再生丝素蛋白水溶液的干法纺丝及后处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜘蛛丝的力学性能比大部分的合成纤维更加优异,是迄今为止最强韧的材料之一。而且蜘蛛丝的生产工艺非常“低碳环保”,只需在常温常压下以水为溶剂在空气中直接成丝,整个过程所需原料也都是可再生的。蜘蛛丝优异的性能是由其化学结构和纺丝工艺共同决定的。然而,和蚕不同的是,由于蜘蛛同类相食无法大量饲养,所以无法通过天然的方法获得大量蜘蛛丝。因此人们一直对模仿蜘蛛的纺丝过程从而人工制备蜘蛛丝有着浓厚的兴趣。在过去的十几年中,全世界掀起了一股采用基因工程法制备重组蜘蛛丝蛋白的浪潮。然而该方法仍存在着几个难题。首先,重组蜘蛛丝蛋白的分子量太小,大多数只有天然蜘蛛丝蛋白分子量的三分之一甚至更少;其次,基因载体对外来蜘蛛丝蛋白基因产生排斥,会导致重组蜘蛛丝蛋白变性,从而使目前重组蜘蛛丝蛋白的水平仍然偏低;最后,基因工程蛋白成本太高,甚至无法满足实验室使用需求。
     由于没有足够的天然或重组的蜘蛛丝蛋白,因此必须找到一种适当的替代物来进行仿生纺丝的研究。最终很多学者选择蚕丝蛋白作为模型替代蜘蛛丝蛋白以进行仿生纺丝研究。这是因为蚕丝与蜘蛛丝的成丝过程比较相似,而且丝素蛋白与蜘蛛丝蛋白的氨基酸组成也比较接近。研究表明在一定条件下,蚕丝的机械性能甚至可与蜘蛛丝媲美。另外,与蜘蛛丝蛋白不同,人们可以非常容易地获得大量的蚕丝蛋白以满足研究需要。因此本论文以再生丝素蛋白水溶液为模型进行了干法纺丝的研究,并探索了后处理方法和条件以提高再生丝素蛋白纤维的力学性能。
     在再生过程中,丝素分子会发生一定程度的降解,且丝素分子的分子量对于再生纺丝液的稳定性、可纺性以及再生纤维微结构有较大的影响,因此准确测量降解后丝素蛋白的分子量是十分必要的。本论文开发了一种使用聚乙二醇(PEG)6000作为筛分介质的无胶筛分毛细管电泳法(NGSCE)以测量再生丝素蛋白的分子量。PEG 6000可以降低丝素蛋白对毛细管壁的吸附,并在毛细管内互相缠绕形成网状结构,从而对丝素蛋白分子进行筛分。测试结果表明,采用本方法制备的再生丝素蛋白中少量丝素蛋白分子量分布在32.7和58.5 kDa附近,大部分分子的分子量在75.3至91.7 kDa的范围内,其中83.8 kDa附近含量最高。该结果与十二烷基硫酸钠聚丙烯酰胺凝胶电泳法(SDS-PAGE)测试得到的分子量分布结果是相似的,同时NGSCE法对于低含量分子也更加敏感。该方法的电泳缓冲液由PEG、三羟甲基氨基甲烷(Tris)和十二烷基硫酸钠(SDS)组成。同一电泳缓冲液下,三种标样蛋白的分子量和迁移时间呈现良好的线性关系和重复性。但是实验也发现电泳缓冲液会随着时间慢慢发生一些变化,有必要每周更换缓冲液并重新标定标准曲线。更换毛细管时也必须重新标定标准曲线。本方法需样量少、耗时少、重复性好,为研究仿生纺丝过程中分子量的影响,提供了方便手段。
     本论文采用与蚕和蜘蛛纺丝相一致的干法纺丝工艺,通过自制的毛细管纺丝装置从以水为溶剂的纺丝液中成功地制备了再生丝素蛋白纤维。与报道较多的湿法纺丝不同,本论文采用的干法纺丝更加环保而且成本更低。相比传统的气压式干法纺丝装置,新装置结构简单、所需纺丝液少,且适用于多种纺丝液(pH=4.8-6.9,多种金属离子)在更大的长径比(40-133)条件下进行纺丝。本论文还采用流变的方法研究了再生丝素蛋白的分子量、pH、金属离子、丝素浓度和纺丝条件对纺丝液可纺性的影响。实验发现:在本论文条件下,再生丝素蛋白分子量范围约为20-100 kDa,远小于天然丝素蛋白分子量。而且在本论文条件下,再生丝素蛋白的分子量太高会降低纺丝液的可纺性,适当地降低分子量有利于制备再生丝素蛋白纤维。通过适当的浓缩,pH在4.8-6.9范围内的纺丝液(Ca2+离子浓度均为0.3 mol/L)都可用成功制备再生丝素蛋白纤维,不同pH纺丝液的纺丝浓度和可纺性相差不大。纺丝液的流变测试结果表明,随着pH的降低,纺丝液的松弛时间增加。不同金属离子对再生纺丝液的可纺性影响很大,只添加Ca2+离子的再生丝素蛋白水溶液松弛时间较小,可纺性较好,动态流变曲线比较平滑;而添加Mg2+离子和K+离子的纺丝液松弛时间较大,可纺性较差,动态流变曲线波动较大。再生丝素蛋白水溶液最佳的可纺浓度为44.2-48.1%(用称重法测量),该范围大于蚕体内的可纺浓度。浓度低于39.8%的纺丝液在进行动态流变测试时始终呈现粘弹性液体状态,无法进行干法纺丝。而当浓度高于55%时,由其动态流变曲线可知,纺丝液在较低角频率条件下就易由粘弹性液体状态向粘弹性固体状态转变,从而使纺丝液的可纺性变差。根据大量实验得到的经验表明,所有可纺的再生丝素蛋白纺丝液的松弛时间均小于0.01s;在此范围内,松弛时间越小,溶液的可纺性越好;松弛时间越大,溶液的可纺性越差。松弛时间可作为简单判断纺丝液可纺与否的一种依据。尽管本文的干纺方法与蚕和蜘蛛的吐丝过程比较相似,但也有一些不同。首先再生丝素蛋白结构与天然丝素蛋白结构有所不同,其次目前的纺丝尚不是液晶纺丝,所以初生丝的取向度低,p-折叠构象含量也较低。尽管增加毛细管长径比或增大卷绕速度均可明显提高初生丝的力学性能,但是其断裂强度绝对值要远小于天然蚕丝。
     为了解决再生丝素蛋白初生丝力学性能不佳的问题,本论文对初生丝进行了后处理探索,试图通过后处理提高纤维的力学性能。在总结文献的基础上,本论文研究了两类后处理剂(醇-水溶液体系和无机盐水溶液体系)对再生丝素纤维构象和力学性能的影响。实验发现醇-水溶液体系可以显著地促使初生丝构象从无规卷曲/α-螺旋构象向β-折叠构象转变。而无机盐水溶液体系中只有硫酸铵可以微弱地促使初生丝产生这种构象转变。经过醇-水溶液体系处理的丝素蛋白纤维力学性能较大幅提高。本论文还研究了两种不同后处理方法对初生丝性能的影响。结果表明,相比于方法A(将初生丝在后处理剂中浸泡1h,然后在蒸气浴中拉伸2倍),方法B(将初生丝在后处理剂中拉伸2倍,然后再浸泡1h)能够更加有效的促进纤维形貌、结构和力学性能的改善。对乙醇-水和异丙醇-水体系而言,采用方法B处理过的纤维具有和脱胶丝—样的光滑表面,而对甲醇-水体系和硫酸铵水溶液而言,采用方法B处理过的纤维的表面非常褶皱。通过对比,样品Et-D-I-B(将初生丝在乙醇-水中拉伸2倍,然后再浸泡1h得到的纤维)的各种性能最佳,其断裂强度和断裂伸长率可以分别达到199.2 MPa和55.4%。尽管其断裂强度低于天然脱胶丝,但是其断裂伸长率高于脱胶丝。样品Et-D-I-B较高的断裂伸长率也表明其能够被进一步拉伸。本论文认为样品Et-D-I-B断裂强度比天然丝差可能是由于Et-D-I-B的结晶和取向结构没有天然蚕丝完善,晶区之间尚存在一定量的卷曲的无定形态的丝素蛋白分子未被拉伸。而蚕采用的是液晶纺丝,在液态时分子已排列整齐并有一定程度取向以后才开始纺丝,所以结晶结构完善、取向度高。使用80v01%乙醇-水做后处理剂,采用在后处理剂中先拉伸2倍后浸泡1h的方法制备的纤维性能较初生丝大幅提高,而且存在进一步提高的空间。
     为了进一步提高纤维的力学性能,摸索最佳处理条件,本论文选择80v01%乙醇-水溶液作为后处理剂,研究了拉伸倍数和浸泡时间对纤维力学性能和结构的影响。结果表明,随着拉伸倍数的增加,纤维的力学性能和取向度增加;相同的浸泡时间下(90分钟),不同拉伸倍数(1-3倍)的后处理纤维的p-折叠构象含量相近。将纤维拉伸3倍后,在后处理剂中浸泡1至120分钟得到纤维的力学性能测试和红外光谱的定量分析表明,随着浸泡时间的增加,后处理纤维的断裂强度和β-折叠构象含量均呈现出开始时快速增长,而后缓慢增长,90分钟后最终趋于恒定的特点。因此本论文暂选的最佳处理条件为,在80v01%乙醇-水溶液中对纤维进行3倍拉伸,然后在其中浸泡90分钟。得到的再生丝素蛋白纤维直径均匀,表面光滑,而且比天然脱胶丝更加强韧。后处理纤维的断裂强度可以达到301 MPa,接近天然脱胶丝。尽管后处理再生丝素蛋白的分子量大大低于天然丝素分子,但是其断裂强度几乎相同,断裂能更是天然脱胶丝的2.4至3.8倍,这表明分子量不是影响再生丝素蛋白纤维力学性能的主要因素,而二级结构才是主要因素。本论文还采用最佳条件对从不同pH(4.8、5.2、5.6、6.0)的再生丝素蛋白水溶液制备的初生丝进行处理。结果表明纺丝液的pH对后处理纤维的结构和力学性能影响非常有限,从不同pH纺丝液制备的初生丝经处理过后具有非常相近的形貌、结构和力学性能,均可以完全媲美脱胶丝。因此,本后处理工艺适用于不同pH值纺丝液制备的初生丝。本论文采用80v01%的乙醇-水溶液作为后处理剂,对再生丝素蛋白干纺纤维进行后处理,得到的纤维性能良好。作为一种后处理剂,乙醇-水溶液无毒环保,具有很好的应用前景。
As one of the toughest materials, spider dragline silk exhibits exceptional strength and toughness that rival those of most of synthetic high performance fibers. Spiders use renewable materials as input and water as a solvent. Moreover, they produce fibers in air at room temperature and ambient pressure. The whole process is environmentally friendly. The outstanding properties of spider dragline silk are determined both by its chemical composition and the spinning process. However, it is not possible to obtain industrially useful quantities of spider silk by farming spiders, because spiders eat each other. Consequently, there has been a wide spread interest in biomimicking spider silk artificially, which leeda to a decade of wave to obtain recombinant spider silk proteins by using genetic engineering. Unfortunately, this method still suffers some problems. Firstly, the molecular weights (MWs) of most of recombinant spider silk proteins are only about one-third or less of those of the natural spider silk proteins. Secondly, gene vectors exclude the heterologous genes and lead to protein denaturation. As a result, the level of silk protein expression in heterologous systems to date has been universally low. Thirdly, the cost of the recombinant spider silk proteins is too high for even lab use at the moment.
     Since no enough raw or recombinant spider dragline silk protein can be supplied for biospinning, it is necessary to find an appropriate resource to investigate the biospinning conditions. In place of spider silk, Bombyx mori (B. mori) silk fibroin is selected as a model system to artificially spin silk fiber by many researchers. This is attributed to the similar spinning mechanism between silkworm and spider, and the similar amino acid composition between B. mori silk fibroin and spider dragline silk protein. Immobilized silkworm under steady and controlled conditions even could produce fibers with comparable mechanical properties as spider silk. In addition, unlike spider silk, substantial amounts of silkworm silk can be obtained easily by raising silkworm. Therefore, in this thesis, regenerated silk fibroin (RSF) fibers were dry-spun from their aqueous solutions and the as-spun fibers were post-treated to improve their mechanical properties.
     In regeneration process, fibroin molecules degrade to some extent. Since MW of RSF plays a very important role in dope stability, spinnability and microstructure of fiber, it is necessary to determine the MW of silk fibroin after degradation. In this thesis, a simple non-gel sieving capillary electrophoresis (NGSCE) method was established to determine the MW of silk fibroin by using polyethylene glycol (PEG) 6000 as sieving matrixes. PEG 6000 could react with the capillary wall to reduce protein adsorption and form a network structure to separate the fibroin molecules. It was found that most RSF molecules we prepared had a wide molecular weight distribution (MWD) from 75.3 to 91.7 kDa, mainly at 83.8 kDa, while low content molecules distributed at 32.7 and 58.5 kDa. NGSCE showed a similar MWD with that obtained from the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and presented a higher sensitivity to small content of molecules than SDS-PAGE. The background electrolyte was composed of the three components, PEG, tris(hydroxymethyl)aminomethane (Tris) and sodium dodecyl sulfate (SDS). NGSCE showed a good linear relationship with fine reproducibility between the migration time and the MW of three standard proteins in the same background electrolyte. It was found that the composition of background electrolyte changed slowly with time. It was necessary to replace the buffer solution weekly and re-establish the calibration curve. The calibration curve must also be re-established whenever the capillary column was replaced. The NGSCE analytical approach requires very little sample preparation and provides fast results and good reproducibility and accuracy. These features render this method a powerful tool to determine the MW of RSF.
     A custom-built capillary spinning equipment was applied to spin fibers from RSF aqueous solutions in air by using a dry spinning process like those of silkworm and spider. Unlike wet spinning process, which is widely used in artificial spinning of animal silks, the dry-spinning process is environmentally friendly and low-cost. Compared to the traditional air pressure dry-spinning equipment, the new one has simple structure, and requires less volumes of dope. Moreover, RSF fibers could be successfully prepared from various RSF aqueous solutions (pH=4.8-6.9, several kinds of ions) under a wide length diameter ratio (L/D) ranging from 40 to 133. The effects of MW, pH, metal ions, RSF concentration and spinning parameters on the spinnability of the spinning dopes were investigated from the rheology behaviors of the dopes. It was found that the MW of RSF ranged from 20~100 kDa, which was much smaller than that of natural silk fibroin. Moreover, too high MW deteriorated the spinnability of the dope in the present studies. Thus partial degraded fibroin allows generating stable and spinnable RSF solutions. After appropriate condensation, the dopes with a pH ranging from 4.8 to 6.9 (Ca2+concentration=0.3 mol/L) were successfully used to dry-spin fibers, which showed comparable spinnability and fibroin concentration. Rheology analysis showed that a reduction in pH induced an increase in the relaxation time of the dope. Different kind of metal ions affected the spinnability of the dopes. The dopes only adding Ca2+ had small relaxation times, good spinnability and smooth oscillatory sweep curves, while the dopes adding Mg2+, K+ showed opposite trends. The RSF concentration of spinnable dope ranged from 44.2% to 48.1%, which was much higher than that in B. mori spinning duct. When the RSF concentration was as low as 39.8%, the unspinnable dopes showed behaviors as viscoelastic liquid in the oscillatory frequency sweep. When the RSF concentration was as high as 55%, the dopes changed quickly from viscoelastic liquid to viscoelastic solid, and the spinnability was deteriorated. Our experiments showed that the spinnable RSF dopes had relaxation times smaller than 0.01 s. The smaller the relaxation time was, the better spinnability of the dopes had and vice versa. Therefore, the relaxation time could be used as a basic criterion of spinnability of the RSF dopes. Although the dry-spinning process is similar to those of silkworm and spider, there are still some differences. Firstly, the structures of RSF molecules are different from those of natural fibroin molecules; secondly, the process is not liquid crystalline spinning as silkworm and spider. Therefore, the as-spun fibers have very low orientation degree and low content of P-sheet conformation. Despite the mechanical properties of the as-spun fibers could be improved by increasing of L/D and take-up speed, the stress is still quite smaller than that of natural silk.
     In order to improve the mechanical properties of the as-spun fibers, a post-treated process was presented. Two post-treatment agents systems, alcohol/water system and inorganic salt system, were adopted to investigate the effects on the conformation and the mechanical properties of the fibers. It was found that alcohol/water system obviously induced the fibroin conformation transition from random coil/α-helix toβ-sheet and improved the mechanical properties of the fibers. For the inorganic salt system, only saturated ammonium sulfate ((NH4)2SO4) could render a weak conformation transition of RSF from random coil/α-helix toβ-sheet. Two methods were employed to post-treat the as-spun fibers. Compared to method A (the fibers were firstly immersed in post-treatment agent for 1 h, and then manually drawn with 2.0 draw ratio in steam), method B (the fibers were drawn 2 times in post-treatment agent, and then immersed in the solution for 1 h) was more effective in promoting the morphology, structure and mechanical properties of the RSF fibers. By using method B, the fibers treated in ethanol/water and isopropanol/water solutions showed very smooth surface as degummed silk, whereas the fibers treated in methanol/water solution and saturated (NH4)2SO4 solution exhibited uneven surface. Sample Et-D-I-B that was treated in ethanol/water solution by using method B showed the better performance in comparison with other post-treated fibers. The breaking strength of Et-D-I-B was improved to 199.2 MPa, which was still lower than that of degummed silk. However, the elongation at break of Et-D-I-B was improved to 55.4%, which was much higher than that of degummed silk. This indicates that the fiber has potential to be further stretched. The relatively low breaking strength is probably related to the microstructure defects in the RSF fiber, which has less developed crystalline regions and lower orientation than natural silk fiber. Unoriented amorphous molecules are also distributed among crystalline regions. On the contrary, silkworm produces silks using liquid crystalline spinning process, in which the molecules neatly arrange and somewhat orient before spinning. When the fiber is drawn 2 times in 80 vol%ethanol aqueous solutions, and then immersed in the solution for 1 h, the tensile strength and the elongation at break of the fiber increase effectively and might be further improved.
     In order to further improve the mechanical properties of the RSF fibers and explore the optimal post-treatment conditions, the effects of draw ratio and immersion time on the structure and mechanical properties of the RSF fibers were studied by choosing 80 vol% ethanol aqueous solutions as post-treatment agent. With the increase of draw ratio, the breaking strength and the orientation degree of the fibers increased. When the immersion time was set as 90 min, the fibers drawn 1-3x showed comparative contents ofβ-sheet conformation. The fibers firstly drew 3 times then immersed in 80 vol% ethanol aqueous for 1-120 min were also prepared. Their mechanical properties and the quantitative analyses of Fourier transform infrared spectroscopy (FTIR) showed quite similar trends. With the increase of immersion time, both the content ofβ-sheet conformation and the breaking strength of the RSF fibers increased sharply at beginning, then approached to a constant value after 90 min of immersion. The temporary optimal post-treatment process in this thesis is post-drawing the as-spun fibers 3 times in 80 vol% ethanol aqueous solutions, and then immersing the fiber in the solution for 90 min. The obtained fibers exhibited smooth surfaces, uniform diameter and larger elongation at break than that of degummed silk. The breaking strength of the RSF fibers is up to 301 MPa, which approached that of degummed silk. Despite the MW of RSF molecule were much lower than that of natural silk molecule, the breaking energy of RSF fiber was 2.4 to 3.8 times higher than that of degummed silk. It demonstrated that the determinant of the mechanical properties was secondary structure rather than molecular weight. Moreover, the dry-spun fibers from different RSF solutions with a pH of 4.8,5.2,5.6 and 6.0 were post-treated with a draw ratio of 3 and an immersion time of 90 min, respectively. The results indicated that the pH of the dopes had limited effects on the structure and mechanical properties of the post-treated fibers. The post-treated fibers from the dopes with different pH had similar morphology, structure and mechanical properties which all rivaled that of degummed silk. Therefore, the post-treatment process is suitable for all the as-spun fibers from the dopes with different pH. By using 80vol% alcohol solution as post-treated agent, this thesis could finally produce fibers with excellent performance. As a post-treated agent, the ethanol aqueous system is non-toxic, environmentally friendly, and hence has promising applications.
引文
[1]. Mandal, B.B. and Kundu, S.C., Biospinning by silkworms:Silk fiber matrices for tissue engineering applications, Acta Biomaterialia,2010,6:p.360-371.
    [2]. Vollrath, F., Strength and structure of spiders'silks, Reviews in Molecular Biotechnology, 2000,74:p.67-83.
    [3]. Fu, C.J., Shao, Z.Z., and Fritz, V., Animal silks:Their structures, properties and artificial production, Chemical Communications,2009,41:p.6515-6529.
    [4]. Gosline, J.M., et al., The mechanical design of spider silks:From fibroin sequence to mechanical function, Journal of Experimental Biology,1999,202:p.3295-3303.
    [5]. Shao, Z.Z. and Vollrath, F., Materials:Surprising strength of silkworm silk, Nature,2002,418: p.741-741.
    [6]. Liu, Y., et al., Proline and processing of spider silks, Biomacromolecules,2008,9:p.116-121.
    [7]. Vollrath, F., Madsen, B., and Shao, Z.Z., The effect of spinning conditions on the mechanics of a spider's dragline silk, Proceedings of the Royal Society of London Series B-Biological Sciences,2001,268:p.2339-2346.
    [8]. Kubik, S., High-performance fibers from spider silk, Angewandte Chemie-International Edition,2002,41:p.2721-2723.
    [9]. Tirrell, D.A., Putting a new spin on spider silk, Science,1996,271:p.39-40.
    [10]. Kaplan, D.L., Spiderless spider webs, Nature Biotechnology,2002,20:p.239-240.
    [11]. Service, R.F., Materials science:mammalian cells spin a spidery new yarn, Science,2002, 295:p.419-421.
    [12]. Jin, H.J. and Kaplan, D.L., Mechanism of silk processing in insects and spiders, Nature, 2003,424:p.1057-1061.
    [13]. Seidel, A., Liivak, O., and Jelinski, L.W., Artificial spinning of spider silk. Macromolecules, 1998.31:p.6733-6736.
    [14].邵敬党,蜘蛛丝的性能特征分析,棉纺织技术,2005,33:p.13-17.
    [15]. Vollrath, F. and Knight, D.P., Liquid crystalline spinning of spider silk, Nature,2001,410:p. 541-548.
    [16]. Knight, D.P. and Vollrath, F., Liquid crystals and flow elongation in a spider's silk production line, Proceedings of the Royal Society of London Series B-Biological Sciences, 1999,266:p.519-523.
    [17]. Akai, H., The structure and ultrastructure of the silk gland, Cellular and Molecular Life Sciences,1983,39:p.443-449.
    [18]. Knight, D. and Vollrath, F., Hexagonal columnar liquid crystal in the cells secreting spider silk, Tissue and Cell,1999,31:p.617-620.
    [19].赵爱春等,超级纤维蜘蛛丝的研究动向,蚕学通讯,2007,27:p.28-34.
    [20]. Vollrath, F., Knight, D.P., and Hu, X.W., Silk production in a spider involves acid bath treatment, Proceedings of the Royal Society of London Series B-Biological Sciences,1998, 265:p.817-820.
    [21]. Knight, D.P. and Vollrath, F., Changes in element composition along the spinning duct in a Nephila spider, Naturwissenschaften,2001,88:p.179-182.
    [22]. Vollrath, F. and Knight, D.P., Structure and function of the silk production pathway in the spider Nephila edulis, International Journal of Biological Macromolecules,1999,24:p. 243-249.
    [23]. Dicko, C., Vollrath, F., and Kenney, J.M., Spider silk protein refolding is controlled by changing pH, Biomacromolecules,2004,5:p.704-710.
    [24]. Knight, D.P., Knight, M.M., and Vollrath, F., Beta transition and stress-induced phase separation in the spinning of spider dragline silk, International Journal of Biological Macromolecules,2000,27:p.205-210.
    [25]. Tillinghast, E.K., Chase, S.F., and Townley, M.A., Water extraction by the major ampullate duct during silk formation in the spider, argiope aurantia lucas, Journal of Insect Physiology, 1984,30:p.591-596.
    [26].解芳,高浓度再生丝素蛋白水溶液的仿生纺丝探讨,博士论文,东华大学,上海,2007.
    [27]. Foo, C.W.P., et al., Role of pH and charge on silk protein assembly in insects and spiders, Applied Physics A-Materials Science & Processing,2006,82:p.223-233.
    [28]. Lazo, N.D. and Downing, D.T., Crystalline regions of Bombyx mori silk fibroin may exhibit beta-turn and beta-helix conformations. Macromolecules,1999,32:p.4700-4705.
    [29]. Kerkam, K., et al., Liquid crystallinity of natural silk secretions. Nature,1991,349:p. 596-598.
    [30]. Terry, A.E., et al., PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm, Biomacromolecules,2004,5:p.768-772.
    [31]. Kobayashi, M., et al., Rheological behavior of silk fibroin aqueous solution:Gel-sol transition and fiber formation, Polymer Prepr,2001,42:p.294-295.
    [32]. Zhou, L., et al., Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori, Journal of Physical Chemistry B,2005,109:p.16937-16945.
    [33]. Shao, Z.Z., et al., Structure and behavior of regenerated spider silk, Macromolecules,2003, 36:p.1157-1161.
    [34].解芳,廖芳丽,强娜,丝蛋白的纤维化机理及液晶纺丝特点,惠州学院学报,2008,28:p.36-40.
    [35]. Flory, P.J. and Ronca, G., Theory of systems of rodlike particles-1. Athermal systems, Molecular Crystals and Liquid Crystals,1979,54:p.289-309.
    [36]. Viney, C., Natural silks:Archetypal supramolecular assembly of polymer fibres, Supramolecular Science,1997,4:p.75-81.
    [37]. Viney, C., Liquid crystalline phase behavior of proteins and polypeptides, in Protein-based materials, Mcgrath, K. and Kaplan, D., Editied,1997, Boston, USA.
    [38].王洪,丝素蛋白的仿生纺丝研究,博士论文,东华大学,上海,2004.
    [39].王洪,邵惠丽,胡学超,丝素蛋白溶液的液晶现象及其形成机理,生物技术通讯,2004,15:p.165-168.
    [40]. Viney, C., et al., Molecular order in silk secretions, Complex Fluids,1992,248:p.89-94.
    [41]. Viney, C., Silk fibres:Origins, nature and consequences of structure, Pergamon Materials Series,2000.4:p.295-333.
    [42]. Iizuka, E., Silk thread-mechanism of the spinning and the physical properties, Journal of applied polymer science, Applied polymer symposium,1985.41:p.173-185.
    [43]. Iizuka, E., Mechanism of fiber formation by the silkworm, Bombyx mori 1. Biorheology, 1966,3:p.141-152.
    [44]. Magoshi, J., et al., Mechanism of fiber formation of multiple spinning by silkworm, Abstracts of Papers of the American Chemical Society,2003,225:p. U560-U560.
    [45]. Magoshi, J., et al., Biospinning:Control of inorganic ion, Abstracts of Papers of the American Chemical Society,2001,221:p. U575-U575.
    [46]. Kobayashi, M., et al., Study of gel-sol transition of silk fibroin, Abstracts of Papers of the American Chemical Society,2001,221:p. U409-U410.
    [47]. Magoshi, J., et al., Biospinning by Bombyx mori silkworm, Abstracts of Papers of the American Chemical Society,1996,212:p.53-Cell.
    [48]. Magoshi, J., et al., Silk fiber formation, multiple spinning mechanisms, in Polymeric materials encyclopedia, Salamone, J.C., Edited,1996, Florid, USA.
    [49]. Magoshi, J., Magoshi, Y., and Nakamura, S., Mechanism of fiber formation of silkworm, Silk Polymers,1994,544:p.292-310.
    [50]. Magoshi, J. and Nakamura, S., Physical properties and structure of silk:Spinning of silk fibre from the liquid crystalline state.1985.
    [51]. Magoshi, J., Magoshi, Y, and Nakamura, S., Physical properties and structure of silk:9. Liquid crystal formation of silk fibroin, Polymer communications Guildford,1985,26:p. 60-61.
    [52]. Magoshi, J., Magoshi, Y, and Nakamura, S., Physical properties and structure of silk:10. The mechanism of fibre formation from liquid silk of silkworm Bombyx mori, Polymer communications Guildford,1985,26:p.309-311.
    [53]. Magoshi, J., Magoshi, Y., and Nakamura, S., Crystallization, liquid crystal, and fibre formation of silk fibroin, Journal Of Applied Polymer Science:Applied Polymer Symposia, 1983,41:p.187-204.
    [54]. Iizuka, E., Silk:An overview. Journal of Applied Polymer Science,1985,41:p.163-171.
    [55].于同隐,张胜,邵正中,丝素蛋白的构象转变,高等学院化学学报,1996,17:p.323-325.
    [56].于同隐,李光宪,丝蛋白纤维机理的模型-应力作用下丝蛋白构象的转变,高分子学报,1993,4:p.415-422.
    [57].于同隐,李光宪,丝蛋白纤维机理的模型,高分子学报,1993,8:p.415-422.
    [58]. Li, G.Y, et al., The natural silk spinning process:a nucleation-dependent aggregation mechanism? European Journal of Biochemistry,2001,268:p.6600-6606.
    [59]. Fedic, R., Zurovec, M., and Sehnal, F., Correlation between fibroin amino acid sequence and physical silk properties, Journal of Biological Chemistry,2003,278:p.35255-35264.
    [60]. Inoue, S., et al., Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio, Journal of Biological Chemistry,2000,275:p.40517-40528.
    [61]. Ha, S.W., et al., Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin, Biomacromolecules,2005,6:p.2563-2569.
    [62].朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺及干法纺丝初探,博士论文,东华大学,上海,2009.
    [63]. Heslot, H., Artificial fibrous proteins:A review, Biochimie,1998,80:p.19-31.
    [64]. Valluzzi, R., et al., Orientation of silk III at the air-water interface, International Journal of Biological Macromolecules,1999,24:p.237-242.
    [65]. Tanaka, K., et al., Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori, Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1999,1432:p.92-103.
    [66]. Yamane, T., et al., Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk II in relation to fiber formation mechanism of Bombyx mori silk fibroin, Macromolecules,2003,36:p.6766-6772.
    [67]. Asakura, T., et al., Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state C-13, N-15, and H-2 NMR, Biochemistry,2002,41:p.4415-4424.
    [68].何忠琴,钱镇海,丝素蛋白的高次结构,国外丝绸,2008,23:p.1-4.
    [69]. Seidel, A., et al., Regenerated spider silk:Processing, properties, and structure, Macromolecules,2000,33:p.775-780.
    [70].周官强,陈新,邵正中,基于动物丝蛋白的人工纺丝,化学进展,2006,1 8:p.933-938.
    [71].周官强,再生丝蛋白纤维的人工模拟生物纺丝,硕士论文,复旦大学,上海,2007.
    [72].周丽,影响丝蛋白构象的外源性因素以及再生丝蛋白纤维的制备,博士论文,复旦大学,上海,2006.
    [73]. Prince, J.T., et al., Construction, cloning, and expression of synthetic genes encoding spider dragline silk, Biochemistry,1995,34:p.10879-10885.
    [74]. Lewis, R.V., et al., Expression and purification of a spider silk protein:A new strategy for producing repetitive proteins, Protein Expression and Purification,1996,7:p.400-406.
    [75]. Fahnestock, S. and Irwin, S., Synthetic spider dragline silk proteins and their production in escherichia coli, Applied Microbiology and Biotechnology,1997,47:p.23-32.
    [76]. Fahnestock, S.R. and Bedzyk, L.A., Production of synthetic spider dragline silk protein in pichia pastoris, Applied Microbiology and Biotechnology,1997,47:p.33-39.
    [77].田保中等,类蜘蛛丝丝素蛋白SPF198在毕赤酵母中的分泌表达,蚕业科学,2006,32:p.276-279.
    [78].郑青亮,蒋彩英,张耀洲,蜘蛛丝的结构性能及表达策略研究进展,蚕业科学,2009,35:p.685-691.
    [79]. Casem, M.L., Turner, D., and Houchin, K., Protein and amino acid composition of silks from the cob weaver, latrodectus hesperus (black widow), International Journal of Biological Macromolecules,1999,24:p.103-108.
    [80]. Gatesy, J., et al., Extreme diversity, conservation, and convergence of spider silk fibroin sequences, Science,2001,291:p.2603-2605.
    [81]. Lazaris, A., et al., Spider silk fibers spun from soluble recombinant silk produced in mammalian cells, Science,2002,295:p.472-476.
    [82]. Piruzian, E.S., et al., Construction of the synthetic genes for protein analogs of spider silk carcass spidroin 1 and their expression in tobacco plants, Molekuliarnaia Biologiia,2003,37: p.654-662.
    [83]. Scheller, J., et al., Production of spider silk proteins in tobacco and potato, Nature Biotechnology,2001,19:p.573-577.
    [84]. Barr, L.A., Fahnestock, S.R., and Yang, J.J., Production and purification of recombinant dplb silk-like protein in plants, Molecular Breeding,2004,13:p.345-356.
    [85]. Yang, J.J., et al., High yield recombinant silk-like protein production in transgenic plants through protein targeting, Transgenic Research,2005,14:p.313-324.
    [86].罗芳,二聚化蜘蛛拖丝的原核表达、纯化及多克隆抗体的制备,硕士论文,东北林业大学,哈尔滨,2010.
    [87]. Zhou, C.C., et al., Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins, Biomacromolecules,2006,7:p.2415-2419.
    [88]. Zhang, Y.S., et al., Expression of EGFP-spider dragline silk fusion protein in BMN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield, Molecular Biology Reports,2008,35:p.329-335.
    [89]. Chen, X., et al., Regenerated Bombyx silk solutions studied with rheometry and FTIR, Polymer,2001,42:p.9969-9974.
    [90]. Ishizaka, H., et al., Regenerated silk prepared from ortho phosphoric acid solution of fibroin, Nippon Sanshigaku Zasshi,1989,58:p.87-95.
    [91]. Matsumoto, K., et al., Studies on regenerated protein fibers.3:Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method, Journal of Applied Polymer Science,1996,60:p.503-511.
    [92]. Um, I.C., et al., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, International Journal of Biological Macromolecules,2001,29:p. 91-97.
    [93]. Um, I.C., et al., Wet spinning of silk polymer-Ⅰ. Effect of coagulation conditions on the morphological feature of filament, International Journal of Biological Macromolecules,2004, 34:p.89-105.
    [94]. Um, I.C., et al., Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament, International Journal of Biological Macromolecules,2004,34:p.107-119.
    [95]. Mathur, A.B., et al., The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films, Biopolymers,1997.42:p. 61-74.
    [96]. Ha, S.W., Park, Y.H., and Hudson, S.M., Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Biomacromolecules,2003,4:p.488-496.
    [97]. Ha, S.W., Tonelli, A.E., and Hudson, S.M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning, Biomacromolecules,2005,6:p. 1722-1731.
    [98]. Yao, J.M., et al., Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate, Macromolecules,2002,35:p.6-9.
    [99]. Zhao, C.H., et al., Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system, Biopolymers,2003,69:p.253-259.
    [100]. Um, I.C., et al., Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system, Journal of Applied Polymer Science,2007,105:p.1605-1610.
    [101]. Zhou, G.Q., et al., Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts, Advanced Materials, 2009,21:p.366-370.
    [102]. Zarkoob, S., et al., Structure and morphology of nano electrospun silk fibers, Abstracts of Papers of the American Chemical Society,1998,216:p. U122-U122.
    [103]. Ohgo, K., et al., Preparation of non-woven nanofibers of bombyx mori silk, samia cynthia ricini silk and recombinant hybrid silk with electrospinning method, Polymer,2003,44:p. 841-846.
    [104]. Jin, H.J., et al., Electrospinning Bombyx mori silk with poly(ethylene oxide), Biomacromolecules,2002,3:p.1233-1239.
    [105]. Park, W.H., et al., Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers, Polymer,2004,45:p.7151-7157.
    [106]. Sukigara, S., et al., Regeneration of Bombyx mori silk by electrospinning-part 1: Processing parameters and geometric properties, Polymer,2003,44:p.5721-5727.
    [107]. Sukigara, S., et al., Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology, Polymer,2004, 45:p.3701-3708.
    [108]. Ayutsede, J., et al., Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat, Polymer,2005,46:p.1625-1634.
    [109]. Wang, H., et al., Electrospun ultra-fine silk fibroin fibers from aqueous solutions, Journal of Materials Science,2005,40:p.5359-5363.
    [110]. Zhu, J.X., Shao, H.L., and Hu, X.C., Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH, International Journal of Biological Macromolecules,2007,41:p.469-474.
    [1]. Yamaguchi, K., et al., Primary structure of the silk fibroin light chain determined by CDNA sequencing and peptide analysis, Journal of Molecular Biology,1989,210:p.127-139.
    [2]. Ishizaka, H., et al., Regenerated silk prepared from ortho phosphoric acid solution of fibroin, Nippon Sanshigaku Zasshi,1989,58:p.87-95.
    [3]. Fossey, S.A., et al., Conformational energy studies of (3-sheets of model silk fibroin peptides. I. Sheets of poly(Ala-Gly) chains, Biopolymers,1991,31:p.1529-1541.
    [4]. Inoue, S., et al., Silk fibroin of bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and p25, with a 6:6:1 molar ratio, Journal of Biological Chemistry,2000,275:p.40517-40528.
    [5]. Foo, C.W.P., et al., Role of pH and charge on silk protein assembly in insects and spiders, Applied Physics A-Materials Science & Processing,2006,82:p.223-233.
    [6]. Zhou, G.Q., et al., Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts, Advanced Materials, 2009,21:p.366-370.
    [7]. Um, I.C., et al., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, International Journal of Biological Macromolecules,2001,29:p. 91-97.
    [8]. Tao, W., Li, M.Z., and Zhao, C.X., Structure and properties of regenerated Antheraea pemyi silk fibroin in aqueous solution, International Journal of Biological Macromolecules,2007, 40:p.472-478.
    [9]. Kweon, H. and Park, Y.H., Dissolution and characterization of regenerated Antheraea pemyi silk fibroin, Journal of Applied Polymer Science,2001,82:p.750-758.
    [10]. Matsumoto, K. and Uejima, H., Regenerated protein fibers.1:Research and development of a novel solvent for silk fibroin, Journal of Polymer Science Part A-Polymer Chemistry,1997, 35:p.1949-1954.
    [11]. Zuo, B., Dai, L., and Wu, Z., Analysis of structure and properties of biodegradable regenerated silk fibroin fibers, Journal of Materials Science,2006,41:p.3357-3361.
    [12]. Yamada, H., et al., Preparation of undegraded native molecular fibroin solution from silkworm cocoons, Materials Science and Engineering C:Biomimetic and Supramolecular Systems,2000,1:p.41-46.
    [13]. Wang, X.S., Li, X.G., and Yan, D.Y., High-resolution thermogravimetric analysis of poly(trimethylene terephthalate) with different molecular weights, Polymer Testing,2001,20: p.491-502.
    [14]. Wang, X.S., et al., Effect of molecular weight on crystallization and melting of poly(trimethylene terephthalate).1:Isothermal and dynamic crystallization, Polymer Engineering and Science,2001,41:p.1655-1664.
    [15]. Erim, F.B., et al., Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic-proteins and peptides by capillary electrophoresis, Journal of Chromatography A,1995,708:p.356-361.
    [16]. Oto, M., et al., Microsatellite instability in cancer identified by Non-Gel sieving capillary electrophoresis, Clinical Chemistry,1995,41:p.482-483.
    [17]. Liu, J.P., et al., Analysis of monoclonal antibody and immunoconjugate digests by capillary electrophoresis and capillary liquid chromatography, Journal of Chromatography A,1996, 735:p.357-366.
    [18]. Nakatani, M., Shibukawa, A., and Nakagawa, T., Effect of temperature and viscosity of sieving medium on electrophoretic behavior of sodium dodecyl sulfate-proteins on capillary electrophoresis in presence of pullulan, Electrophoresis,1996,17:p.1210-1213.
    [19]. Ganzler, K., et al., High-performance capillary electrophoresis of SDS protein complexes using UV-transparent polymer networks, Analytical Chemistry,1992,64:p.2665-2671.
    [20]. Wu, D. and Regnier, F.E., Sodium dodecyl-sulfate capillary gel-electrophoresis of proteins using non-cross-linked polyacrylamide, Journal of Chromatography,1992,608:p.349-356.
    [21]. Werner, W.E., et al., Size-dependent separation of proteins denatured in SDS by capillary electrophoresis using a replaceable sieving matrix, Analytical Biochemistry,1993,212:p. 253-258.
    [22]. Karim, M.R., Janson, J.C., and Takagi, T., Size-dependent separation of proteins in the presence of sodium dodecyl-sulfate and dextran in capillary electrophoresis-effect of molecular-weight of dextran, Electrophoresis,1994,15:p.1531-1534.
    [23]. Liu, B.F., Xie, Q.G., and Lu, Y.T., Identifying the orientation of DNA fragment in recombinant plasmid by capillary electrophoresis with a Non-Gel sieving solution, Analytical Sciences,2001,17:p.1253-1256.
    [24]. Zhou, D. and Wang, Y.M., Mechanisms of DNA separation by capillary electrophoresis in Non-Gel sieving matrices, Progress in Chemistry,2006,18:p.987-994.
    [25]. Oto, M., Suehiro, T., and Yuasa, Y, DNA hybridization analysis of PCR products by Non-Gel sieving capillary electrophoresis, PCR-Methods and Applications,1995,4:p. 303-304.
    [26]. Hunt, G. and Nashabeh, W., Capillary electrophoresis sodium dodecyl sulfate Non-Gel sieving analysis of a therapeutic recombinant monoclonal antibody:A biotechnology perspective, Analytical Chemistry,1999,71:p.2390-2397.
    [27]. Chen, H., et al., Separation of DNA fragments by capillary electrophoresis with Non-Gel sieving matrix of hydroxyethyl cellulose and sucrose, Chemical Journal of Chinese Universities-Chinese,1997,18:p.1769-1773.
    [28]. Oto, M., Suehiro, T., and Yuasa, Y., Identification of mutated p53 in cancer by Non-Gel sieving capillary electrophoretic sscp analysis, Clinical Chemistry,1995,41:p.1787-1788.
    [29]. Zhang, Y, Lee, H.K., and Li, S.F.Y., Separation of myoglobin molecular mass markers using Non-Gel sieving capillary electrophoresis, Journal of Chromatography A,1996,744:p. 249-257.
    [30]. Maccrehan, W.A., Rasmussen, H.T., and Northrop, D.M., Size-selective capillary electrophoresis (SSCE) separation of DNA fragments, Journal of Liquid Chromatography, 1992,15:p.1063-1080.
    [31]. Madabhushi, R.S., et al., Versatile low-viscosity sieving matrices for nondenaturing DNA separations using capillary array electrophoresis, Electrophoresis,1997,18:p.104-111.
    [32]. Shen, Y, et al., Application of capillary Non-Gel sieving electrophoresis for gene analysis, Electrophoresis,1999,20:p.1822-1828.
    [33].瘳海明,杨昭鹏,用SDS-填充胶毛细管电泳法测定蛋白质分子量,药物分析杂志, 1999,19:p.363-366.
    [34].徐巧娣,陈瑶佩,应用高效毛细管电泳测定生物蛋白质样品,浙江农业大学学报,1993,4:p.441-444.
    [35].董捷,毛细管电泳在生物分析化学上的应用及进展,山东环境,1998,3:p.19-20.
    [36].阮小林,谢天尧,莫金垣,毛细管电泳在蛋白质等生物大分子分析中的应用,现代医学仪器与应用,2002,4:p.14-20.
    [37].李天铎等,蛋白酶水解铬革屑所得胶原蛋白产物分子量的研究,中国皮革,2003,5:p.4-5.
    [38].高文惠,裴红,杨桂君,毛细管电泳在食品添加剂检测中的应用,食品与生物技术学报,2010,3:p.326-330.
    [39]. Xiang, Q., et al., Stability and determination of metamizole sodium by capillary electrophoresis, analysis combined with INFRA-RED spectroscopy, Chemical Research in Chinese Universities,2007,23:p.654-658.
    [40]. Kinoshita, E., et al., Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE, Proteomics,2008,8:p.2994-3003.
    [41]. Meier, R.J., et al., SDS-PAGE of proteins using a chameleon-type of fluorescent prestain, Analytical Chemistry,2008,80:p.6274-6279.
    [42]. Araque-Calderon, Y., et al., Antibiotic resistance patterns and SDS-PAGE protein profiles of burkholderia cepacia complex isolates from nosocomial and environmental sources in venezuela, Medical Science Monitor,2008,14:p.49-55.
    [43].吴斗思,卢淑琴,吴献役,用SDS凝胶电泳法测定丝蛋白的分子量,天津纺织工学院学报,1996,15:p.23-26.
    [44]. Tanaka, K., et al., Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombix mori, Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1999,1432:p.92-103.
    [45]. Ha, S.W., et al., Structural study of irregular amino acid sequences in the heavy chain of Bombix mori silk fibroin, Biomacromolecules,2005,6:p.2563-2569.
    [1]. Vollrath, F., Madsen, B., and Shao, Z.Z., The effect of spinning conditions on the mechanics of a spider's dragline silk, Proceedings of the Royal Society of London Series B-Biological Sciences,2001,268:p.2339-2346.
    [2]. Shao, Z.A and Vollrath, F., Materials:Surprising strength of silkworm silk, Nature,2002,418: p.741-741.
    [3]. Tirrell, D.A., Putting a new spin on spider silk, Science,1996,271:p.39-40.
    [4]. Kaplan, D.L., Spiderless spider webs, Nature Biotechnology,2002,20:p.239-240.
    [5]. Vollrath, F. and Knight, D.P., Liquid crystalline spinning of spider silk, Nature,2001,410:p. 541-548.
    [6]. Service, R.F., Materials science-mammalian cells spin a spidery new yarn, Science,2002, 295:p.419-421.
    [7]. Jin, H.J. and Kaplan, D.L., Mechanism of silk processing in insects and spiders, Nature,2003, 424:p.1057-1061.
    [8]. Seidel, A., Liivak, O., and Jelinski, L.W., Artificial spinning of spider silk, Macromolecules,1998,31:p.6733-6736.
    [9]. Yao, J.M., et al., Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate, Macromolecules,2002,35:p.6-9.
    [10]. Ishizaka, H., et al., Regenerated silk prepared from ortho phosphoric acid solution of fibroin, Nippon Sanshigaku Zasshi,1989,58:p.87-95.
    [11]. L., L.R., Process for making silk fibroin fibers,1993:US.
    [12].许莹,仿蜘蛛吐丝技术初步研究-以家蚕丝素蛋白质为模型,博士论文,东华大学,上海,2004.
    [13]. Ha, S.W., Park, Y.H., and Hudson, S.M., Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Biomacromolecules,2003,4:p.488-496.
    [14]. Ha, S.W., Tonelli, A.E., and Hudson, S.M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning, Biomacromolecules,2005,6:p. 1722-1731.
    [15]. Um, I.C., et al., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, International Journal of Biological Macromolecules,2001,29:p. 91-97.
    [16]. Matsumoto, K., et al., Studies on regenerated protein fibers.3. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method, Journal of Applied Polymer Science,1996,60:p.503-511.
    [17]. Matsumoto, K. and Uejima, H., Regenerated protein fibers.1. Research and development of a novel solvent for silk fibroin, Journal of Polymer Science Part A-Polymer Chemistry,1997, 35:p.1949-1954.
    [18]. Zhao, C.H., et al., Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system, Biopolymers,2003,69:p.253-259.
    [19]. Yamaura, K., et al., Flow-induced crystallization of Bombyx mori silk fibroin from regenerated aqueous solution and spinnability of its solution, Journal of Applied Polymer Science,1985,41:p.205-220.
    [20]. Xie, F., et al., Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution, International Journal of Biological Macromolecules,2006,38: p.284-288.
    [21].朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺及干法纺丝初探,博士论文,东华大学,上海,2009.
    [22]. Zhou, G.Q., et al., Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts, Advanced Materials, 2009,21:p.366-370.
    [23]. Meier, R.J., et al., SDS-PAGE of proteins using a chameleon-type of fluorescent prestain, Analytical Chemistry,2008,80:p.6274-6279.
    [24]. Klenova, E.M., et al., Molecular weight abnormalities of the ctcf transcription factor:CTCF migrates aberrantly in SDS-PAGE and the size of the expressed protein is affected by the UTRS and sequences within the coding region of the CTCF gene, Nucleic Acids Research, 1997,25:p.466-473.
    [25]. Inoue, S., et al., Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio, Journal of Biological Chemistry,2000,275:p.40517-40528.
    [26]. Foo, C.W.P., et al., Role of pH and charge on silk protein assembly in insects and spiders, Applied Physics A-Materials Science & Processing,2006,82:p.223-233.
    [27]. Tanaka, K., et al., Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori, Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1999,1432:p.92-103.
    [28]. Ha, S.W., et al., Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin, Biomacromolecules,2005,6:p.2563-2569.
    [29]. Kweon, H. and Park, Y.H., Dissolution and characterization of regenerated Antheraea pernyi silk fibroin, Journal of Applied Polymer Science,2001,82:p.750-758.
    [30]. Tao, W., Li, M.Z., and Zhao, C.X., Structure and properties of regenerated Antheraea pemyi silk fibroin in aqueous solution, International Journal of Biological Macromolecules,2007, 40:p.472-478.
    [31]. Zuo, B., Dai, L., and Wu, Z., Analysis of structure and properties of biodegradable regenerated silk fibroin fibers, Journal of Materials Science,2006,41:p.3357-3361.
    [32]. Yamada, H., et al., Preparation of undegraded native molecular fibroin solution from silkworm cocoons, Materials Science and Engineering C:Biomimetic and Supramolecular Systems,2000,14:p.41-46.
    [33].黄君霆,朱良均,蚕丝的纤维化机理研究,蚕桑通报,1998,29:p.5-7.
    [34]. Magoshi, J., Magoshi, Y., and Nakamura, S., Mechanism of fiber formation of silkworm, Silk Polymers,1994,544:p.292-310.
    [35]. Holland, C., et al., Comparing the rheology of native spider and silkworm spinning dope, Nature Materials,2006,5:p.870-874.
    [36]. Zhou, L., et al., Effect of metallic ions on silk formation in the mulberry silkworm, Bombyx mori, J.Phys. Chem. B,2005,109:p.16937-16945.
    [37]. Magoshi, J., et al., Biospinning by Bombyx mori silkworm, Abstracts of Papers of the American Chemical Society,1996,212:p.53-Cell.
    [38]. Magoshi, J., et al., Silk fiber formation, multiple spinning mechanisms, in Polymeric materials encyclopedia., Salamone, J.C., Edited.1996, Florid, USA.
    [39]. Ochi, A., et al., Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm, Biomacromolecules,2002,3:p.1187-1196.
    [40].朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺及干法纺丝初探,博士论文,东华大学,上海,2009.
    [41]. Li, X.G., et al., Conformational transition and liquid crystalline state of regenerated silk fibroin in water, Biopolymers,2008,89:p.497-505.
    [42]. Terry, A.E., et al., PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm, Biomacromolecules,2004,5:p.768-772.
    [43]Holland C., et al., Natural and unnatural silks, Polymer,2007,48:p.3388-3392.
    [44]. Khan, M.M.I.R., et al., Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds, International Journal of Biological Macromolecules,2008,42:p.264-270.
    [45].解芳,邵惠丽,胡学超,剪切速率对高浓度再生丝素水溶液构象的影响,东华大学学报,2006,32:p.1-6.
    [46].解芳,高浓度再生丝素蛋白水溶液的仿生纺丝探讨,博士论文,东华大学,上海,2007.
    [1]. Shao, Z.Z. and Vollrath, F., Materials:Surprising strength of silkworm silk, Nature,2002, 418:p.741-741.
    [2]. Zhou, P., et al., Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D raman correlation spectroscopy and C-13 solid-state NMR, Biochemistry, 2004,43:p.11302-11311.
    [3]. Hayashi, C.Y., Shipley, N.H., and Lewis, R.V., Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins, International Journal of Biological Macromolecules,1999,24:p.271-275.
    [4]. Jin, H.J., et al., Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide), Biomacromolecules,2004,5:p.711-717.
    [5]. Lee, K.H., et al., Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments, International Journal of Biological Macromolecules,2007,41:p.168-172.
    [6]. Viney, C., Natural silks:Archetypal supramolecular assembly of polymer fibres, Supramolecular Science,1997,4:p.75-81.
    [7]. Wilding, M.A. and Hearle, J.W.S., Fiber structure, in Polymeric materials encyclopedia, Salamone, J.C., Edited,1996, Florid, USA.
    [8]. Anderson, J.P., Morphology and crystal structure of a recombinant silk-like molecule, SLP4, Biopolymers,1998,45:p.307-321.
    [9]. Ki, C.S., et al., The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament, International Journal of Biological Macromolecules,2007,41:p. 346-353.
    [10]. Ishizaka, H., et al., Regenerated silk prepared from ortho phosphoric acid solution of fibroin, Nippon Sanshigaku Zasshi,1989,58:p.87-95.
    [11]. Matsumoto, K., et al., Regenerated protein fibers.2. Viscoelastic behavior of silk fibroin solutions, Journal of Polymer Science Part A-Polymer Chemistry,1997,35:p.1955-1959.
    [12]. Matsumoto, K. and Uejima, H., Regenerated protein fibers.1. Research and development of a novel solvent for silk fibroin, Journal of Polymer Science Part A-Polymer Chemistry,1997, 35:p.1949-1954.
    [13].许莹,仿蜘蛛吐丝技术初步研究-以家蚕丝素蛋白质为模型,博士论文,东华大学,上海,2004.
    [14]. Zhou, G.Q., et al., Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts, Advanced Materials, 2009,21:p.366-370.
    [15]. Yao, J.M., et al., Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate, Macromolecules,2002,35:p.6-9.
    [16]. Um, I.C., et al., Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system, Journal of Applied Polymer Science,2007,105:p.1605-1610.
    [17]. Ha, S.W., Park, Y.H., and Hudson, S.M., Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Biomacromolecules,2003,4:p.488-496.
    [18]. Zhao, C.H., et al., Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system, Biopolymers,2003,69:p.253-259.
    [19]. Liivak, O., et al., A microfabricated wet-spinning apparatus to spin fibers of silk proteins, Structure-property correlations, Macromolecules,1998,31:p.2947-2951.
    [20]. Phillips, D.M., et al., Regenerated silk fiber wet spinning from an ionic liquid solution, Journal of Materials Chemistry,2005,15:p.4206-4208.
    [21]. Xie, F., et al., Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution, International Journal of Biological Macromolecules,2006,38: p.284-288.
    [22].朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺及干法纺丝初探,博士论文,东华大学,上海,2009.
    [23]. Matsumoto, K., et al., Studies on regenerated protein fibers.3. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method, Journal of Applied Polymer Science,1996,60:p.503-511.
    [24]. Ha, S.W., Tonelli, A.E., and Hudson, S.M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning, Biomacromolecules,2005,6:p. 1722-1731.
    [25]. Um, I.C., et al., Wet spinning of silk polymer-Ⅰ. Effect of coagulation conditions on the morphological feature of filament, International Journal of Biological Macromolecules,2004, 34:p.89-105.
    [26]. Mathur, A.B., et al., The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films, Biopolymers,1997,42:p. 61-74.
    [27].解芳,高浓度再生丝素蛋白水溶液的仿生纺丝探讨,博士论文,东华大学,上海,2007.
    [28]. Pezolet, M., Pigeongosselin, M., and Coulombe, L., Laser raman investigation of conformation of human immunoglobulin-G, Biochimica et Biophysica Acta,1976,453:p. 502-512.
    [29]. Fossey, S.A. and Kaplan, D.L., Silk protein, in Polymer data handbook, Mark J. E., Edited, 1999, New York, USA.
    [30]. Chen, X., et al., Conformation transition of silk protein membranes monitored by time-resolved FTIR spectroscopy-conformation transition behavior of regenerated silk fibroin membranes in alcohol solution at high concentrations, Acta Chimica Sinica,2003, 61:p.625-629.
    [31]. Chen, X., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy, Biophysical Chemistry,2001, 89:p.25-34.
    [32]. Chen, X., et al., Conformation transition kinetics of Bombyx mori silk protein, Proteins-Structure Function and Bioinformatics,2007,68:p.223-231.
    [33]. Um, I.C., et al., Wet spinning of silk polymer-II. Effect of drawing on the structural characteristics and properties of filament, International Journal of Biological Macromolecules,2004,34:p.107-119.
    [34]. Nam, J. and Park, Y.H., Morphology of regenerated silk fibroin:Effects of freezing temperature, alcohol addition, and molecular weight, Journal of Applied Polymer Science, 2001,81:p.3008-3021.
    [35]. Monti, P., et al., Raman spectroscopic studies of silk fibroin from Bombyx mori, Journal of Raman Spectroscopy,1998,29:p.297-304.
    [36]. Vollrath, F., Madsen, B., and Shao, Z.Z., The effect of spinning conditions on the mechanics of a spider's dragline silk, Proceedings of the Royal Society of London Series B-Biological Sciences,2001,268:p.2339-2346.
    [37]. Glisovic, A., et al., Correlation between structure and mechanical properties of spider silk, Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology,2007, 146:p. S138-S138.
    [1]. Fedic, R., Zurovec, M., and Sehnal, F., Correlation between fibroin amino acid sequence and physical silk properties, Journal of Biological Chemistry,2003,278:p.35255-35264.
    [2]. Vollrath, F. and Knight, D.P., Liquid crystalline spinning of spider silk, Nature,2001,410:p. 541-548.
    [3]. Jin, H.J. and Kaplan, D.L., Mechanism of silk processing in insects and spiders, Nature,2003, 424:p.1057-1061.
    [4]. Gosline, J.M., Demont, M.E., and Denny, M.W., The structure and properties of spider silk, Endeavour,1986,10:p.37-43.
    [5]. Tirrell, D.A., Putting a new spin on spider silk, Science,1996,271:p.39-40.
    [6]. Shao, Z.Z. and Vollrath, F., Materials:Surprising strength of silkworm silk, Nature,2002,418: p.741-741.
    [7]. Lee, K.H., et al., Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments, International Journal of Biological Macromolecules,2007,41:p.168-172.
    [8]. Viney, C., Natural silks:Archetypal supramolecular assembly of polymer fibres, Supramolecular Science,1997,4:p.75-81.
    [9]. Wilding, M.A. and Hearle, J.W.S., Fiber structure, in Polymeric materials encyclopedia, Salamone, J.C., Edited,1996, Florida, USA.
    [10]. Anderson, J.P., Morphology and crystal structure of a recombinant silk-like molecule, slp4, Biopolymers,1998,45:p.307-321.
    [11]. Ishizaka, H., et al., Regenerated silk prepared from ortho phosphoric acid solution of fibroin, Nippon Sanshigaku Zasshi,1989,58:p.87-95.
    [12]. Mathur, A.B., et al., The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films, Biopolymers,1997,42:p. 61-74.
    [13]. Yao, J.M., et al., Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate, Macromolecules,2002,35:p.6-9.
    [14]. Ha, S.W., Park, Y.H., and Hudson, S.M., Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution, Biomacromolecules,2003,4:p.488-496.
    [15]. Ha, S.W., Tonelli, A.E., and Hudson, S.M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning, Biomacromolecules,2005,6:p. 1722-1731.
    [16]. Um, I.C., et al., Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system, Journal of Applied Polymer Science,2007,105:p.1605-1610.
    [17]. Zhou, G.Q., et al., Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts, Advanced Materials, 2009,21:p.366-370.
    [18]. Yamaura, K., et al., Flow-induced crystallization of Bombyx mori silk fibroin from regenerated aqueous solution and spinnability of its solution, Journal of Applied Polymer Science,1985,41:p.205-220.
    [19]. Xie, F., et al., Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution, International Journal of Biological Macromolecules,2006,38: p.284-288.
    [20].朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺及干法纺丝初探,博士论文,东华大学,上海,2009.
    [21]. Shao, J.Z., et al., Fourier transform raman and fourier transform infrared spectroscopy studies of silk fibroin, Journal of Applied Polymer Science,2005,96:p.1999-2004.
    [22]. Bhat, N.V. and Ahirrao, S.M., Investigation of the structure of silk film regenerated with lithium thiocyanate solution, Journal of polymer science. Part A-1, Polymer chemistry,1983, 21:p.1273-1280.
    [23]. Fossey, S.A. and Kaplan, D.L., Silk protein, in Polymer data handbook, Mark, J.E., Edited, 1999, New York, USA.
    [24]. Chen, X., et al., Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved ftir spectroscopy, Biophysical Chemistry,2001,89:p. 25-34.
    [25]. Chen, X., et al., Conformation transition in silk protein films monitored by time-resolved fourier transform infrared spectroscopy:Effect of potassium ions on nephila spidroin films, Biochemistry,2002,41:p.14944-14950.
    [26].周文,陈新,邵正中,红外和拉曼光谱用于对丝蛋白构象的研究,化学进展,2006,18:p.1514-1522.
    [27].邢本刚,梁宏,FTIR在蛋白质二级结构研究中的应用进展,广西师范大学学报:自然科学版,1997:p.45-49.
    [28]. Krimm, S. and Bandekar, J., Vibrational analysis of peptides, polypeptides, and proteins. V. Normal vibrations of β-turns, Biopolymers,1980,19:p.1-29.
    [29]. Tretinnikov, O.N. and Tamada, Y, Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films, Langmuir,2001,17:p.7406-7413.
    [30]. Liang, C.X. and Hirabayashi, K., Influence of solvation temperature on the molecular-features and physical-properties of fibroin membrane, Polymer,1992,33:p. 4388-4393.
    [31].刘媛,谢孟峡,康娟,三七总皂甙对牛血清白蛋白溶液构象的影响,化学学报,2003,61:p.1305-1310.
    [32]. Khan, M.M.I.R., et al., Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds, International Journal of Biological Macromolecules,2008,42:p.264-270.
    [33]. Um, I.C., et al., Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament, International Journal of Biological Macromolecules,2004,34:p.107-119.
    [34]. Hu, X., Kaplan, D., and Cebe, P., Effect of water on the thermal properties of silk fibroin, Thermochimica Acta,2007,461:p.137-144.
    [35]. Drummy, L.F., et al., Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films, Biomacromolecules,2005,6:p.3328-3333.
    [36]. Chen, X., et al., Conformation transition kinetics of Bombyx mori silk protein, Proteins-Structure Function and Bioinformatics,2007,68:p.223-231.
    [37]. Vollrath, F., Madsen, B., and Shao, Z.Z., The effect of spinning conditions on the mechanics of a spider's dragline silk, Proceedings of the Royal Society of London Series B-Biological Sciences,2001,268:p.2339-2346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700