mater.10,456 (2011)
    [111]A. Zaban, O. I. Micic, B. A. Gregg and A. J. Nozik, Langmuir,14,3153(1998)
    [112]D. R. Baker and P. V. Kamat, Adv. Funct. Mater.19,805(2009)
    [113]A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Ceram. Soc.130, 4007 (2008).
    [114]S. W. Bae, S. M. Ji, S. J. Hong, J. W. Jang and J. S. Lee, Int. J. Hydrogen Energy 34,3243 (2009).
    [115]R. Abe, K. Sayama and H. Sugihara,J.Phys. Chem. B 109,16052 (2005).
    [116]S. Hara and H. Irie, Appl. Catal. B:Environ.115,330 (2012).
    [117]X. X. Fan, Y. Wang, X. Y. Chen, L. F. Liu,;Y. M. Wang, L. Gao, W. J. Luo, Z. S. Li and Z. G. Zou, Chem. Mater.11,1276 (2010).
    [118]T. Puangpetch, T. Sreethawong, S. Yoshikawa and S. Chavadej, J. Mol. Catal. A:Chem. 287,70 (2008).
    [119]X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen and G. Han, J. Am. Ceram. Soc.91,299 (2008).
    [120]X. Wei, G. Xu, Z. Ren, C. Xu, W. Weng, G. Shen and G. Han, J. Am. Ceram. Soc.93,1297 (2010).
    [121]T. Puangpetch, T. Sreethawong, S. Yoshikawa and S. Chavadej, J. Mol. Catal. A:Chem. 312,97 (2009).
    [122]Y. Li, X. Gao, G. Li, G. Pan, T. Yan and H. Zhu, J. Phys. Chem. C 113,4386 (2009).
    [123]J. Wang, S. Yin and T. Sato, Mater. Sci. Eng., B 131,248 (2006).
    [124]J. Wang, S. Yin and T. Sato, J. Photochem. Photobiol. A:Chem.187,72 (2007).
    [1]克鲁格H.P., 亚历山大,L.E., 《x射线衍射技术》,盛世雄等译,冶金工业出版社,(1986)。
    [2]梁敬魁,《粉末衍射法测定晶体结构》,北京科学出版社,(2003)。
    [3]万一千,苏成勇,童叶翔,《现代化学研究技术与实践:方法篇》,化学工业出版社,(2011)。
    [4]《比表面积仪说明书》,日本岛津公司。
    [5]张大同,《扫描电镜与能谱仪分析技术》,华南理工大学出版社,(2009)。
    [6]章晓中,《电子显微分析》,清华大学出版社,(2006)。
    [7]汪正,邱德仁,张军烨,《电感耦合等离子体原子发射光谱分析进样技术》,上海科学技术出版社,(2012)。
    [8]翁试甫,《傅里叶变换红外光谱分析》,化学工业出版社,(2010)。
    [9]吴国桢,《拉曼谱学:峰强中的信息》,科学出版社,(2013)。
    [10]陈贤镕,《电子自旋共振实验技术》,群学出版社,(1986)。
    [11]M. Segall, P. J. D. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark and M.Payne, J. Phys.: Condens. Matter 14,2717 (2002).
    [12]J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh and C. Fiolhais, Phys. Rev. B 46,6671 (1992).
    [13]J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [14]K. Hara, K. Sayama and H. Arakawa, Appl. Catal. A.189,127 (1999).
    [1]H. Kato and A. Kudo, J. Phys.Chem. B 106,5029 (2002).
    [2]X. Wei, G. Xu, Z. Ren, C. Xu, G Shen and G. Han, J. Am. Ceram. Soc.91,3795 (2008).
    [3]S. W. Bae, P. H. Borse and J. S. Lee, Appl. Phys. Lett.92,104107 (2008).
    [4]R. Konta, T. Ishii, H. Kato and A. Kudo, J. Phys. Chem. B 108,8992 (2004).
    [5]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, J. Phys. Chem. Solids 63,1909 (2002).
    [6]D. F. Wang, J. H. Ye, T. Kako and T. Kimura, J. Phys. Chem. B 110,15824 (2006).
    [7]Z. Ding, G Lu and P. Greenfield, J. Phys. Chem. B 104,4815 (2000).
    [8]M. Yoshida, K. Takanabe and K. Domen, J. Phys. Chem. C 113,10151 (2009).
    [9]T. hii, H. Kato and A. Kudo, J. Photochem. Photobiol, A 163,181 (2004).
    [10]S. C. Zhang, J. X. Liu and X. G. Li, Mater. Sci. Eng., B 110,11 (2004).
    [11]T. Umebayashi, T. Yamaki and K. Asai, J. Phys. Chem. Solids 63,1909 (2002).
    [12]H. Kato and A. Kudo, J. Phys. Chem. B 106,5029 (2002).
    [13]Y. Nosaka, K. Norimatsu and H.Miyama. Chem. Phys. Lett.106,128 (1984).
    [1]D. H. wang, H. Kim, J. Lee and S. Oh,J. Phys. Chem. B 109,2093 (2005).
    [2]H. Kato and A.Kudo, J. Phys. Chem. B 106,5029 (2002).
    [3]T. Ishii, H. Kat and A. Kudo, J. Photochem. Photobi. A:Chem 163,181 (2004).
    [4]M. Miyauchi, M. Takashio and H.Tobimatsu, Langmuir 20,232 (2004).
    [5]J. Wang, S. Yin, M. Komatsu and T.Sato, J. Eur. Ceram. Soc.25,3207 (2005).
    [6]W. Su, J. Chen, L. Wu and X. Fu, Appil. Catal. B:Environ.77,264 (2008).
    [7]C. Liu, X. Zu and W. Zhou, J. Phys. D:Appl. Phys.40,7318 (2007).
    [8]T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, J. Phys. Chem. Solids 63,1909 (2002).
    [9]S. H. Wei and A. Zunger, Phy. Rev. B 37,8958 (1988).
    [10]D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi and H. Haneda, J. Solid State Chem.178,3293 (2005).
    [11]K. Yang, Y. Dai, and B. B. Huang, J. Phys. Chem. C 111,12086 (2007).
    [12]S. Mo, W. Ching, M. Chisholm and G Duscher, Phys. Rev. B 60,2416 (1999).
    [13]H. Kato and A. Kudo, J. Phys. Chem. B 106,5029 (2002).
    [14]Y. Nosaka, K. Norimatsu and H. Miyama, Chem. Phys. Lett.106,128 (1984).
    [15]Y. Qin, G. Wang and Y. Wang, Catal. Commun.8,926 (2007).
    [1]S. H. Wei and A. Zunger, Phy. Rev. B 37,8958 (1988).
    [2]W. Zhao, W. H. Ma, C. C. Chen, J. C. Zhao and Z. G. Shuai, J. Am. Chem. Soc.126 4782 (2004).
    [3]N. O. Gopal, H. H. Lo and S. C.Ke,J. Am. Chem. Soc.130,2760 (2008).
    [4]M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y.Ikezawa and K. Domen, J. Phys. Chem. C 113,10151(2009).
    [5]T. Ishii, H. Kato and A. Kudo, J. Photochem. Photobiol. A:Chem.163,181 (2004).
    [6]D. F. Wang, J. H. Ye, T.Kako and T. Kimura, J. Phys. Chem. B 32,110 (2006).
    [7]D. M. Chen, D. Yang, Q. Wang and Z. Y. Jiang, Ind. Eng. Chem. Res.45,4110 (2006).
    [8]E. N. Boulos and N. Kreidl,J. Am. Ceram. Soc.54,368 (1971).
    [9]N. D. Feng, A. M. Zheng, Q. Wang, P. P. Ren, X. Z. Gao, S. B. Liu, Z. R. Shen, T. H. Chen and F. Deng,J. Phys. Chem. C 115,2709 (2011).
    [10]W. J. Luo, Z. S. Li, X. J. Jiang, T. Yu, L. F. Liu, X. Y. Chen, J. H. Ye and Z. G. Zou, Phys. Chem.Chem. Phys.10,6717 (2008),
    [11]W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, J. Am. Chem.Soc.126,4782 (2004).
    [12]G. Liu, J. Pan, L. Yin, J. T. S. Irvine, F. Li, J. Tan, P. Wormald and H. M. Cheng, Adv. Funct. Mater.22,3233 (2012).
    [13]J. H. Ye and Z. G. Zou, J. Phys. Chem. Solids 66,266 (2005).
    [14]V. N. Kuznetsov and N. Serpone, J. Phys. Chem. C 113,15110 (2009).
    [15]A. T. Brant, S. Yang, N. C. Giles and L. E. Halliburton, J. Appl. Phys.110,053714 (2011).
    [16]M. Sathish, B. Viswanathan, R. Viswanath and C. S. Gopinath, Chem. Mater.17,6349 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700