可再生能源纳米材料与金属离子荧光传感器的设计、合成及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的高速发展,工业废弃物和石油燃烧致使环境污染已增加至近年来的最高点,严重危害到人类的健康和生命安全。本博士论文针对解决环境污染有关的能源纳米材料和环境污染系统的金属离子检测等关键的化学课题,开展了一系列的研究和探索工作。
     电子能量储存和转换系统在有效使用可再生清洁能源上,发挥着至关重要的作用。特别是电化学能量储存和转换设备,如电池和超级电容器等,被认为是最有前途的便携式和移动通信设备的应用器件。在这些器件中,超级电容器相比传统的电池具有许多优点,包括快速充电,长期循环稳定和可提供比锂电池高达10倍以上的功率。这些功能正是电动汽车和智能电网在实际应用中所需要的。
     另一方面,化学传感器被定义为可随意传导被分析物信号的一种可逆结构的非生物分子。和许多不同类型的传感器相比,荧光化学传感器具有以下几个优点:高灵敏度、特异性、可实时监控和快速响应时间等。从前人的研究中我们可以看出,基于荧光素、罗丹明、香豆素类衍生物的荧光化学传感器,以低毒、低价、高量子产率等特性,己使其成为检测汞、铅、铜和铁等金属最有前景的探针工具。
     本博士论文分成八章,分别阐述一系列应用于超级电容器的纳米材料和金属离子荧光传感器的合成、性质及其应用的研究:
     1,综述了近年来超级电容器和金属离子荧光传感器的发展和研究现状;提出了本文的研究目的。
     2,通过简单的水热反应和电化学沉积,合成了一系列三维结构的CoxNi1-xDHs/NiCo2O4/CFP混合材料。这些混合材料在作为超级电容器电极的应用中,通过三电极测试系统表现了很高的电化学性能。
     3, Ni(OH)2/Co3O4和Ni(OH)2/NiCo2O4混合材料直接生长在碳纸上,作为活性材料成功地应用于超级电容器;相同测试条件下Ni(OH)2/NiCo2O4/CFP比Ni(OH)2/Co3O4/CFP表现出了更高的质量比电容和高电流密度电容保持率,将电流密度从2mA/cm2增加到50mA/cm2,电容保持率为79%。
     4,由非催化汽相淀积工艺合成了单晶SnSe2纳米片;在此过程中SnSe2纳米片的生长表现了对基板强有力的依耐性。在不同温度下,生长在云母和硅衬底上的SnSe2纳米片形态差异证实了基板的作用。通过分析可以得出,温度依赖性的形态差异主要由SnSe2在不同基板表面上吸附原子的迁移来控制。
     5,通过罗丹明衍生物键合喹哪啶及呋喃基团,分别合成了两种检测铜离子的荧光化学传感器L1和L2。L1和L2与铜离子配位后,它们的紫外吸收光谱和荧光信号强度都明显增强,这表明L1和L2可以有效地避免螯合铜离子后所产生的顺磁性质而使荧光猝灭。L1和L2可以在众多金属离子(如钙,镁,镍,锰,二价铁,三价铁,汞,锌和铬离子)存在的水溶液中选择性地对铜离子响应,相应时间短于两分钟。细胞成像研究表明,L1和L2都成功地实现了活体细胞中的铜离子检测。
     6,成功合成了一种含硫的罗丹明衍生物L3。该分子显示出对铜离子很高的灵敏性和选择性。通过高分辨质谱推论其对铜离子响应的机理为:铜离子螯合作用使罗丹明的内酰胺环开环,继而进行氧化还原和水解反应。生物成像研究表明,L3能够很好地实现活细胞中铜离子的检测,是一个很好的铜离子检测工具。7,合成了一种新的基于香豆素的铜离子荧光传感器L4,该传感器显示了其在水溶液中对铜离子检测的高灵敏度和选择性,并通过高分辨质谱和DFT的模型计算阐明了铜离子对L4的荧光淬灭机理。研究了铜和L4的配合物在各种阴离子中的稳定性;荧光光谱研究结果表明,只有硫离子和焦磷酸根离子可以有效增强铜和L4配合物的荧光强度。
     8,通过键合喹啉基团和罗丹明酰肼类衍生物,合成了一个新型的检测三价铁离子的化学传感器(L6)。该传感器在细胞中共存丰富阳离子的条件下和环境中多种有毒金属离子存在下的水体中,成功地完成了对三价铁离子的检测,而且具有很高的选择性和灵敏度。
Follow the high-speed developing of economic, the environment pollution from industry and fossil fuel have been increasing to the top point in the recent years which is dangerous for human life. In this paper, we will present our research about nanomaterials for solving energy source and environment pollution issues, and fluorescent sensors for detecting metal ion in the environment pollution system. Electrical energy storage and conversion systems play a vital role in efficient and cost-effective utilization of clean energy from renewable sources. In particular, electrochemical energy storage and conversion devices such as batteries, fuel cells, and supercapacitors are considered the most promising candidate for portable and mobile applications. Among them, supercapacitors offer a number of advantages over conventional batteries, including fast charge rate, long-term cycling stability, and the ability to deliver up to ten times more power. These features are desirable for a range of applications, from electric vehicles to smart grids. A chemosensor is defined as a molecule of abiotic origin that reversibly complexes to an analyte with a concomitant signal transduction. Of the many different kinds of sensors, fluorescent chemosensors have several advantages over other methods due to their sensitivity, specificity, and real-time monitoring with fast response time. From previous report, fluorescent chemosensors base on Rhodomine, Fluorescine, Coumarin derivate with low toxite, low price, high quantum yield were considered to be the most promising tools for the detection of Hg2+, Pb2+, Cu2+, Fe3+. In this thesis, I separate8chapters to present my research projects about synthesizing a series of nano materials for the appliactions of supercapacitros, and fluorescent chemosensors for cations:
     1, Motivation of my research project, introduction of supercapacitors and review of advance fluorescent chemosensors for detecting metal ions in the aqueous solution in the recent years;
     2, A series of3D CoxNi1-xDHs/NiCo2O4/CFP hybrid composite electrodes have been prepared by using a facile hydrothermal synthesis and an electrodeposition process. These hybrid composite electrodes exhibit high performance in a three-electrode cell.
     3, hybrid composites Ni(OH)2/Co3O4and Ni(OH)2/NiCo204directly grown on CFP were used as electrodes for supercapacitors. The electrochemical performances of the Ni(OH)2/NiCo2O4/CFP are better than those of the Ni(OH)2/Co3O4/CFP electrode, demonstrating higher specific capacitance and rate capability The capacitance retention is about79%as the cycling current density was increased from2mA/cm2to50mA./cm2.
     4, Single-crystalline SnSe2nanoplates were synthesized by a noncatalytic vapor deposition process and demonstrated a strong mediation effect of the substrate for the growth. The effect of substrates is evidenced by a temperature dependent morphological difference in the nanoplates grown on mica and silicon substrates. Our analysis indicates that the observed temperature-dependent morphological difference can be specifically linked to the surface migration of SnSe2adatoms.
     5, Two rhodamine-based fluorogenic probe bearing the quinaldine unit (LI) and furan unit (L2), were developed as turn-on fluorescent chemosensors for Cu2+. Upon binding with Cu2+, comparable amplifications of absorption and fluorescence signals were observed, which suggest that chemosensors L1and L2effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu2+. Importantly, L1and L2can selectively respond to Cu2+over other commonly coexistent metal ions (such as K, Ca2+, Mg2+, Ni2+, Co2+, Mn2+, Fe2+, Fe3+, Hg2+, Zn2+, Cr3+) in aqueous media with a rapid response time (<2min). In addition, biological imaging studies using living cells to monitor Cu2+are successfully demonstrated.
     6, A sulfide rhodamine derivate L3was successfully synthesized. This molecular shows excellent sensitivity and highly selectivity for Cu2+in the aqueous solution. We also assume the mechanism of L3response to Cu2+by three steps, Cu2+-promoted ring opening, redox and hydrolysis reactions from the ESI-mass spectrometry. In addition, the biological imaging study has demonstrated that L3can detect Cu2+in the living cells.
     7, A new fluorescent sensor L4based on coumarin was synthesized. It shows high sensitivity and selectivity toward Cu2+in aqueous solution. The complexation mode and corresponding quenching mechanismwere elucidated by ESIMS and DFT calculations. In addition, the response of the L4-Cu2+complex toward physiologically and environmentally important anions was investigated through fluorescence spectra. The results indicated that only S2-and P2O72-can efficiently enhance the fluorescence intensity of the L4-Cu system over other anions.
     8, A Fe3+chemosensor (L6) was successfully synthesized with a quinoline moiety bound to rhodamine6G hydrazide. This sensor shows high selectivity and sensitivity to Fe3+in aqueous solution in the presence of other trace metal ions in organisms, abundant cellular cations and prevalent toxic metal ions in the environment.
引文
[1]Conway, B. E. Electrochemical Supercapacitors, NewYork, Kluwer Academic/Plenum Publishers,1999.
    [2]Kotz, R., Carlen Principles and applications of electrochemical capacitors [Jj. Electrochemictry. Acta,2000,45:2483-2498.
    [3]Conway, B.E. Transition from "supercapacitors" to " battery" behavior in electrochemical energy storage[J], Journal of The Electrochemical.Society.1999,138:1539-1548.
    [4]Song, C.S. Fuel Processing for low-temperature and high-temperature fuel cells:Challenges and Opportunities for sustainable development in the 21st centure [J]. Catalysis Today,2002, 77:17-49.
    [5]Winter, M., Brodd, R. J. What are batteries,Fuel Cells,and supercaapcitors [J]. Chemistry. Reviews.2004,104:4245-4269.
    [6]Schaller, K.V., Gruber, C. Fuel cell drive and high dynamic energy storage systems-opportunities for the future eity bus [J].Fuel Cells Bulletin,2000,3:9-13.
    [7]Gutmann, G. Hybrid electric vehivles and electrochemical storage systems-a technology Push-Pull Couple [J]. Journal of Power Sources.1999,84:275-279.
    [8]Lam, L.T., Newnham, R.H., Ozgun. H., Fleming, F.A. Advanced design of valve-regulated lead-acid Battery for hybrid electric vehicles [J]. Journal of Power Sources.2000,88:92-97.
    [9]Ito, Y., Nakao, H., Soga, Y. Power train system installed on a concept car for improving the fuel economy[J]. Journal Society of Automobile Engineers of Japan.1997,51:19-23.
    [10]Nishino, A. Capacitors:operating principles, current market and technical trends [J]. Journal of Power Sources.1996,60:137-147.
    [11]Tian, B., Liu, X., Yang, H. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Advanced. Materials.2003, 15:1370-1374.
    [12]Tian, Z. R., Tong, W., Wang, J. Y. Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts [J]. Science,1997,276:926-930.
    [13]Rudge, A., Raistrick, I., Gottesfeld, S. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors [J]. Electrochimical. Acta,1994,39: 273-287.
    [14]Zheng, J. P., Cygan, P. J., Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. Journal of Electrochemistry Society.1995,142:2699-2703.
    [15]Zheng J P, Jow T R. High energy and high power density electrochemical capacitors [J]. Journal of Power Sources.1996,62:155-159.
    [16]Yuan, C, Yang, L., Hou, L., Shen, L., Zhang, X., Lou, X. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam forhigh-performance electrochemical capacitors[J]. Energy Environment&Science.2012,5:7883-7887.
    [17]Yu, G H., Hu, L. B., Vosgueritchian, M., Wang, H. L., Xie, X., McDonough, J. R., Cui, Y., Bo, Z. N. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors[J]. Nano Letters.2011,11:2905-2911.
    [18]Boukhalfa, S., Evanoff, K., Yushin, G. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes[J]. Energy Environment&Science.2012,5: 6872-6879.
    [19]Shirakawa, H., Louis, E. J., Macdiarmid, G., Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x[J]. Chemical. Communications.1977,16: 578-580.
    [20]Fusalba, F., Ho, H. A., Breau, L. Poly(cyano-substituted diheteroareneethylene) as active electrode material for electrochemical supercapacitors [J]. Chemistry of Materials.2000,12: 2581-2589.
    [21]Soudan, P., Ho, H. A., Breau, L, et al. Chemical synthesis and electrochemical properties of poly(cyano-substituted-diheteroareneethylene) as conducting polymers for electrochemical supercapacitors [J]. Journal of The Electrochemical. Society.2001,148:A775-A782.
    [22]Soudan, P., Lucas, P., Ho, H. A, et al. Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors [J]. Journal of Materials Chemistry.2001,11:773-782.
    [23]徐筱杰,超分子建筑—从分子到材料.北京:科学技术文献出版社,2000
    [24]Gunatatne, D. S. A. P., Gunnlauggson, H. Q. N. Signsaling Reeognition Event with Fluoreseent Sensors and Switehes[J]. Chemistry. Review.1997,97:1515-1566.
    [25]刘育,尤长城,张衡益,超分子化学—合成受体的分子识别和组装[M].南开大学出版社,2001年
    [26]吴世康,超分光化学导论—基础与应用.[M].北京科学出版社,2005年.
    [27]Sahoo,S. K., Sharma. D., Bera, R. K., Crisponic, G., Callan, J. F. Iron(Ⅲ) selective molecular and supramolecular fluorescent probes[J]. Chemical. Society. Reviews.2012,41:7195-7227.
    [28]deSilva. A. P., Fox. D. B.. Moody.T. The development of molecular fluoerscnet switches[J]. Trends Biotecnliol.2001,19:29-34.
    [29]Fernig, B. L. Molecular Switches[M]. Wilye-Vchverlga GmbH,2001. [30] Zheng, H., Zhan, X.Q., Bian,Q. N., Zhang, X.J. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors[J]. Chemical. Communications.2012,49: 429-447.
    [31]Todd Bronson, R., Michaelis, D. J., Lamb, R. D.,. Husseini, G. A., Farnsworth, P. B., Linford, M. R., Izatt, R. M., Bradshaw, J. S., Savage, P. B. Efficient Immobilization of a Cadmium Chemosensor in a Thin Film:Generation of a Cadmium Sensor Prototype[J]. Organic. Letters. 2005,7(6):1105-1108.
    [32]Choi, M., Kim, M., Chung, H. J., Yoon. J. A New Reverse PET Chemosensor and Its Chelatoselective Aromatic Cadmiation[J]. Organic. Letters.2001,3(22):3455-3457.
    [33]Lu, Y., Huang, S., Liu. Y., He,S., Zhao, L., Zeng, X. Highly Selective and Sensitive Fluorescent Turn-on Chemosensor for Al3+ Based on a Novel Photoinduced Electron Transfer Approach[J]. Organic. Letters.2011,13(19):5247-5277.
    [34]Shammai, S. Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems:Solution and Supersonic Jet Studies[J]. Chemical. Reviews. 1996,96:1953-1976.
    [35]Szollosi. J., Damjanovich, S., Matyus, L., Application offluorescence resonance energy transfer in the clinical laboratory:routine and research [J]. Cytometry 1998; 34:159-179.
    [36]徐兆超,基于ICT萘酰亚胺阳离子比率荧光探针的研究[博士学位论文],2006.
    [37]Yuan, L., Lin, W. Y., Zheng, K. FRET-Based Small-Molecule Fluorescent Probes:Rational Design and Bioimaging Applications [J]. Accounts Of Chemical Research.2013,46:1462-1473.
    [38]Chen, C.T., Huang, W. P. A Highly Selective Fluorescent Chemosensor for Lead Ions [J]. Journal of the American Chemical Society.2002,124:6246-6247.
    [39]Taki, a., Desaki, M., Ojida, A. S. I., Yamamoto, Y. Fluorescence Imaging of Intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor [J]. Journal of the American Chemical Society.2008,130:12564-12565.
    [40]赵春柳,张桂兰,袁中香等.激发态分子内质子转移有机分子的研究进展.光电子激光.1999,10:380-384.
    [41]吕凤婷,高莉宁,房喻.基于激发态分子内质子转移的新一代荧光探针.化学进展.200,5 17:773-77
    [42]Chowdhurya, P., Panjaa, S., Chatterjeeb, A., Bhattacharya, P., Sankar Chakravorti, S. Prototropism in 2-acetyl benzimidazole and 2-benzoyl benzimidazole [J]. Journal of Photochemistry and Photobiology A:Chemistry.2005,170:131-141.
    [43]Henary, M. M., Fahrni, C. J., Excited State Intramolecular Proton Transfer and Metal Ion Complexation of 2-(2'-Hydroxyphenyl)benzazoles in Aqueous Solution [J]. Journal. Physical.Chemistry.A.2002,106:5210-5220.
    [44]Fahrni, C. J., Henary, M. M. VanDerveer, D. G. Excited-State Intramolecular Proton Transfer in 2-(2'-Tosylaminophenyl) benzimidazole [J]. Journal. Physical.Chemistry.A.2002 106:7655-7663.
    [45]Gerard, B., Jones, G., Porco Jr, J. A. A Biomimetic Approach to the Rocaglamides Employing Photogeneration of Oxidopyryliums Derived from 3-Hydroxyflavones [J]. Journal of the American Chemical Society.2004,126:13620-13621.
    [46]Peng, X. J., Wu, Y. K., Fan, J. L., Tian, M. Z., Han, K. Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Tuning Selectivity in Proton Transfer [J]. Journal of Organic Chemistry.2005,70:10524-10531.
    [47]Xu, Z.C., Qian, X. H., Cui, J. N. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore [J]. Organic. Letters.2005,14:3029-3033
    [48]Xu, Z. C., Xiao, Y., Qian, X. H., Cui, J. N., Cui, D. W. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Organic. Letters.2005,14:889-892.
    [49]俞鸿安,固相法制造水溶性磺化铜酞著染料的方法和所用催化剂,染料工业,1991年第四期.
    [50]Zeng, L., Miller, E. W., Pralle, A., Isacoff, E.Y., Chang, C. J. A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells [J]. Journal of the American Chemical Society.2006, 128:10-11.
    [51]Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R.Y. Creating new fluorescent probes for cell biology[J]. Nature Review Molecular cell biology.2002,3:906-917.
    [52]Fan, J. L., Zhan, Peng., Hu, M. M., Sun, W., Tang, J. Z., Wang, J. Y, Sun, S. G., Song, F. L., Peng, X. J. A Fluorescent Ratiometric Chemodosimeter for Cu2+ Based on TBET and Its Application in Living Cells [J]. Organic Letters.2013,3:492-495.
    [53]Wu, C., Bian, Q. N., Zhang, B. G., Cai, X., Zhang, S. D., Zheng, H., Yang, S.Y., Jiang, Y. B., Ring Expansion of Spiro-thiolactam in Rhodamine Scaffold:Switching the Recognition Preference by Adding One Atom [J]. Organic Letters.2012,16:4198-4201.
    [54]Kumar, M., Kumar, N., Bhalla, V., Sharma, P. R., Kaur, T. Highly Selective Fluorescence Turn-on Chemodosimeter Based on Rhodamine for Nanomolar Detection of Copper Ions[J]. Organic Letters.2012,1:406-409.
    [55]Yang, H., Zhou, Z.G., Huang, K.W., Yu, M. X., Li, F. Y., Yi, T., Huang, C. H. Multisignaling Optical-Electrochemical Sensor for Hg2+ Based on a Rhodamine Derivative with a Ferrocene Unit[J]. Organic Letters.2007,23:4729-4732.
    [56]Huang, K.W., Yang, H., Zhou, Z. G., Yu, M., Li, F.Y., Gao, X., Yi, T., Huang, C. H., Multisignal Chemosensor for Cr3+ and Its Application in Bioimaging [J]. Organic Letters.2008, 12:2557-2560.
    [57]Kwon, J. Y., Jang,Y. J., Lee,Y. J., Kim, K. M., Seo, M. S., Nam, W., Yoon, J. Y, A Highly Selective Fluorescent Chemosensor for Pb2+[J]. Journal of the American Chemical Society. 2005,127:10107-10111.
    [58]Xiang,Y, Tong, A. J. A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ-Amplified Fluorescence [J]. Organic Letters.2006,8:1549-1552.
    [59]Cai, S.T., Lu,Y, He,S., Wei, F. F., Zhao, L., Zeng, X. H. A highly sensitive and selective turn-on fluorescent chemosensor for palladium based on a phosphine-rhodamine conjugate[J]. Chemistry. Communication.2013,49:822-824.
    [60]Yang, Y. K., Cho, H. J., Lee, J., Shin, I., Tae, J. A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings [J]. Organic Letters.2009,11:859-861.
    [6139]Zheng, H., Shang, G. Q., Yang, S. Y., Gao, X., Xu J. G., Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction[J]. Organic Letters.2008,10:2357-2360.
    [62]Wang, J. L., Lin, W. Y, Yuan, L., Song, J., Gao, W. S. Development of a reversible fluorescent gold sensor with high selectivity [J]. Chemistry. Communication.2011, 47:12506-12508.
    [63]Chatterjee, A., Santra, M., Won, N., Kim, S., Kim, J. K., Kim, S. B., Ahn, K. Selective Fluorogenic and Chromogenic Probe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media[J]. Journal of the American Chemical Society.2009,131:2040-2041.
    [64]Wu, J. S., Liu,W. M., Zhuang, X. Q., Wang, F., Wang, P. F., Tao, S. L., Zhang, X. H., Wu, S. K., Lee, S. T., Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization [J]. Organic Letters.2007,9:33-36.
    [65]Li, G. P., Zhu, D. J., Liu,Q., Xue, L., Jiang H., A Strategy for Highly Selective Detection and Imaging of Hypochlorite Using Selenoxide Elimination[J]. Organic Letters.2008,15: 2002-2005.
    [66]Zhou, Y., Liu, K., Li, J. Y., Fang, Y., Zhao, T. C., Yao C. Visualization of Nitroxyl in Living Cells by a Chelated Copper(II) Coumarin Complex[J]. Organic Letters.2011,13:1290-1293.
    [67]Huang, S., He, S., Lu,Y, Wei, F., Zeng, X. S., Zhao, L. C., Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin-Se2N chelating conjugate[J]. Chemistry. Communication.2011,47:2408-2410.
    [1]Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., Liu M. L., Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors[J]. Nano Letters.2013,13:3135-3139.
    [2]Wang, X. D., Song, J. H., Liu, J., Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves [J]. Science.2007,316:102-105.
    [3]Chan, C., Peng, H.; Liu, G., Mcilwrath, K., Zhang, X., Huggins, R., Cui, Y. High-performance lithium battery anodes using silicon nanowires[J]. Nature. Nanotechnology. 2008,3:31-35.
    [4]Wang, Z. L., Song, J. H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J]. Science.2006,312:242-246.
    [5]Xia, C., Liu, M. L. Novel Cathodes for Low-Temperature Solid Oxide Fuel Cells [J]. Advance.Materials.2002,4:521-523.
    [6]Dresselhaus, M. S., Thomas, I. L. Alternative energy technologies[J]. Nature.2001,414: 332-337.
    [7]Bae, J., Song, M. K., Park, Y J., Kim, J. M., Liu, M. L., Wang, Z. L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage[J]. Angewandte. Chemie. International. Edition.2011,50:1683-1687.
    [8]Conway, B. E. Electrochemical Supercapacitors, NewYork, Kluwer Academic/Plenum Publishers,1999.
    [9]Kotz, R., Carlen Principles and applications of electrochemical capacitors [J]. Electrochemictry. Acta,2000,45:2483-2498.
    [10]Conway, B.E. Transition from "supercapacitors" to " battery" behavior in electrochemical energy storage[J]. Journal. Electrochemical.Society.1999,138:1539-1548.
    [11]Song C.S. Fuel Processing for low-temperature and high-temperature fuel cells:Challenges and Opportunities for sustainable development in the 21st centure [J]. Catalysis Today,2002, 77:17-49.
    [12]Winter, M., Brodd, R. J. What are batteries,Fuel Cells,and supercaapcitors [J]. Chemistry. Reviews.2004,104:4245-4269.
    [13]Schaller, K.V., Gruber, C. Fuel cell drive and high dynamic energy storage systems-opportunities for the future eity bus [J].Fuel Cells Bulletin,2000,3:9-13.
    [14]Gutmann, G. Hybrid electric vehivles and electrochemical storage systems-a technology Push-Pull Couple [J]. Journal of Power Sources.1999,84:275-279.
    [15]Lam, L.T., Newnham, R.H., Ozgun. H., Fleming, F.A. Advanced design of valve-regulated lead-acid Battery for hybrid electric vehicles [J]. Journal of Power Sources.2000,88:92-97.
    [16]Guan, C., Liu, J. P., Cheng, C. W., Li, H. X., Li, X. L., Zhou, W., Zhang, H., Fan, H. J., Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor [J]. Energy. Environment. Science.2011,4:4496-4499.
    [17]Liu, J. P., Jiang, J., Cheng, C., Li, H. X., Zhang, J., Gong, H., Fan, H. J. Co304 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays:A New Class of High-Performance Pseudocapacitive Materials[J]. Advance. Materials.2011,23:2076-2081.
    [1]Wang, G.P., Zhang, L., Zhang, J. J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical. Society. Reviews.2012,41:797-828.
    [2]Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G, Huang, J., Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature.2007,449:885-889.
    [3]Wang, X. D., Song, J. H., Liu, J., Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves [J]. Science.2007,316:102-105.
    [4]Winter,M., Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors?[J]. Chemical. Reviews.2004,104:4245-4269.
    [5]Stoller, M.D., Ruoff, R.S. Best practice methods for determining an electrode material's performance for ultracapacitors [J]. Energy&Environment Science.2010,3:1294-1301.
    [6]Choi, D., Kumta, P. N. Electrochem. Chemically Synthesized Nanostructured VN for Pseudocapacitor Application[J]. Electrochemical Solid-State Lett.2005,8:A418-A422.
    [7]Wei,W. F., Cui, X., Chen, W., Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitorelectrodes[J]. Chemical. Society. Reviews.2011,40:1697-1721.
    [8]Simon, P., Gogotsi,Y. Materials for electrochemical capacitors[J]. Nature. Materials.2008,7, 845-854.
    [9]Zheng, J. P. Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors[J]. Electrochemical.Solid-State Lett.1999,2:359-361.
    [10]Yu,G. H., Xie, X., Bao, Z. N., Cui,Y. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy.2013,2:213-234.
    [11]Huang, L., Chen, D. C., Ding, Y., Feng, S., Wang, Z. L., Liu, M. L. Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo204 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors[J]. Nano Letters.2013,13:3135-3139.
    [12]Yang,L., Cheng, S., Ding. Y., Zhu, X. B., Wang, Z. L., Liu, M. L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors[J]. Nano Letters.2012,12:321-325.
    [13]Zhou, W. J., Cao, X.; Zeng, Z. Y, Shi, W. H., Zhu, Y. Y, Yan, Q. Y, Liu, H. Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J].Energy&Environment Science.2013,6:2216-2221.
    [14]Wang, H, L., Casalongue, H. S., Liang, YY, Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society.2010,132:7472-7477.
    [15]Xu,J., Wang, Q. R, Wang, X. W, Xiang, Q. Y, Liang, B., Chen, Di., Shen, G. Z. Flexible Asymmetric Supercapacitors Based upon Co9S8Nanorod//Co3O4@RuO2 Nanosheet Arrays on Carbon Cloth[J]. ACS Nano.2013,7:5453-5462.
    [16]Yuan, C. Z., Li, J.Y; Hou, L.R., Zhang, X. G., Shen, L.F., Lou, X. W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors[J]. Advanced. Functional. Materials.2012,22,4592-4597.
    [17]Shang, C.Q., Dong,S., Wang, S., Xiao, D. D., Han, P. X. Wang. X. G. Lin, G., Cui,G. L. Coaxial NixCo2x(OH)6x/TiN Nanotube Arrays as Supercapacitor Electrodes[J]. ACS Nano.2013, 7:5430-5436.
    [18]Zhou, C., Zhang, Y. W., Li, Y Y, Liu, J. P. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters.2013,13:2078-2085.
    [19]Tian, W., Wang, X., Zhi, C.Y, Zhai, T. Y, Liu, D. Q., Zhang, C., Golberg, D.; Bando, Y. Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitorelectrodes[J].Nano Energy. http://dx.doi.org/10.1016/j.nanoen.2013.01.004
    [20]Guan, C., Li, X. L., Wang, Z. L., Cao, X. H., Soci, C., Zhang, H., Fan, H. J. Nanoporous Walls on Macroporous Foam:Rational Design of Electrodes to Push Areal Pseudocapacitance[J]. Advanced. Materials.2012,24:4186-4190.
    [21]Tang, Z., Tang, C. H., Gong, H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes[J]. Advanced. Functional. Materials. 2012,22:1272-1278.
    [22]Liu, J. P., Jiang, J., Cheng,C. W., Li, H. G., Zhang, J. X., Fan, H. J. Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays:A New Class of High-Performance Pseudocapacitive Materials[J]. Advanced. Materials.2011,23:2076-2081.
    [23]Guan, C., Liu, J. P., Cheng, C.W., Li, H. X., Li, X. L., Zhou,W. W., Zhang, H.,Fan, H. J.Hybrid structure of cobalt monoxide nanowire@ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor[J]. Energy&Environment Science.2011, 4:4496-4499.
    [1]Huang, L., Yu, Y., Li, C., Cao, L. Y., Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates:A Case Study of SnSe2[J]. Journal of Physics Chemistry C.2013,117:6469-6475.
    [2]Zhang, Y. B., Tan, Y. W., Stormer, H. L., Kim, P. Experimental Observation of The Quantum Hall Effect and Berry's Phase in Graphene[J]. Nature.2005,438:201-204.
    [3]Matte, H. S. S. R., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., Rao, C. N. R. MoS2 and WS2 Analogues of Graphene[J]. Angewandte Chemie International Edition.2010, 49,4059-4062.
    [4]Auerbach, S. M., Carrado, K. A., Dutta, P. K. Handbook of Layered Materials; CRC Press: New York,2004.
    [5]Zhao, W., Ghorannevis, Z., Chu, L.; Toh, M., Kloc, C., Tan, P.-H., Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2[J]. ACS Nano 2013,7:791-797.
    [6]Han, S. W., Kwon, H., Kim, S. K.; Ryu, S., Yun, W. S., Kim, D. H, Hwang, J. H., Kang, J. S., Baik, J., Shin, H. J., et al. Band-gap Transition Induced by Interlayer van der Waals Interaction in MoS2[J]. Physical. Reviews. B.2011,84:045409.
    [7]Coehoorn, R., Haas, C., Degroot, R. A. Electronic-Structure of MoSe2, MoS2, and WSe2 The Nature of the Optical Band-Gaps.Physical. Reviews. B.1987,35:6203-6206.
    [8]Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Atomically Thin MoS2:A New Direct-Gap Semiconductor[J]. Physical Reviews Letter.2010,105:136805.
    [9]Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D., Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides[J]. Phys. Rev. Lett.2012,108:196802.
    [10]Zeng, H. L., Dai, J. F., Yao, W., Xiao, D., Cui, X. D. Valley Polarization in MoS2Monolayers by Optical Pumping[J]. Nature. Nanotechnology.2012,7:490-493.
    [11]Mak, K. F., He, K. L., Shan, J., Heinz, T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity[J]. Nature. Nanotechnology.2012,7,494-498.
    [12]Peng, H. L., Lai, K. J., Kong, D. S., Meister, S., Chen, Y. L., Qi, X. L., Zhang, S. C., Shen, Z. X., Cui, Y. Aharonov-Bohm Interference in Topological Insulator Nanoribbons[J]. Nature. Materials.2010,9:225-229.
    [13]Zhou, W., Yin, Z., Du, Y, Huang, X., Zeng, Z., Fan, Z., Liu, H., Wang, J., Zhang, H. Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities[J]. Small 2013,9:140-147.
    [14]Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. Single-layer MoS2 Transistors[J]. Nature. Nanotechnology.2011,6:147-150.
    [15]Osada, M., Sasaki, T. Two-Dimensional Dielectric Nanosheets:Novel Nanoelectronics From Nanocrystal Building Blocks[J]. Advanced. Materials.2012,24:210-228.
    [16]Kim, S., Konar, A., Hwang, W.-S., Lee, J. H., Lee, J.; Yang, J., Jung, C., Kim, H., Yoo, i.-B., Choi, J.-Y, et al. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS2 Crystals[J]. Nature. Communctions.2012,3:1011.
    [17]Pu, J., Yomogida, Y, Liu, K. K., Li, L. J., Iwasa, Y., Takenobu, T. Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics[J]. Nano Letters.2012,12:4013-4017.
    [18]Wang, H., Yu, L., Lee, Y.-H., Shi, Y, Hsu, A., Chin, M. L., Li, L.-J., Dubey, M., Kong, J., Palacios, T. Integrated Circuits Based on Bilayer MoS2 Transistors[J]. Nano Letters.2012,12: 4674-4680.
    [19]Fang, H., Chuang, S., Chang, T. C., Takei, K., Takahashi, T., Javey, A. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts[J]. Nano Letters.2012,12: 3788-3792.
    [20]Splendiani, A., Sun, L., Zhang, Y, Li, T, Kim, J., Chim, C.-Y, Galli, G, Wang, F. Emerging Photoluminescence in Monolayer MoS2[J]. Nano Letters.2010,10:1271-1275.
    [21]Yin, Z. Y, Li, H., Li, H.; Jiang, L., Shi, Y M., Sun, Y. H., Lu, G., Zhang, Q., Chen, X. D., Zhang, H. Single-Layer MoS2 Phototransistors[J]. ACS Nano.2012,6:74-80.
    [22]Lee, H. S., Min, S. W., Chang, Y. G., Park, M. K., Nam, T., Kim, H., Kim, J. H., Ryu, S., Im, S. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap[J]. Nano Letters.2012,12:3695-3700.
    [23]Liu, J., Liu, X.-W. Two-Dimensional Nanoarchitectures for Lithium Storage[J]. Advanced. Materials.2012,24:4097-4111.
    [24]Chang, K., Chen, W. X. In situ Synthesis of MoS2/Graphene Nanosheet Composites with Extraordinarily High Electrochemical Performance for Lithium Ion Batteries[J]. Chemistry. Communication.2011,47:4252-4254.
    [25]Cui, Y, Lauhon, L. J., Gudiksen, M. S., Wang, J., Lieber, C. M. Diameter-controlled Synthesis of Single-crystal Silicon Nanowires[J]. Applied. Physics. Letters.2001,78:2214.
    [26]Kong, J., Cassell, A. M., Dai, H. J. Chemical Vapor Deposition of Methane for Single-walled Carbon Nanotubes[J]. Chemical Physics Letters.1998,292:567-574.
    [27]Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science.2009,324:1312-1314.
    [1]Huang, L., Wang, X., Xie, G., Xi, P., Li, Z., Xu, M., Wu, Y., Bai, D., Zeng, Z. Z. a new rhodamine-based chemosensor for Cu2+ and the study of its behaviour in living cells[J]. Dalton Transactions.2010,39:7894-7896.
    [2]Huang, L., Chen, F., Xi, P., Xie, G., Li, Z., Xu, M., Liu, H., Ma, Z., Bai, D., Zeng, Z. Z. A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging[J]. Dyes and Pigments.2011,90:265-268.
    [3]Vulpe, C.,Levnison, B.,Whiniey, S.Nat. Genet.1993,3:7-13.
    [4]Valentine, J. S., Hart, P. J. Pore.Nati.Acda.Sei.U.S.A.2003,100:3617-3622.
    [5]Borwn, D. R., Kozlwoski, H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases[J]. Dalton. Transactions. 2004,1907-1917.
    [6]Arthur, W., Varnes, R.B., Wehry, E. L. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies[J]. Journal of the American Chemical Society.1972,94:946-950.
    [7]Pourreza, N., Hoveizavi, R. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination[J]. Analytica Chimica Acta,2005,549(1):124-128
    [8]Becker, J. S., Zoriy, M. V., Pickhardt, C. et al. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry[J]. Analytical Chemistry,2005,77: 3208-3216.
    [9]Romani, J. O.s Moreda, A. P., Barrera, A. B., et al. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination[J]. Analytica Chimica Acta,2005,536:213-218.
    [10]Pinto, J. J., Moreno, C., Garcia, V. M. A very sensitive flow system for the direct determination of copper in natural waters based on spectrophotometric detection[J]. Talanta,2004,64:562-565.
    [11]Beni, V., Ogurtsov, V. I., Bakunin, N, V., et al. Development of a portable electroanalytical system for the stripping voltammetry of metals:determination of copper in acetic acid soil extracts. Analytica Chimica Acta,2005,552:190-200.
    [12]Xiang, Y., Tong, A. J. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity. Organic Letters,2006,13:2863-2866.
    [13]Huang, L., Wang, X., Xie, G. Q., Zeng, Z.Z. A new rhodamine-based chemosensor for Cu2+ and the study of its behavior in living cells[J]. Dalton. Transactions.2010,39:7894-7896.
    [14]Huang, L.,Chen, F. J., Xi, P.X., Zeng, Z.Z. A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging[J]. Dyes and Pigments.2011, 90:265-268.
    [15]Lakowicz, J. R. Principles of fluorescence spectroscopy.3rd ed. New York: Springer.2006, p67.
    [16]Olga, A. E., Hyewon, S., Amrita, C., Kyo, H. A. Reaction-based fluorescent sensingof Au(Ⅰ)/Au(Ⅲ) species:mechanistic implications on vinylgold intermediates[J].Organic Letters.2010,12:401-403.
    [1]Yang, Y. K., Yook, K. J., Tae, J. S. A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media [J]. Journal of the American Chemical Society.2005,127:16760-16761
    [2]Huang, L., Hou, F., Xi, P., Bai, D., Xu, M., Li, Z., Xie, G., Shi, Y., Liu, H., Zeng, Z. Z. A rhodamine-based "turn-on" fluorescent chemodosimeter for Cu2+ and its application in living cell imaging[J]. Journal of Inorganic Biochemistry,2011,105, 800-805.
    [3]Yang, Y. K., Cho, H. J., Lee, J., Shin, I., Tae, J. A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings[J]. Organic Letters.2009,11:859-861.
    [1]Huang, L., Cheng, J., Xie, K., Xi, P., Hou, F., Li, Z., Xie, G., Shi, Y., Liu, H., Bai, D., Zeng, Z. Z. Cu2+-selective fluorescent chemosensor based on coumarin and its application in bioimaging[J]. Dalton Transactions.2011,40:10815-10817.
    [2]Frisch, M., Trucks, G, Schlegel, H., Scuseria, G, Robb, M., Cheeseman, J., Scalmani, G, Barone, V., Mennucci, B. Petersson, G. Gaussian 09; Gaussian [J]. Inc.: Wallingford, CT.2009.
    [3]Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange [J]. The Journal of Chemical Physics.1993,98(7):5648-5652.
    [4]Hay, P. J. Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. The Journal of Chemical Physics.1985, 82(1):270-283.
    [1]Huang, L., Hou, F., Cheng, J., Xi, P., Chen, F., Bai, D., Zeng, Z. Z. Selective off-on fluorescent chemosensor for detection of Fe3+ ions in aqueous media[J]. Organic&Biomolecular Chemistry.2012,10:9634-9638.
    [2]Weizman, H., Ardon, O., Mester, B., Libman, J., Dwir, O., Hadar, Y, Chen, Y., Shanzer, A. Fluorescently-Labeled Ferrichrome Analogs as Probes for Receptor-Mediated, Microbial Iron Uptake[J]. Journal of The American Chemical Society.1996,118:12368-12375.
    [3]Williams, J. S. R., The Blologleal Chemistry of the Elements:The Inorganic Chemistry of Life. Claredon Press, Oxford,1991.
    [4]Zhou,Y, Wang, F., Kim, Y, Kim, S. J., Yoon, J. Cu2+-Selective Ratiometric and "OfF-On" Sensor Based on the Rhodamine Derivative Bearing Pyrene Group[J]. Organic Letters.2009, 11:4442-4445.
    [5]Burdette, S. C., Frederickson, C. J., Bu, W., Lippard, S. J. ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr Family[J]. Journal of The American Chemical Society.2003,125:1778-1787.
    [6]Rurack, K., Kollmannsberger, M., Resch-Genger, U. A Selective and Sensitive Fluoroionophore for HgⅡ, AgI, and Cull with Virtually Decoupled Fluorophore and Receptor Units[J]. Journal of The American Chemical Society.2000,122:968-969.
    [7]Ma, Y, Luo,W., Quinn, P. J., Liu, Z., Hider, R. C. Design, Synthesis, Physicochemical Properties, and Evaluation of Novel Iron Chelators with Fluorescent Sensors[J]. Journal of Medicinal Chemistry.2004,47:6349-6362.
    [8]Tumambac, G E., Rosencrance, C. M., Wolf, C. Selective metal ion recognition using a fluorescent 1,8-diquinolylnaphthalene-derived sensor in aqueous solution[J]. Tetrahedron.2004, 60:11293-11297.
    [9]Mao, J., Wang, L., Dou, W., Tang, X., Yan, Y., Liu, W. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III)[J]. Organic Letters.2007,9:4567-4570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700