铬—铁异核配合物鞣剂制备、结构、性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的皮革鞣剂中金属配合物鞣剂占有极其重要的地位。迄今被应用和研究的金属配合物鞣剂主要有铬配合物、铝配合物、锆配合物、钛配合物、铁配合物、稀土配合物鞣剂等。当今工业化鞣制中占主导地位的金属配合物鞣剂毫无争议的当属铬鞣剂,其次为广泛应用于毛皮鞣制的铝鞣剂,再其次是锆鞣剂和钛鞣剂,铁鞣剂则几起几落颇受争议。鞣剂的鞣性和对环境、对人类健康的影响程度决定其作为鞣剂今后发展的前途与命运。已有的配合物理论和实践皆已证明Cr~(3+)配合物鞣剂的鞣性是其它金属配合物鞣剂无法超越的。但是铬作为紧缺元素和第一类有污染的重金属,使之少铬、无铬鞣成为无可争议的皮革鞣制发展方向。在少数可作为鞣剂的无机金属盐中,铁盐是唯一没有污染的金属鞣剂,但是由于铁鞣革存在明显的缺陷,所以单独的铁鞣很难得到工业化推广。在环保观念日益强化的今天,铁鞣法作为一种对环境友好的鞣制方法具有独特的优势和开发潜力,研究铬-铁结合鞣剂制备及其与植物鞣剂结合鞣制工艺及理论,实现少铬鞣和鞣制与染色一体化对于减少污染、紧缩工艺具有重要的现实意义。
     本课题研究内容分为五个部分。(1)用价键理论、配位场理论、分子轨道理论的观点,对比分析了铬、铁、铝、锆配合物等作为皮革鞣剂的特点,这是指导研究铬-铁异核配合物鞣剂的理论基础;(2)以柠檬酸钠、酒石酸钠作为金属配合物鞣剂蒙囿剂和桥联剂的代表,采用紫外-可见分光光度法、红外光谱法、X-射线粉末衍射法研究了在铬配合物、铁配合物溶液体系中,蒙囿剂对形成铬-铁异核配合物的桥联作用;(3)通过对比不同配体对Fe~(3+)、Fe~(2+)的配位稳定常数大小,分析了配体对Fe~(3+)/Fe~(2+)氧化还原稳定性的影响,为解决铁鞣革耐老化性问题选择蒙囿剂和鞣制方法提供理论依据;通过pH电位滴定法考察了铬-铁配合物与铬配合物、铁配合物水解过程的差异,对比研究了酒石酸钠、柠檬酸钠配位对铬配合物、铁配合物、铬-铁配合物耐碱稳定性的影响;(4)通过正交试验和均匀试验,极差分析、方差分析、回归分析等,建立了用铬革屑作为还原剂制备铬鞣剂时硫酸和革屑用量、反应时间、温度等因素对革屑作为还原剂时对红矾还原率、所制铬鞣剂碱度的影响规律。在此基础上研究利用铬革屑和硫酸亚铁作还原剂,两步法还原合成铬-铁异核配合物鞣剂的方法。采用pH电位滴定、紫外-可见光谱分析、离子交换树脂分离等手段考察了制备的铬-铁异核配合物鞣剂的稳定性、结构、gh组成。采用不同的老化手段、DSC分析、物理机械性能测试等对比了铬-铁鞣剂与普通铬鞣剂和硫酸铁鞣革的耐热空气老化、湿热老化、热氧老化性及热稳定性,物理机械性能等。采用原子吸收光谱法、凯氏定氮法测定和对比了新型铬-铁鞣剂与普通铬鞣剂鞣制废液的铬含量与氮含量。(5)研究用自制铬-铁异核配合物鞣剂分别与荆树皮、落叶松、坚木、栗木、橡椀、刺云实、漆叶、杨梅、柚柑、相思树皮10种栲胶进行结合鞣制,探讨植-铬-铁结合鞣与染色一体化的可能性。研究中采用计算机测色配色软件和光谱光度仪分析了植-铬-铁结合鞣坯革对可见光谱的反射率曲线和K/S曲线,采用标准方法测定了坯革的颜色坚牢度;考察了坯革的耐热空气老化性、湿热老化性、耐热氧老化性、耐紫外光老化性等。优化了植-铬-铁结合鞣工艺,采用XRPS分析,对比了铬、铁元素在铬-铁鞣革和植-铬-铁鞣革内的分布特点;采用DSC分析对比铬-铁鞣革、植-铬-铁鞣革以及引入不同合成鞣剂和树脂鞣剂的结合鞣革耐热稳定性差异。采用FESEM分析对比了不同鞣剂存在情况下,胶原纤维的结构变化和原纤维状态。为了考察植-铬-铁结合鞣中鞣剂与胶原的反应特性,采用紫外-可见分光光度法,红外光谱分析法分析了铬鞣剂、铁鞣剂和栗木栲胶及其两两组成的组分及三组分溶液的光谱特征,铬、铁、没食子酸溶液的两两组合的组分及三组分溶液及其粉末的红外光谱特征,特别是用重量分析方法研究了植-铬-铁结合鞣中各种鞣剂与胶原的反应性,其中包括用聚酰胺作胶原酰胺基模拟物,用棉布作胶原羟基模拟物,通过模拟铬鞣、铁鞣和植鞣以及他们的结合鞣制,分析了各种鞣剂与酰胺基、羟基的反应性;用同样方法分析了各种鞣剂与去氨基皮粉,酯化皮粉和正常皮粉的反应性。从而揭示植-铬-铁结合鞣中鞣剂与胶原的反应性。
     通过上述研究得到如下主要结论:
     (1)H_2O、Cl~-、SO_4~(2-)对Fe~(3+)/Fe~(2+)氧化还原电极电势改变不大,OH-、酒石酸、柠檬酸、草酸、氨基丙酸、氨基乙酸、水杨酸、磺基水杨酸、乙二胺四乙酸、间苯二酚、没食子酸、葡萄糖醛酸等配位使Fe~(3+)/Fe~(2+)的氧化还原稳定性得到极大的提高,这对提高铁鞣革的耐老化性是有益的。
     (2)柠檬酸钠和酒石酸钠有可能在Cr~(3+)-Fe~(3+)金属离子之间产生桥联作用,使之形成Cr~(3+)-Fe~(3+)异核配合物。蒙囿剂配位后使与金属离子配位的水分子所处的配体场发生改变,内界水分子水解需要的OH-浓度多元化。与柠檬酸钠-Cr~(3+)-Fe~(3+)体系相比,酒石酸钠对Cr~(3+)-Fe~(3+)金属离子配体场的改变更大,更可能使Cr~(3+)、Fe~(3+)形成异多核配合物。
     (3)用革屑作还原剂制备铬鞣剂,反应有较好的重现性,在一定范围内硫酸和革屑用量,反应时间与铬鞣剂碱度、革屑对六价铬的还原率呈线性关系。用铬革屑和硫酸亚铁作还原剂,采用两步法还原制备铬-铁异核配合物鞣剂,固定合成反应温度为95℃、时间120min,在一定范围内通过调整硫酸和革屑用量可以达到准确控制鞣剂碱度的目的,反应重复性良好。对Cr:Fe=2:1的鞣剂,采用氧化物:酒石酸钠:柠檬酸钠=1:0.43:0.11的蒙囿剂组合效果好,蒙囿剂酸根可能作为中继基形成铬-铁异核配合物,有利于使铬-铁配合物之间产生协同效应。
     (4)用自制铬-铁异核配合物鞣剂与植物鞣剂结合鞣制,能够实现黑色、棕色革鞣制与染色一体化,减少染料用量或免去用合成染料染色工序,并适当减少铬盐用量。采用栗木-铬-铁结合鞣,栗木栲胶用量5%,铬-铁鞣剂用量折合三氧化二铬1.5%~1.8%,三氧化二铁0.7%,坯革呈纯黑色,收缩温度可达到100℃以上,手感丰满柔软,粒面细致,色牢度优良;先植鞣后铬-铁鞣制坯革综合指标优于先铬-铁鞣后植鞣坯革;对蓝湿革植复鞣,用铬-铁鞣剂显色对传统工艺变动小,容易被企业接受。植物单宁能够参与铬和铁的配位,在植-铬-铁结合鞣中,铬配合物、铁配合物以及铬-铁配合物与植物单宁之间存某种形式的结合,这种结合对鞣制能够产生良好的协同效应。植物鞣剂对胶原中的活性基团基本无选择性,铬、铁金属配合物鞣剂主要与胶原上的羧基结合,所以先植鞣、后金属鞣剂鞣,能够提高鞣剂的总结合量。
     (5)不足:对于铬-铁鞣剂中通过有机配体桥联形成铬-铁异多核配合物仅是根据紫外、红外光谱和粉末衍射结果的一种推测,没有获得更加可靠地证据;在植物鞣剂与金属配合物鞣剂结合鞣中,植物单宁与金属离子的结合研究仍不够透彻,对此类问题需要进一步深入研究。
Among so many leather tanning agents, the metal complex tanning agents hold an extremely important post. Up to now, the applied and studied metal complex tanning agents are mainly the chrome complex tanning agents, aluminum complex tanning agents, zirconium complex tanning agents, titanium complex tanning agents, ferrite complex tanning agents, and rare earth complex tanning agents. In the current industrialized tannage, there is no doubt that the chrome tanning agent is standing the leading position in the metal complex tanning agents. The secondary position is occupied by the aluminum tanning agent which has widely been used in the tanning. The following are zirconium tanning agent and titanium tanning agent. However, the ferrite tanning agent has drawn the great controversy. The effects of the tanning property of the tanning agents on the environment and human health will decide the future of the tanning agents. The present complex theory and practice have proved that the tanning property of Cr~(3+) complex tanning agent is superior to that of the other metal complex tanning agents. Chrome, as an element in short supply and the top contaminated heavy metal, will be less or no in the leather tannage, which has become the orientation for leather tannage. Among the few inorganic salines as the tanning agents, ferric salt is the only metal tanning agent without any contamination. Due to the obvious faults existing in the ferrite tanned leather, it is very difficult for the sole ferrite tannage to be industrialized widely. As the reinforcement of environment protection increasingly, ferrite tanning method, as an environment friendly tanning method, has its own special advantages and development potentials. The adoption of chrome ferrite complex tannage is practical and significant.
     This task study includes five aspects: (1) The valence bond theory, ligand field theory and the molecular orbital theory were used to compare and analyze the characteristics of chrome, ferrite, aluminum and zirconium complexes as the leather tanning agents. This provided the theoretical base leading the study on chrome-ferrite Heterocomplex tanning agents.(2) Using sodium citrate and hsodium tartrate as the representatives of masking agent and bridging agnet for metal complex, the ultraviolet visible spectrophotometry, infrared spectrometry and X-ray powder diffraction method were used to study the masking agent which had the bridging function on forming chrome-ferrite Heterocomplex in the chrome complex and ferrite complex solution systems.(3) By comparing the ligand stable constants of different ligands on Fe~(3+) and Fe2+, this task analyzed that the ligands had some effects on the oxidation-reduciton stability of Fe~(3+)/Fe2+, which provided the theoretical evidence to solve the issue of ageing resistance performing in the ferrite tanning leather, and to select masking agent and tanning methods. By pH potentiometric titration, the hydrolysis processes of chrome-ferrite complex, chrome complex and ferrite complex were all observed different. This task compared and studied the ligand of sodium tartrate and sodium citrate had some influences on the alkali-resistance stability of chrome complex, ferrite complex and chrome-ferrite complex. (4) By orthogonal experiment, homogeneity test, range analysis, variance analysis and regression analysis, when the chrome chrome shavings, as the reducing agent, was used to prepare the chrome tanning agent, the amounts of sulphuric acid and the chrome shavings, the reaction time and temperature had the regular effects on the bichromate reduction rate and the alkalinity of the as-prepared chrome tanning agent. All these were set the patterns. Basing on the above-mentioned, the chrome shavings and ferrous sulfate were studied to use used to as the reducing agents, the two-step method was to reduce and synthesize the chrome-ferrite heterocomplex tanning agent. The potentiometric titration, infrared visible spectrum analysis and ions transferring resin separating methods were used to observe the stability, structure and composition of the prepared chrome-ferrite heterocomplex tannign agents. The adoption of the different ageing methods, DSC analysis and the physical and mechanical properties testing were to compare the heat-resistance air ageing, humid ageing, thermal-oxide ageing, thermal stability and physical and mechanical properties of chrome-ferrite tanning agents with those of the ordinary chrome tanning agent and ferrous sulfate tanning leather. The atomic absorption sepctrophotometry and Kjeldahl method were used to test and compare the chrome amount and nitrogen amount in the tanning waste liquid of the novel chrome-ferrite tanning agents. (5) In this
     study, the self-made chrome-ferrite heterocaryosis complex tanning agents were used to combine and tan with the ten extracts, such as wattle bark, larch, quebracho, chestnut, valonex, tara, sumach, red bayberry, teakwood, and acacia rachi bark and to explore the possibility of chrome-ferrite-vegetable combined tannage and dyeing integration. The computer software of testing and color matching and spectrumphotometer were used to analyze the reflectivity curve and K/S curve of chrome-ferrite-vegetable combined tannage crust to the visible spectrum. The standard method was to test the color fastness of the crust, and observe the heat resistance air ageing, humid ageing, thermal oxide resistance ageing and ultraviolet resistance ageing of the crust. The chrome-ferrite combined tannage technique was optimized. XRPS analysis was used to compare the distribution characteristics of chrome and ferrite elements in the chrome-ferrite-vegetable tanning leather and chrome-ferrite-vegetable tanned leather. DSC analysis was used to compare the heat resistance stability differences of chrome-ferrite tanned leather, chrome-ferrite-vegetable tanned leather the combined tanned leather introducing different synthetic tanned agent and resin tanning agent. FESEM was used to analyze and compare the structure changes and fibril state of the collagen protein under the conditions of difference tanning agents existing. In order to explore the reaction characters of tanning agent and the collagen in the chrome-ferrite-vegetable combined tannage, ultra-violet visible spectrophotometry and infrared spectrum analysis were used to analyze the spectrum characteristics of chrome tanning agent, ferrite tanning agent, chestnut extract, and the components of two of them combination and three of them combination, and to analze the absorption characteristics of the two components of chrome, ferrite and gallic acid solution, three components of them and the powder. The gravimetric method was used to study the reactivity of the different tannig agents and the collagen in the chrome-ferrite-vegetable combined tanning, including eurelon as the collagen amidogent simulator and the cotton cloth as the collagen hydroxyl simulator. By simulating chrome tannage, ferrite tannage, vegetable tannage and their combined tannage, the reactivity of various tanning agents and amidogent and hydroxyl was analyzed. The same methods were used to analyze the reactivity of different tanning agents, deamino hide powder, esterified hide powder and the normal hide powder so as to reveal
     hthe reactivity of tanning agents and the collagen in the chrome-ferrite-vegetable tannage.
     After the above study, the conclusion is as follows:
     (1) H2O, Cl~- and SO_4~(2-) couldn’t have any effects on the electrode potential in Fe~(3+)/Fe~(2+) oxidation and reduction. The ligands among OH-, tartaric acid, citric acid, oxalic acid, amino propoinic acid, aminoacetic acid, salicylic acid, sulfosalicylic acid, EDTA (ethylenediamine tetra-acetic acid, resorcin, gallic acid and glucurionic acid had raised greatly the stability of Fe~(3+)/Fe~(2+) oxidation and reduction. Their ligands also offered some help for increasing the ageing resistance of ferrite tanned leather.
     (2)Citric acid and sodium tartaric acid might produce the bridging function between Cr~(3+)-Fe~(3+) metal ions so as to form Cr~(3+)-Fe~(3+)heterocomplex. After ligand, the masking agent made the ligand field where the water molecule liganded with the meal ions changed a lot. The OH- concentration was needed by the water molecule in the inner world when hydrolysis became multiplied. Compared with sodium citric acid-Cr~(3+)-Fe~(3+) system, the sodium tartaric acid changed greatly the ligand field of Cr~(3+)-Fe~(3+) metal ions so as to let Cr~(3+) and Fe~(3+) have the great possibility to form the hetero-multinuclear complex.
     (3)As the reducing agent to prepare the chrome tanning agent, the chrome shavings possessed the better repeatability. In a certain range, the amounts of sulphuric acid and chrome shavings, the reaction time and the alkalinity of chrome tanning agent, and the reduction rate of chrome shavings to Cr6+ all had the linear relationship. Using chrome chrome shavings and ferrous sulfate as the reducing agent, the two-step method was used to reduce and prepare the chrome-ferrite heterocomplex tanning agent. The fixed synthetic reaction temperature was 95oC and the time was 120 min. to some extent, adjusting the amounts of sulphuric acid and chrome shavings could reach the purpose that the alkalinity of tanning agents was controlled exactly. The reaction repeatability was better. For the tanning agent with Cr : Fe = 2 : 1, the masking agent with oxide : sodium tartaric acid : sodium citric acid = 1 : 0.43 : 0.11 had a very good complexing effect. The acid radical of the masking agent as the relay radical, could form the chrome-ferrite heterocomplex, which was helpful for the synergistic effect producing between chrome-ferrite complexs.
     (4)The self-made chrome-ferrite heterocomplex tanning agent and vegetable tanning agent combined tannage could realize the integration of black, brown leather tannage and dyeing so as to decrease the amounts of dyestuff or dispense the dyeing process of the synthesizing dyestuff and decrease the dosage of chrome salt appropriately. If chestnut-chrome-ferrite combined tannage was adopted, the amount of chestnut extract was 5%. The amount of chrome-ferrite tanning agent converting chromic oxide was 1.5% ~ 1.8%. The ferric oxide was 0.7%. The curst showed pure black. The contraction temperature could reach over 100 oC. The feel was full and soft. The grain was fine. The color fastness was better. The comprehensive index by the first vegetable tanning and then chrome–ferrite tanning crust was superior to that of the first chrome–ferrite tannign and then vegetable tanning crust. When the wet blue was tanned by vegetable retanning, the ferric salt coloration didn’t change the traditional process and was easy to be accepted by the enterprises. The vegetable extract might involve the ligand between chrome and ferrite. In the vegetable-chrome-ferrite combined tannage, the chrome complex, the ferrite complex and chrome-ferrite heterocomplex all possessed some combination with vegetable tannin. This combination would produce the better synergistic effect to tannage. The vegetable tanning agent had no selectivity to the active perssad radical in the collagen. The chrome and ferrite metal complex tanning agents mainly combined with the carboxyl in the collagen. Therefore, the first vegetable tanning and then metal tanning agent tanning could increase the total combined amount of tanning agents.
引文
[1]孙为银.配位化学[M].北京:化学工业出版社,2004:18
    [2]岳红.高等无机化学[M].西安:西北工业大学出版社,2000:193
    [3]北京师范大学、华中师范大学、南京师范大学无机化学教研室.无机化学[M].北京:高等教育出版社,1981: 892-893
    [4]岳红.高等无机化学[M].西安:西北工业大学出版社,2000:193
    [5]张明让,陈武勇.鞣制化学[M].北京:轻工业出版社,1999:42
    [6]孙为银.配位化学[M].北京:化学工业出版社,2004:25
    [7]孙为银.配位化学[M].北京:化学工业出版社,2004:27
    [8]北京师范大学、华中师范大学、南京师范大学无机化学教研室.无机化学[M].北京:高等教育出版社,1981: 897
    [9]岳红.高等无机化学[M].西安:西北工业大学出版社,2000:186
    [10]岳红.高等无机化学[M].西安:西北工业大学出版社,2000:188
    [11]实用化学手册[M].北京:科学出版社出版,2001: 480—540
    [12]陈武勇,李国英.鞣制化学[M].北京:轻工业出版社,2008:34
    [13]陈武勇,李国英.鞣制化学[M].北京:轻工业出版社,2008:37
    [14]石碧,狄莹,宋立江等.栲胶的化学改性及其产物在无铬少铬鞣法中的应用[J].中国皮革,2001,30(9):3-8
    [12]Shi Bi, Di Ying, He Youjie, et al. Oxidising degradation of valonia extract and utilizationof the products. Part1. Oxidising degradation of valonia extract and characterization of the products[J]. JSLTC, 2000, 84: 258-262
    [13]石碧,狄莹,宋立江等.栲胶的化学改性及其产物在无铬少铬鞣法中的应用[J].中国皮革,2001,30(9):3-8
    [14]何有节,何先祺,杨子江.用黑荆树皮栲胶制备新型蒙囿剂[J].中国皮革,1998,27(1):3-5
    [15]单志华,石碧.改性橡碗栲胶与非铬金属离子结合鞣[J].林产化学与工业,2000,20(2):5-8
    [16]何有节,唐安斌,石碧.荆树皮栲胶降解改性产物与铬结合鞣研究[J].皮革科学与工程,2001,11(4):8-12
    [17]Shi Bi, Di Ying, Song Lijiang. Oxidising degradation ofvalonia extract and utilization of the products. Part2. Combination tannages of degraded product using 10% H2O2 with Cr(Ⅲ) and Al(Ⅲ)[J]. JSLTC, 2000, 85:19-23
    [18]何先祺,王远亮.植-铝结合鞣机理的研究(Ⅰ)[J].皮革科技,1987, 16(4):9-17
    [19]王远亮,何先祺.植-铝结合鞣机理的研究(Ⅱ)[J].中国皮革,1993,22(11):26-31
    [20]王远亮,何先祺.植-铝结合鞣机理的研究(Ⅳ)[J].中国皮革,1995, 24(1): 29-31
    [21]何先祺,王远亮.植-铝结合鞣机理的研究(Ⅴ) [J].中国皮革,1996, 25(6): 15-18
    [22]王远亮,何先祺.植-铝结合鞣机理的研究(Ⅵ)[J].中国皮革,1996, 25(8): 11-16
    [23]单志华.RE-MT结合鞣法研究[D].四川联合大学博士学位论文,1996,6
    [24]单志华,何先祺,彭必雨.结合鞣机理研究-稀土、植物鞣质与胶原结合模式[J].中国皮.革,1998,2(2):1-5
    [25]单志华,何先祺.结合鞣机理研究-稀土-植鞣革特征[J].皮革科学与工程,1998,8(1):1- 4
    [26]石碧.植物鞣剂—金属盐结合鞣法[J].中国皮革,2007,36(7):1-4
    [28]石碧.植物鞣剂—醛类化合物结合鞣法(Ⅱ)—植物鞣剂-唑烷结合鞣法[J]中国皮革, 2006,35(21):1-4
    [27]石碧.植物鞣剂—醛类化合物结合鞣法(Ⅰ)—植物鞣剂-改性戊二醛结合鞣法[J].中国皮革,2006,35(17):1-3
    [28]马燮芳.重读侯得榜博士论文《铁盐鞣革法》有感[J].皮革科学与工程,1990,(1):40-42
    [29] Casaburi V. Tannage of hides with salts of iron. J. Soc. Leather Trades' Chem., 1919, 3: 61-64
    [30]Knapp F. ibid., 1921, 16: 658
    [31]Jackson D D, Hou T P. Iron tannage. JALCA, 1921, 16: 63, 139, 202, 229
    [32]Procter H R. The Principles of Leather Manufacture. 2nd ed., D.Van Nostrand Co., New York, 1922, 198
    [33]Thomas A W, Kelly M W. Ind. Eng. Chem., 1928, 20: 632
    [34]Ralph W F. "Chrome-iron" leather. US Patent Appl. No 1757040, 1930
    [35]Casaburi V. The tannage of skins with salts of iron. Le Cuir Tech.,1934, 23: 192
    [36]Kanagy J R. Accelerated ageing of leather in the oxygen bomb at 100℃. JALCA, 1938, 33: 565
    [37]Casaburi V. Tannage of hides with salts of iron. J. Soc. Leather Trades' Chem., 1919, 3: 61-64
    [38]Shu-Tung Tu. Calibration of an accelerated deterioration method for leather. JALCA, 1948, 43(3): 181
    [39] Theis E R. Iron chrome tannage. Shoe and Leather Reporter, 1942, 225(8): 19-20
    [40]Ruppenthal K F, Malik J P. Investigation of iron and iron-chrome tannages. Shoe and Leather Reporter, 1943, 229(3): 13-14
    [41]Flemming R W. Some studies on iron and combination iron-chrome tannages. JALCA, 1943, 38: 412
    [42]Kanagy J R, Kronstadt R A. Iron as a tanning agent. JALCA, 1943, 38: 459
    [43]Chambard P. Doc. Scien. and Techn. Der Ind. du Cuir, 1944: 37, 50, 53
    [44]Otto G. Tannage with mixed inner complexes of iron. Colloqiumsberrichti, 1948, 3:13-32
    [45]Dawson W O. A new iron tannage. JALCA, 1952, 47: 457-473
    [46]Alfred R C.Leather.US Patent Appl.No 3837797, 1974.
    [47]成都科技大学,西北轻工业学院.制革化学及工艺学[M].北京:中国轻工业出版社,1996,258-259
    [48]马燮芳.重读侯得榜博士论文《铁盐鞣革法》有感[J].皮革科学与工程, 1990, (1)40-42
    [49]吴兴赤.朝花夕拾话铁鞣[J].西部皮革, 2002, (2): 8-11
    [50]N K Chandra Babu, R Karthikeyan, R Ramesh, et al.New perspectives in iron tanning.[C]. IULTCS Congress, Himeji, Japan, 2004:35-46.
    [51]N K Chandra Babu, R Karthikeyan, R Ramesh, et al.New perspectives in iron tanning.[C]. IULTCS Congress, Himeji, Japan, 2004:35-46.
    [52] Platon, F., Gaidau, C., Sescu, R., Contributii la tabacirea cu mai putin crom sau fara cromprinrealizarca si folosirea unor hetercomplesci tananti.[C],22th IULTCS, Porto Alegre, Brasilia, 1993: 405-410
    [53] Platon, F., Gaidau, C., Badea, N., Possibilities of Chrome Consumption in Tanneries Using Heterocomplexes Containing ferrum.[C], 5th International Congress on the leather, Shoe and Allied Industries, Budapest, Hungary, 1994: 107-119,
    [54] Platon, F., Gaidau, C., Popescu, M., The Influence of Metallic Components on the stability and Alkaly fastess of Some Training Polynuclear Complex Combinations.[C], 23th IULTCS, Friedrichaffen, 1995: 15-20,
    [55] Platon, F., Gaidau, C., Badea, N., Investigation into iron tannage[J]. JSLTC, 1998, 82(4), 143-146.
    [56] Thanikaivelan, P., Geetha, V. , Rao, J. R., et al., A novel chromium-iron tanning agent: cross-fertilization in solo tannage[J]. JSLTC, 2000, 84(2), 82-87.
    [57] Rao, J. R., Thanikaivelan, P., Malathi, J, et al., Development of natural colours in Cr-Fe tanned garment leathers[J]. JSLTC, 2002, 86(3), 106-111.
    [58] Bruno München Wenzel,Nilson Romeu Marcilio,Marcelo Godinho,Iron and chromium sulfates from ferrochromium alloy for tanning[J].Chemical Engineering Journal,2010,165.17-25
    [59] Kleban M.Iron tannage: an alternative chrome-free tanning system[J]. World Leather, 2003, August/September:29-35.
    [60] Rao. J. R, Prabhakar, C., Rajapandian, R., et al, Development of natural colors in Cr-Fe tanned upper leathers[J]. JALCA, 2002, 97(7), 267-276.
    [61] Rao J R, Thanikaivelan P, Malathi J, et al. Development of natural colors in Cr-Fe tanned garment leathers[J]. JSLTC, 2002, 86: 106-111
    [62] Rao J R, Thanikaivelan P, et al. An eco-friendly option for less-chrome and dye-free leather processing:in situ generation of natural colours in leathers tanned with Cr–Fe complex[J].Clean Techn Environ Policy ,2002,4,115–121
    [63]郭军,史楷岐,陈慧.F(Ⅱ)-THPS鞣法研究[J].皮革科学与工程,2010,20 (3): 19-22
    [64]王亚娟,邵双喜,卢锡立.THPS - Fe配合物及胶原热稳定性研究[J].四川大学学报(工程科学版), 2010,42(3):201-205
    [65]陈慧,杨昆,单志华.Fe ( II)多元结合鞣法研究[J].皮革科学与工程,2010, 20(2):5-9
    [66]杜晓声,陈慧,单志华.亚铁盐-THPS二元体系对胶原热稳定性的影响[J].中国皮革2010,39(15):1-3
    [67]景志红.Cu(Ⅱ)-Fe(Ⅲ)-Cu(Ⅱ)异三核配合物的合成及表征[J].化学研究,2000,11(3):41-42
    [68]景志红,李延团.草酸根桥联的Cu(Ⅱ) -Fe (Ⅲ) -Cu(Ⅱ)异三核配合物的合成及生物活性[J].化学世界,2001,(2):95-97
    [69]景志红,李延团,廖代正.对苯二甲酸根桥联的双核铬(Ⅲ)配合物的合成与磁性[J].应用化学,2001,18(2):100-103
    [70]鲁桂,姚克敏.Ln(Ⅲ)-Co(Ⅱ)与双水杨醛缩乙二胺Schiff碱异核配合物的合成与波谱性质[J].应用化学,1998,15(5):1-5
    [71]范玉华,毕彩丰,郑庚修.Ln(Ⅲ)-Cu(Ⅱ)-Ln(Ⅲ)异三核配合物的合成与表征[J].山东建材学院学报,1997,11(4):354-356
    [72]刘沁德,李俊然,马宝清,高松,周晴中,郁开北.氨三乙酸桥连的3d-4f金属异核配合物:{[GdCu(NTA)(H2O)6Cl]ClO4·H2O}n的合成和晶体结构[J].中国稀土学报,2000,3:56-59
    [73]邱志惠,梁福沛等.配合物Fe(pda)2(H20)4和[FeCo(pda)4(H20)4]n的合成与晶体结构[J].无机化学学报,2008,24(7):1098-1103
    [74]林炜,穆畅道,张铭让.溶液中Cr-Al异金属配合物的形成及稳定性研究[J].中国皮革,2003,32(3):16-19.
    [75]常艳玲.桥联多核铬配合物的合成与磁性研究[D].西北大学硕士研究生论文2004
    [76]殷守华等.聚氨酯-铬(Ⅲ)络合物的合成与表征,聚氨酯工业,2007,22(4):12-15
    [77]刘延湘,刘君侠等.Fe(II).多羧酸盐配合物光催化还原Cr(VI) [J].汉江大学学报(自然科学版),2006,34(4):40-43
    [78]丁世敏,韦钰,封享华.铁-苹果酸配合物对高价铬的光还原处理[J].环境工程学报,2010,4(7):1596-1599
    [79] 8Singh U P, Aggarwal V, Sharma A K. Mononuclear cobalt(Ⅱ) carboxylate complexes: Synthesis, molecular structure and selective oxygenation study. Inorg Chim Acta, 2007, 360: 3226—3232
    [80] Song J F, Zhou R S, Xu X Y, et al. Syntheses, crystal structures and properties of two new coordination complexes containing 1, 2, 4,5-benzenetetracarboxylate and imidazole: [Ni2(Him)12·(bta)·8H2O] and [Cd2(Him)4(μ4-bta)]. J Mol Struct, 2008, 874: 34—40
    [81] Fabelo O, Pasan J, Canadillas-Delgado L, et al. Crystal structure and magnetic properties of two isomeric three-dimensional pyromellitate-containing cobalt(Ⅱ) complexes. Inorg Chem, 2008, 47: 8053—8061
    [82] Zhou X X, Liu M S, Lin X M. Construction of three low dimensional Zn(Ⅱ) complexes based on different organic-carboxylic acids.Inorg Chim Acta, 2009, 362: 1441—1447
    [83] Xie Y B, Li J R, Zhang C, et al. Syntheses and crystal structures of manganese(Ⅱ), Cadmium(Ⅱ), Cobalt(Ⅱ), and Zinc(Ⅱ) complexes with 4-pyridyl dithioether ligands. Cryst Growth Des, 2005, 5: 1743—1749
    [84]史忠丰,金晶,赵力民,等.系列Fe(Ⅱ/Ⅲ)配位超分子的晶体结构及光电性能.科学通报, 2009, 54: 2298~2304
    [85]张明让,陈武勇.鞣制化学[M].北京:轻工业出版社,1999:37
    [86]《实用化学手册》编写组.实用化学手册[M].北京:学出版社出版,2001:480-540
    [87]夏式均.电极电势及其应用[M].浙江:人民出版社,980:161
    [88]郭军,单志华,陈慧.几种有机配体与硫酸亚铁的配合物稳定常数[J].中国皮革, 2010 , 39(17):8-12
    [89] Ruppenthal K F, Malik J P. Investigation of iron and iron-chrome tannages. Shoe and Leather Reporter, 1943, 229(3): 13-14
    [90]孙根行,俞从正,何旭.荆树皮栲胶对皮革中六价铬预防作用的研究[J].中国皮革,2002,19(6):29-32
    [91]孙根行,俞从正,曹洁.坚木栲胶对皮革中六价铬预防作用的研究[J].中国皮革,2003,32(1):6-9
    [92]王瑞,俞从正,马兴元等.没食子酸类单宁的化学性质及对皮革中Cr(Ⅵ)的防治作用[J].中国皮革,2010,39(21):6-9
    [93]陈武勇,李国英.鞣制化学[M].北京:轻工业出版社,2008:8
    [94]王远亮.三价铁盐水溶液的化学[J].皮革科学与工程,1994 ,20(4):32-39
    [95]马德拉斯.铁鞣新方法[J].中国皮革,2007,36(11):47-49
    [96] Rao J R, Thanikaivelan P, Screeram K J, et al, Greem route for utilization of chrome shavings (chromium-containing solid waste )in tanning industry. Env.Sci.Technol,2002,36(6):1372-1376
    [97]Rao J R, Thanikaivelan P, Screeram K J, et al,Tanning studies with basic chromium sulfate prepared using chrome shavings as a reductant::a call for“wealth from waste“approach to the tanning industry.JALCA,2004,99:170-176
    [98]付丽红,张铭让.皮革固体废弃物制备铬鞣剂[J].中国皮革,2001,30(15):16-20
    [99]Hummel A, Germann H P. The correlation between natural and artificial ageing of upholster leather. world leather ,2003,june/july:27-31
    [100]王永红,张文德,陈武勇.植物鞣质作染料染毛皮的研究[J].中国皮革,1991,20(2):5-8
    [101]陈武勇,刘波,刘进等.植物单宁与铁盐和氧化剂反应的变色规律[J].中国皮革,2003,32(7):11-14
    [102]陈武勇,田金平,刘进等.黑色单宁染料的研究[J].中国皮革,1997,26(6):14-16
    [103] Rao J R, Prabhakar C, Rajapandian R, et al. Development of natural colors in Cr-Fe tanned upper leathers. JALCA, 2002, 97: 267-276
    [104] Rao J R, Thanikaivelan P, Malathi J, et al. Development of natural colors in Cr-Fe tanned garment leathers. JSLTC, 2002, 86: 106-111
    [105]Thomas A W, Kelly Margaret W, Foster S B. Aldehyde tannage[J]. JALCA, 1926, 21:57-76
    [106]Rao V Rama Mohana, Jayaraman K S, Ramaswamy D. Silica tannage: Part V-Studies on modified hide powder[J]. JALCA, 1982, 29, (83): 85-89
    [107]Gustavson K H. The isoelectric points of chromium collagen complexs[J]. JALCA, 1952, 47, 425-437
    [108]马建中,杨宗邃,鲁德凤.乙烯基类聚合物鞣剂与皮胶原相互作用的研究[J].中国皮革,2000,29(9):13-17
    [109]何先祺,王远亮.植铝结合鞣机理研究(Ⅴ)[J].中国皮革,1996,26(6):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700