复合银催化剂的制备及其在多碳醇选择性氧化反应中的催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合银催化剂的制备及其在多碳醇选择性氧化反应中的催化性能
     羰基化合物是一种重要的有机化合物,包括醛和酮两大类,广泛应用于医药、农药、香料等诸多领域。目前,随着现代石油化工和精细化工的发展,一些结构比甲醛更复杂的多碳羰基化合物越来越受到人们的重视。例如,丙酮醛作为一种医药工业的中间体,有着非常广泛的应用前景;一些碳链结构复杂的醛类,如3,5,5-三甲基己醛在精细化工中需求较大。合成多碳醛酮的一种非常重要的反应途径就是多碳醇类的选择性氧化,即将醇上的羟基脱氢氧化形成羰基,主要包括单元醇的选择性氧化和多元醇的选择性氧化两个过程。目前,多碳醇的气相选择性氧化是一种原子收率高且环境友好的合成路线;在这一过程中,银基催化剂有着非常广泛的应用。在乙二醇气相氧化制乙二醛以及1,2-丙二醇气相氧化制1,2-丙二醛等反应中,银基催化剂部成功实现了工业化。从目前的研究现状来看,银基催化剂主要可以分为两大类:电解银催化剂和负载银催化剂。这两种不同的银催化剂在各自的领域都有着重要的应用。但是,对于电解银催化剂来说,低温活性较差,高温选择性和稳定性不足成为限制其应用的主要问题;而对于负载银催化剂来说,热传导性和再生性的不足也限制它的工业化应用。因此,探寻两种催化剂的结构性能与催化反应规律、研究在不同反应体系中的催化行为,并在此基础上开发出性能优越的新型复合银催化剂,进一步提高催化反应的转化率和选择性,成为本论文主要的研究方向。
     本论文主要开展了以下几个方面的工作:1)研究电解银催化剂在多碳醇(包括单元醇和多元醇)中的选择性催化氧化行为;2)采用电化学镶嵌法,将第二相微粒La_2O_3嵌入到电解银催化剂中去,形成物理间隔,制备出La_2O_3/Ag复合催化剂,从而提高电解银催化剂的高温活性和抗烧结性能,提高催化剂的稳定性;3)考虑到负载银催化剂的高分散所带来的较高的低温活性,利用合适的载体SiO_2,ZrO_2以及SBA-15,制备出负载型的Ag/SiO_2,Ag/ZrO_2和Ag/SBA-15催化剂,并研究了载体对于催化活性位的影响;4)在前面工作的基础上,开创性地联用Seed-film方法和原位电解法,合成具有三层结构的纳米电解银—沸石膜复合催化剂,并研究了催化剂的构效关系。
     一、电解银催化剂在醇选择性氧化反应中的催化表现
     首先采用传统的电解法,制备了电解银催化剂,应用的反应体系有:多元醇1,2—丙二醇选择性氧化制丙酮醛,单元醇3,5,5—三甲基己醇制3,5,5—三甲基己醛。实验结果表明,对于多元醇的反应来说,电解银催化剂在大于400℃情况下可以获得较好的反应活性,在400℃时,电解银催化剂可以获得96%的1,2—丙二醇转化率和45%的丙酮醛选择性。但是,电解银催化剂的低温活性较差,同时其高温选择性(>500℃)也不理想。对于大分子单元醇3,5,5—三甲基己醇来说,因为受到催化活性的限制,反应过程中为了获得较好的活性,必须将反应温度提升,由于其分子结构中支链较多,这样会相应地引起断链反应的发生,副反应将会明显增加。XRD和SEM的结果说明电解银催化剂在高温条件下,易于发生团聚,使得活性下降,而正是这一因素,导致了电解银催化剂不能够被更广泛地应用于包括单元醇和多元醇在内的多碳醇选择性氧化反应中。
     二、复合电解银催化剂La_2O_3/Ag的制备及催化性能研究
     采用超声波诱导的电化学镶嵌法制备了掺杂La_2O_3微粒的复合电解银催化剂。XRD和SEM结果表明了第二相微粒La_2O_3成功地均匀嵌入电解银微粒之间,形成了物理间隔。应用Scherrer公式计算发现,在同一焙烧温度下,随着La_2O_3含量的增加,银颗粒的平均半径呈下降趋势。同时,对电解银催化剂和复合La_2O_3/Ag催化剂在不同温度下进行焙烧后发现:随着焙烧温度的提升,两种催化剂中银颗粒的平均半径均逐渐增大,但是增加的幅度后者明显缓于前者。由此表明:第二相微粒的加入,有利于提高电解银的高温抗烧结性能。通过对1,2—丙二醇催化氧化制丙酮醛的反应过程的研究,发现La_2O_3的加入会抑制银的催化活性,这一现象在低温条件下较为显著;但是,La_2O_3的加入极大地改善了催化剂的高温抗烧结性能,当反应温度大于550℃时,复合结晶银催化剂的产率高于电解银催化剂。在400℃时,镶嵌了0.8%的La_2O_3复合结晶银催化剂的1,2—丙二醇转化率为85.3%,丙酮醛选择性为37.2%;当温度升高到600℃时,镶嵌了0.8%的La_2O_3复合结晶银催化剂的1,2—丙二醇转化率为93.3%,选择性为28.7%,而此时电解银催化剂的1,2—丙二醇转化率为99.1%,丙酮醛选择性仅为8.6%。
     三、Ag/SiO_2、Ag/ZrO_2和Ag/SBA-15催化剂的制备、表征及反应过程研究
     以SiO_2、ZrO_2和SBA-15为载体分别制备负载型银催化剂Ag/SiO_2、Ag/ZrO_2和Ag/SBA-15。通过对1,2—丙二醇选择性催化氧化制丙酮醛反应研究,发现Ag/ZrO_2以及Ag/SBA-15催化剂都具有较为优良的低温活性,而Ag/SiO_2催化剂的催化性能则不如前二者。在此基础上,进一步研究载体与活性组分之间的相互关系。XRD的表征结果表明:ZrO_2载体随着焙烧温度的提高,分别呈现出四方、混相以及单斜三种不同的晶相,其中以单斜晶相对银颗粒的分散最为有利。UV-vis的研究表明,以ZrO_2为载体,有利于形成游离态的银离子以及银团簇这样的反应活性位,其中以单斜的ZrO_2为载体最易于形成反应活性位。XPS研究表明:以单斜ZrO_2为载体的Ag/ZrO_2催化剂其Ag3d结合能发生最大的正向位移,体现出大量游离态的银正离子的存在。对于Ag/SBA-15的XRD研究表明,银的加入,并没有破坏SBA-15的特有结构,同时金属银在载体上的分散情况非常好。UV-vis的研究发现,随着银载量的增加,250和280mm处的特征吸收峰相应增强,体现了活性位的增加。同时,对比Ag/ZrO_2和Ag/SAB-15两种催化剂的催化活性发现,虽然后者的比表面远远大于前者,并且Ag/SAB-15催化剂中银的分散情况也更加好,但是,Ag/ZrO_2催化剂的活性却高于Ag/SAB-15催化剂,由此说明:ZrO_2的吸电子效应对于活性位的产生有着非常显著的正效应。
     四、纳米银—沸石膜催化剂(SZF)的制备、表征及催化反应
     采用Seed-film方法制备先在铜网上生长出一层超薄的沸石膜,再通过原位电解技术,将纳米电解银颗粒生长在沸石膜表面,经焙烧后形成纳米银—沸石膜催化剂SZF(Silver Zeolite Film Catalyst)。SEM测试发现,SZF催化剂具有精细的三层结构,基底铜网、超薄沸石膜以及纳米银颗粒。TEM结果显示,大量的银颗粒尺寸在10nm以下,且分散均匀。在XRD图谱中没有沸石膜特征衍射峰,
    进一步说明了沸石膜的超薄结构。采用UV-vis方法检测SZF催化剂的表面活性位,发现有大量的游离态银正离子的存在;通过XPS方法从另一个侧面发现,Ag3d结合能的正向位移体现了游离态银离子在SZF催化剂表面的富集。纳米电解银颗粒产生的大量反应活性位使得SZF催化剂在多碳醇选择性氧化领域表现出良好的催化性能。在活性测试中,选取了有代表性的九种不同的醇,包括了脂肪单元醇,脂肪多元醇,芳香醇以及碳环醇,对比传统的电解银催化剂,纳米银—沸石膜催化剂SZF体现出了非常明显的低温活性优势。与此同时,发现多碳醇的分子结构以及羟基的位置变化对于反应结果有一定的影响。对于单元醇而言,反应的核心问题在于提高原料醇的转化率,进而提高反应活性;而对于多元醇而言,如何提高对于目标产物的选择性是最终提升反应活性的一个关键性问题。
Carbonyl compounds are important in fine chemical industries, Pharmaceuticals, agrochemicals, perfumes and flavors, which include the aldehyde and the ketone. With the development of petrochemical industry and the modern fine chemical industry, those carbonyls that possess more than one carbon atom have attracted many concerns. Nowadays, the focus is on two types of reactions. One is the selective oxidation of mono-alcohols, where the desired products are often those of moderate oxidation, i.e., aldehydes and ketones. The other is the selective oxidation of polyhydric alcohols, where the target products are often moderately oxidized compounds while the products of lean oxidation (a-hydroxyketone), and where over oxidation (carboxyl acid, CO2) or cracking should be avoided. Up to now several silver-based catalysts including bulk silver and supported silver catalysts have been developed for the oxidation of alcohols. However, some serious problems are still encountered in the application of such catalysts. For example, in the case of conventional bulk silver (e.g., industrial electrolytic silver), the low catalytic activity at low temperatures often leads to the formation of the byproducts of lean oxidation, such as a-hydroxyketone. On the other hand, at a higher reaction temperature (>500 °C), the products of cracking and/or over oxidation are mainly obtained. To improve the catalytic performance of silver-based catalysts, great efforts have been made by either adding additives to bulk silver catalysts, or dispersing the silver particles on suitable supports. Supported silver is expected to enhance the dispersion and stability (anti-sintering ability) of silver, and thus its catalytic activity at relatively low
    temperatures. However, compared with bulk silver catalysts, supported silver catalysts usually have a low heat conductivity, which has greatly restricted their practical application, especially in some strongly-exothermic oxidation reactions. Hence the design of a catalyst with the elaborate structure and better performance is still a challenge for the research in alcohol catalytic oxidations, especially for those with relatively complex molecular structures (e. g., polyhydric alcohols) where the current catalysts are inapplicable because of the complexity in selectivity and/or low activity at low temperatures.
    In this work, our research is concentrated on the following fields: 1) the study of the catalytic performance of electrolytic silver in the selective oxidation of alcohols; 2) the preparation of the complex La_2O_3/Ag catalyst via the electrolytic inlay method by enchasing the La_2O_3 particles into the interface of the electrolytic particles to improve its anti-sintering ability; 3) the preparation of different types of supported silver catalysts: Ag/SiO_2, Ag/ZrO_2, Ag/SBA-15 and their catalytic performance in the alcohol oxidation: 4) the fabrication of nano-silver/zeolite film/copper grid catalyst via the combination of seed-film method and the electrolytic process and its great catalytic performance for the selective oxidation of alcohols with different structures.
    1. The electrolytic silver catalyst was prepared through the electrolytic process and was adopted in the selective oxidation of 1,2-propylene glycol and 3,5,5-trimethyl hexanol. It is shown that the electrolytic silver catalyst exhibits good activity when reaction temperatures are above 400°C. However the activity in low temperatures and high temperatures is poor. In the case of 3,5,5-trimethyl hexanol, the catalytic performance of electrolytic silver is not ideal because the complicated molecular structure of 3,5,5-trimethyl hexanol restrains the enhancement of reaction temperature. According to the XRD and SEM investigation, the silver particles in the electrolytic silver are easy to sinter at high temperatures, which is the hurdle for it to be used in the selective oxidation of alcohols with lame molecular sizes.
    2. La_2O_3/Ag complex silver catalyst was prepared by ultrasonic electrolytic method. The catalysts with different loading weight of La_2O_3 were investigated by SEM, XRD and ICP. The crystal structure of silver was not destroyed after mixing with small amount of La_2O_3 in electrolytic process, but thermo-stability was improved obviously. The activity and stability of complex silver catalysts were compared in selective oxidation of 1,2-propylene glycol reaction system between 1%La_2O_3/Ag and pure electrolytic silver catalyst. The results revealed that at high temperature e.g. 600°C, the conversion of 1,2-propylene glycol over La_2O_3/Ag catalyst was 93.3% and the selectivity to methyl glyoxal was 28.7%; while those two values over the electrolytic silver catalysts are 99.1 % and 8.6%, respectively.
    3. Three types of supported silver catalysts were prepared: Ag/SiO_2, Ag/ZrO_2, Ag/SBA-15. According to the activity test, the selective oxidation of 1,2-propylene glycol, both Ag/ZrO_2 and Ag/SBA-15 exhibited good catalytic performance in low reaction temperatures, however the improvement of the activity of Ag/SiO_2 is slight. The investigation of the support effect shows that the crystal state of ZrO_2 has great influence over the catalytic behaviors of Ag/ZrO_2 catalysts. The monoclinic ZrO_2 will do most favor to the activity improvements. The UV-vis investigation revealed that in the Ag/m-ZrO_2 catalyst, there lived much more isolated silver ions than that in the other types of Ag/ZrO_2 catalysts. The XRD investigation over the Ag/SBA-15 showed that the introduction of silver would never destroy the specific ordered structure of SBA-15 molecular sieves. The large specific surface of Ag/SBA-15 catalysts provide the silver particles with better dispersion level, which will benefit the formation of active sites in the catalyst surface according to the characterization of UV-vis and XPS.
    4. The selective oxidation of a series of alcohols to their corresponding carbonyl products was carried out over a rationally designed in situ electrolytic nano-silver/zeolite film/copper grid (SZF) catalyst, which was prepared by a combination of the seed-film method for the fabrication of an ultrathin zeolite film
    and the in situ electrolytic process for the formation of highly dispersed silver nanoparticles. At a relatively low reaction temperature (ca. 320°C), the SZF catalyst with highly dispersed in situ electrolytic silver nanoparticles exhibited a much higher activity for the oxidation of mono-alcohols and a higher selectivity for ketonic aldehyde in the oxidation of di-alcohols than the conventional bulk electrolytic silver catalyst. On the basis of the combination of diffuse reflectance ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermoanalysis, the remarkably high activity and selectivity of the SZF catalyst was attributed to the highly dispersed silver nanopartieles which were stabilized by the zeolite film against sintering and accordingly the large amount of Ag~+ ions and Ag_n~(δ+) clusters existed in the silver nanopartieles. The improvements of the catalytic performance of the SZF catalyst in a wide application extension will bring new concerns in both theoretical and applied fields.
引文
[1] Anastus R T., Warner J. C., Green Chemistry: Theory and practice New York; Oxford University Press, 1998
    [2] 闵恩泽,傅军,化工进展,1999(3),5
    [3] 闵恩泽,绿色化学技术,南昌:江西科学技术出版社 2001,1
    [4] Sheldon, R. A., and Kochi, J. K., "Metal-Catalyzed Oxidation of Organic Compounds." Academic Press, New York, 1981
    [5] Hudlicky, M., "Oxidations in Organic Chemistry." Am. Chem. Soc., Washington, DC, 1990
    [6] M.V. Twigg, "Catalyst Handbook" Wolfe, London, 1989
    [7] 陈军,乙二醛生产技术进展,河南化工,2004(1),8
    [8] 李滨涛,李光伟,乙二醛的工业生产,化工科技,2001,9(1),68—72
    [9] 吕咏梅,乙二醛生产与应用,精细石油化工进展,2001,2(3),29—32
    [10] 李玉芳,伍小明,用新技术拓宽新用途—我国乙二醛生产及市场分析,中国石油和化工,2004(10),26—28
    [11] 刘仲能,4-甲基咪唑合成工艺进展,精细与专用化学品,2000(24),17
    [12] 项一非,甄胜艳,沈伟,1,2-丙二醇催化氧化合成丙酮醛,CN 1 036 133C,1997
    [13] 李萍,陈先明,赵帆,丙酮醛合成工艺,湖北化工,2003(2),43
    [14] 化工百科全书,第一卷,北京:化学工业出版社,1990
    [15] 陈松茂,翁世伟主编,化工产品实用手册,上海:上海科学技术文献出版社,1990
    [16] 章思规,精细化学品技术手册,北京:化学工业出版社,1991
    [17] 中国化工信息中心,中国农药原料、中间体市场与生产工艺技术调查报告,1993
    [18] Holderich W. F, Guczi L., (Eds.), New Frontiers in Catalysis, Proceedings of the10th International Congress on Catalysis, Budapest, Hungary, Elsevier SciencePublishers, 1993, 127-163
    [19] 中国化工产品大全(上),北京:化学工业出版社,1995
    [20] 章思规,实用精细化学品手册,有机卷(上),北京:化学工业出版社,1996
    [21] 徐克勋主编,有机化工原料及中间体手册,北京:化学工业出版社,1998
    [22] 魏文德主编,有机化工原料大全,二版,北京:化学工业出版社,1999
    [23] 张精安,陈育平,丙酮醛的合成研究,业细化工,2000,17(9),507
    [24] Baltes Herbert, Leupold Ernst Ingo, 2-Oxopropanal from glycerol by oxidation in gas phase, Angew Chem. 1982, 94(7), 544—545
    [25] Baltes Herbert, Leupold Ernst Ingo, Methyl glyoxal(P), DE 2 927 524, 1981
    [26] Mamoru Ai, Kyoji Ohdan, formation of pyruvicaldehyde (2-oxopropanal) by oxidative dehydrogenation of hydroxyacetone, Bull Chem. Soc. Jpn., 1999 72:2143-2148
    [27] 徐华龙,沈伟,黄玮石,1,2-丙二醇氧化脱氢合成丙酮醛,石油化工,1995,24(12),865
    [28] 崔炳春,杨国松,夏成浩,丙二醇合成丙酮醛的催化剂研究,河南化工,1998(12):9
    [29] 崔小明,乙二醛的生产应用及市场分析,化工中间体导刊,2005,15,7—14
    [30] Lefranc, H. Patent EP 667,331, 1999
    [31] Alardin, F., Delmon, B., Ruiz, P, Devillers, M., Catal. Today, 2000, 61,255
    [32] Gallezot, P., Catal. Today, 1997, 37, 405
    [33] Besson, M., Gallezot, P., Catal. Today, 2000, 57, 127
    [34] Kluytmans, J. H. J., Markusse, A. P., Kuster, B. F. M., Marin, G. B., Schouten, J.C., Catal. Today, 2000, 57, 143
    [35] Hronec, M., Cvengrosova, Z., Kizlink, J., J. Mol Catal. 1993, 83, 75
    [36] Kimura, H., Kimura, A., Kokubo, I., Wakisaka, T., Mitsuda, Y. Appl. Catal.A-Gen. 1993, 95, 143
    [37] Oi. R., Takenaka, S., Chem. Lett., 1998, 1115
    [38] Mallat, T., Bodnar, Z., Baiker, A., Greis, O., StruNg, H., Reller, A., J. Catal. 1993,142, 237
    [39] Pinxt, H., Kuster, B. F. M., Marin, G. B. Appl. CataL A-Gen. 2000, 191, 45
    [40] Hermans, S., Devillers, M., Appl. Catal. A-Gen. 2002, 235,253
    [41] Mallat, T., Bodnar, Z., Baiker, A., Stud. Surf Sci. Catal. 1993, 78, 377
    [42] Porta, F., Prati, L., Rossi, M., Coluccia, S., Martra, G., Catal. Today, 2000, 61,165
    [43] Haruta, M., Date, M., Appl. Catal. A-Gen., 2001, 222, 427
    [44] Porta, F., Prati, L., Rossi, M., Scari, G.., J. Catal. 2002, 211,464
    [45] Seker, E., Gulari, E., Appl. Catal. A-Gen. 2002, 232, 203
    [46] Biella, S., Prati, L., Rossi, M., Inorg. Chim. Acta 2003, 349, 253
    [47] Liotta, L. F., Venezia, A. M., Deganello, G., Longo, A., Martoana, A., Schay, Z.,Guczi, L., Catal. Today, 2001, 66, 271
    [48] McKeown, D.A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E.,Rolison, D.R., J. Phys. Chem. B 1999, 103, 4825
    [49] Music, S., Popovic, S., Maljkovic, M., Furic, K., Gajovic, A., Mater. Lett. 2002,56,806
    [50] Musawir, M., Davey, P. N., Kelly, G., Kozhevnikov, I. V. Chem. Commun. 2003,1414
    [51] Over, H., Kim, Y. D., Seitsonen, A. P., Wendt, S., Lundgren, E., Schmid, M.,Varga, P., Morgante, A., Ertl, G., Science 2000, 287, 1474
    [52] Kim. Y. D., Seitsonen, A. P., Wendt, S., Wang, J., Fan, C., Jacobi, K., Over, H.,Ertl, G., J. Phys. Chem. B 2001, 105, 3752
    [53] Madhavaram, H., Idriss, H., Wendt, S., Kim, Y. D., Knapp, M., Over, H.,Assmann, J., Loffier, E., Muhler, M., J. Catal. 2001, 202,296
    [54] Swider, K. E., Merzbacher, C. I., Hagans, P.L., Rolison, D. R., Chem. Mater.1997, 9, 1248
    [55] McMurray, H. N., J. Mater. Chem. 1994, 4, 1283
    [56] Matsumoto, M., Watanabe, N., J. Org. Chem., 1984, 49, 3435
    [57] Dias, C. R., Portela, M. F., Catal. Rev.-Sci. Eng. 1997, 39, 169
    [58] Vedrine, J. C., Stud. Surf Sci. Catal. 1997, 110, 61
    [59] Wang, C. B., Cai, Y. R, Wachs, I. E., Langmuir 1999, 15, 1223
    [60] Moreau, C., Durand, R., Pourcheron, C., Tichit, D., Stud. Surf Sci. Catal. 1997,108, 399
    [61] Kimura, T., Fujita, M., Sohrniya, H., Ando, T., Bull. Chem. Soc. Jpn. 1992, 65,1149
    [62] Stuchinskaya, T. L., Kozhevnikov, I. V., Catal. Commun. 2003, 4, 417
    [63] Sheldon, R. A., Arends, I. W. C. E., Dijksman, A., Catal. Today 2000, 57, 157
    [64] Corma, A., Top. Catal. 1997, 4, 249
    [65] Saxton, R. J., Top. Catal. 1999, 9, 43
    [66] Clerici, M. G., Top. Catal. 2000, 13,373
    [67] Brock, S. L., Duan, N. G., Tian, Z. R., Giraldo, O., Zhou, H., Suib, S. L., Chem.Mater. 1998, 10, 2619
    [68] Makwana, V. D., Garces, L. J., Liu, J., Cai, J., Son, Y. C., Suib, S. L., Catal.Today 2003, 85,225
    [69] Makwana, V. D., Son, Y. C., Howell, A. R., Suib, S. L. J. Catal. 2002, 210, 46
    [70] Doornkamp, C., Ponec, V., J. Mol. Catal. A-Chem. 2000, 162, 19
    [71] Padmasri A. H., Venugopal A., Krishnamurthy J., J Mol. Catal. A., 2002, 181, 73
    [72] Narayan S., Krishna K., Appl. Catal. A. 1996, 147, 253
    [73] Narayan S., Krishna K., Appl. Catal. A. 1998, 174, 221
    [74] Basile F., Fornasari G.., Trifiro F., Catal. Today, 2001, 64, 21
    [75] Velu S., Suzuki K., Osaki T., Catal. Lett., 1999, 62, 159
    [76] Velu S., Suzuki K., J. Catal., 2000, 194, 373
    [77] Zhu K., Liu C., Ye X., Wu Y., Appl. Catal. A., 1998, 168, 365
    [78] Kanada K., Yamashita T., Matsushita T., Ebitani K., J. Org. Chem. 1998, 63,1750
    [79] Matsushita T., Ebitani K., Kanada K., Chem. Commun. 1999, 265
    [80] Friedrich H. B., Khan F., Singh N., van Staden M., Synlett, 2001, 869
    [81] Choudary B. M., Kantam M. L., Rahman A., Reddy C. V., Rao K. K., Angew.Chem., Int. Ed. 2001, 40, 763
    [82] Choudhary V. R., Chaudhari E A., Narkhede V. S., Catal. Commun. 2003, 4, 171
    [83] Unnikrishnan R., Pillai, Endalkachew S.-D., J. Catal., 2002, 211,434
    [84] Hanyu A. Takeyawa E., Sakaguchi S., Ishii T., Tetrahedron Lett., 1998, 39, 5557
    [85] Dijkman A., Arends I.W.C.E., Sheldon, R. A., Chem. Commun. 1999, 1591
    [86] Yadav G. D., Mistry C. K., J Mol Catal A, 2001, 172(1/2): 135
    [87] 温朗友,沈师孔,闵恩泽.催化学报,2000,21(6):524
    [88] Navalikhina M. D., Krylov O. V., Kinet Catal, 2001, 42(2): 264
    [89] Vazquez P. G., Blanco M. N., Caceres C. V., Catal. Lett., 1999, 60(4): 205
    [90] Rives A., Payen E., Hubaut R., Vazquez P., Pizzio L., Caceres C., Blanco M., CataL Lett., 2001, 71(3/4): 193
    [91] 周广栋,郭晓红,吕学举,李亚男,程铁欣,李文兴,甄开吉.催化学报,2005,26(5):389
    [92] Plint N. D., Coville N.J., Lack D., Nattrass G.L., Vallay T., J. Mol. Catal.A-Chemical,2001,165,275
    [93] Baltes Herbert, Leupold Ernst Ingo(Hoechst A.-G.), Methyl glyoxal by oxidation of 1,2-propanediol in a gas phase on a heterogeneous catalyst[P]. DE 3 012 004,1981.
    [94] Pestryakov A.N.,Davydov A.A., Appl. Catal., A 1994,120,7
    [95] Pestryakov A. N., Catal. Today 1996, 28,239
    [96] Pestryakov A. N., Lunin V. V., J. Mol. Catal., 2000, 158, 325
    [97] 徐华龙,沈伟,黄玮石,甄胜艳,项一非,1,2-丙二醇氧化脱氢合成丙酮醛 石油化工,1995,24(12),865
    [98] 崔小明,乙二醛的生产应用及市场分析 化工中间体导刊,2005,15,7
    [99] 王彦明,姜德双,银催化剂法和铁钼催化剂法生产甲醛的比较 小氮肥,2002,1,7
    [100] Pestryakov A.N.,Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 1996, 28, 239
    [101] Claus P., Hofmeister H., J. Phys. Chem. B 1999, 103, 2766
    [102] Haneda M., Kintaichi Y., Inaba M., Hamada H., Catal. Today, 1998, 42, 127
    [103] Goncharova S.N., Paukshtis E.A., Bal'zhinimaev B.S., Appl. Catal., 1995, 126,67
    [104] Waterhouse Geoffrey I.N., Bowmaker Graham A., Metson James B.,Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst, Appl. Catal. A-General, 2004, 265, 85
    [105] 淦洪、李晓秀、周萍、徐金利、李慧,电解银催化剂的制备工艺条件,林业科技,2001,26,3
    [106] 邓景发,表面技术研究工业催化剂的催化过程,石油化工,1989,18,180
    [107] Dai.W.L., Liu Q., Cao Y., Deng J.F., Oxidative dehydrogenation of methanol to formaldehyde on electrolytic silver catalyst modified with iodides, Appl. Catal. A-General, 1998, 175, 83
    [108] Knyazev A.S., Boronin A.I., Koshcheev S.V., Salanov A.N., Vodyankina O.V., Kurina L.N., Surface state of a silver catalyst for ethylene glycol oxidation, Kinec.Catal., 2003, 44, 408 (in Russian)
    [109] 王晋海,邓景发,乙二醇在电解银表面的氧化,催化学报,1994,15,250
    [110] 朱京,项一非,苏斌,王力江,丙二醇空气氧化制丙酮醛的电结晶银催化剂,复旦学报(自然科学版),1989,28(1),14
    [111] 李保山,牛玉舒,翟玉春,化工冶金,1998,19(3),199
    [113] Pestryakov A.N., Bogdanchikova N.E., Knop-Gericke A., Alcohol selective oxidation over modified foam-silver catalysts, Catal. Today, 2004, 91-92, 49
    [114] Broilovski S.M., Temkin O.N., Trofimova I.V., Partial oxidation of organic compounds: Oxidation of alcohols on copper subgroup, Khimiya, Moscow, 1985, 147
    [115] Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel Ag/SiO_2 catalyst, Appl. Catal. A-General, 1997, 158, 27
    [116] Liu Q., Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel low-loading Ag/SiO_2-TiO_2 catalyst, Catal. Lett., 1998, 55, 87
    [117] Dai W.L., Li J.L., Cao Y., Deng J.F., Catal. Lett., 2000, 64(1), 37
    [118] Cao Y., Dai W.L., Deng J.F., Mater. Lett., 2001, 50(1), 12
    [119] Dai W.L., Cao Y., Ren L.P., Yang X.L., Xu J.H., Li H.X., He H.Y., Fan K.N., Ag-SiO_2-Al_2O_3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, J. Catal., 2004, 228, 80
    [120] 单玉华,邬国英,黄卫,李为民,龚丽一,1,2-丙二醇氧化制丙酮醛催化剂,石油化工,2000,29,746
    [121] Xu C., Chen L., Xia C., Catalyst for preparing aldehyde by oxidation and dehydrogenation of 3-methyl-butenol and preparation method thereof(P),CN1422691-A, 2003
    [122] Pestryakov A.N., Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 1996, 28, 239
    [123] Yamamoto R., Sawayama Y., Shibahara H., Ichihashi Y., Nishiyama S.,Tsuruya S., Promoted partial oxidation activity of supported Ag catalysts in the gas-phase catalytic oxidation of benzyl alcohol, J. Catal., 2005, 234, 308
    [124] 卢伟京、张慧玲,Ag/ZSM-5催化乙醇为乙醛及其物性研究,广西大学学报(自然科学版),1995,20(3),279
    [125] 陈为,李家麟,周明华,周文涛,高分散碳纳米管载银催化剂的制备,华中师范大学学报(自然科学皈),2003,37(2),211
    [126] 邹勇,刘吉平,碳纳米管负载银及其对苯乙烯环氧化的催化作用,云南化工,2004,31(4),4
    [127] Tu C.H., Wang A.Q., Zheng M.Y., Meng Y., Shan J.H., Zhang T., A novel active catalyst Ag/SBA-15 for CO oxidation, Chin. J. CataL, 2005, 26(8), 631
    [128] Zhang L D, Mou, J M. The Science of nano materials. ShengYang:LiaoMing Science and Technology, 1994,1
    [129] 张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001.
    [130] Zaiter V S, Filimonov D S, Presnyakor I A, Characterizazition and modification of fillers for paint s and coatings[J], J Colloid Interface Sci, 1999, 212,49
    [131] 石川,程谟杰,曲振平,纳米银催化的甲烷选择还原NO 反应研究[J].复旦学报(自然科学版),2002,41(3),269
    [132] 董维国,陈岁元,张继良.微细银粉的制备与应用[J].材料与冶金学报,2002,1(3),171
    [133] 司民真,武荣国,李世荣.纳米银的制备及有关光学性质简介[J].楚雄师专学报,1999,14(3),4
    [134] Nishimura K, Honbo H, Takeuchi S, Design and performance of 10 Whrechargeable lithium batteries[J]. J. Power Sources, 1997, 68(2), 436
    [135] 张吴然,李清彪,孙道华,凌雪萍,邓旭,卢英华,何宁,纳米级银颗粒的制备方法,贵金属,2005,26(2),51
    [136] 曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1996.20
    [137] Xu J, Yin J S, Ma E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J]. Nanostructured Mater, 1997, 8(1): 91
    [138] Chang H B, Sang H N, Seung M P. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution[J]. Appl. Surf.Sci., 2002, 197-198:628
    [139] Fitz-Gerald J, Pennycook S, Gao H, et al. Synthesis and properties of nanofunctionalized particulate materials[J]. Nanostructured Mater., 1999, 12:1167
    [140] Arai N, Tsuji H, Motono M, et al. Formation of silver nanoparticles in thin oxide layer on Si by negative-ion implantation[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206:629
    [141] Chen W, Zhang J. Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method[J].Scripta Mater., 2003, 49:321
    [142] 黄磊,凌国平,郦剑.纳米Ag-Al_2O_3复合粉末的制备[J].浙江大学学报(工学版),2003,37(1):65
    [143] 曾戎,岳中仁,曾汉民.活性炭纤维对贵金属的吸附[J].材料研究学报,1998,12(2):203
    [144] 陈水挟,黄镇洲,梁瑾等.银在活性炭纤维上的吸附及分布[J].新型炭材料,2002,17(3):6
    [145] 符若文.活性炭纤维的氧化还原特性及其应用前景[J].新型炭材料,1998,13(4):1
    [146] 赵斌,马海燕,张宗涛等.银超细粉末的制备[J].华东理工大学学报,1996,22(2):221
    [147] Tan Y, Li Y, Zhu D. Preparation of silver nanocrystals in the presence of aniline[J]. J. Colloid lnter.Sci., 2003, 258:244
    [148] Sondi I, Goia Dan V, Matijevic E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. J. Colloid Inter. Sci., 2003, 260:75
    [149] Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles[J]. Mater. Lett., 2003, 57:3874
    [150] 陈祖耀,朱英杰,陈敏等.Υ-射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996,(1):44
    [151] Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders by Υ-ray radiation combined with hydrothermal treatment[J]. Mater. Lett.,1993, 17:314
    [152] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Adv. Mater., 1999, 11(10): 850
    [153] Li H X, Lin M Z, Hou J G. Electrophoretic deposition of ligand-stabilized silver nanoparticles synthesized by the process of photochemical reduction[J]. J. Cry. Growth, 2000, 212:222
    [154] 廖学红,李鑫.电化学制备纳米银[J].黄岗师范学院学报,2001,21(5):58
    [155] 廖学红,朱俊杰,赵小宁等.纳米银的电化学合成[J].高等学校化学学报,2000,12(21):1837
    [156] Rong M, Zhang M, Liu H. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J]. Polymer, 1999, 40:6169
    [157] Kameo A, Yoshimura T, Esumi K. Preparation of noble metal nanoparticles in supercritical carbon dioxide[J].Colloids Surf. A. Physicochemical and Engineering Aspects, 2003, 215:181
    [158] Chang J Y, Chang J J, Lo B, et al. Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water[J]. Chem. Phys. Lett., 2003,379:261
    [1] Sheldon, R. A., and Kochi, J. K., "Metal-Catalyzed Oxidation of Organic Compounds." Academic Press, New York, 1981
    [2] Hudlicky, M., "Oxidations in Organic Chemistry." Am. Chem. Soc., Washington, DC, 1990
    [3] Lefranc, H. Patent EP 667,331, 1999
    [4] Alardin, F., Delmon, B., Ruiz, P., Devillers, M., Catal. Today, 2000, 61,255
    [5] Gallezot, P., Catal. Today, 1997, 37, 405
    [6] Besson, M., Gallezot, P., Catal. Today, 2000, 57, 127
    [7] Kluytmans, J. H. J., Markusse, A. P., Kuster, B. F. M., Marin, G. B., Schouten, J.C., Catal. Today, 2000, 57, 143
    [8] Hronec, M., Cvengrosova, Z., Kizlink, J., J. Mol Catal. 1993, 83, 75
    [9] Kimura, H., Kimura, A., Kokubo, I., Wakisaka, T., Mitsuda, Y. Appl. Catal. A-Gen.1993, 95, 143
    [10] Oi. R., Takenaka, S., Chem. Lett., 1998, 1115
    [11] Mallat, T., Bodnar, Z., Baiker, A., Greis, O., Strubig, H., Reller, A., J. Catal. 1993,142, 237
    [12] Pinxt, H., Kuster, B. F. M., Marin, G. B. Appl. Catal. A-Gen. 2000, 191, 45
    [13] Hermans, S., Devillers, M., Appl. Catal. A-Gen. 2002, 235,253
    [14] Mallat, T., Bodnar, Z., Baiker, A., Stud. Surf Sci. Catal. 1993, 78,377
    [15 Porta, F., Prati, L., Rossi, M., Coluccia, S., Martra, G., Catal. Today, 2000, 61,165
    [16] Haruta, M., Date, M., Appl. Catal. A-Gen., 2001, 222, 427
    [17] Porta, F., Prati, L., Rossi, M., Scari, G.., J. Catal. 2002, 211,464
    [18] Seker, E., Gulari, E., Appl. Catal. A-Gen. 2002, 232, 203
    [19] Biella, S., Prati, L., Rossi, M., Inorg. Chim. Acta 2003, 349, 253
    [20] Liotta, L. F., Venezia, A. M., Deganello, G., Longo, A., Martoana, A., Schay, Z.,Guczi, L., Catal. Today, 2001, 66, 271
    [21] McKeown, D.A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E.,Rolison, D.R., J. Phys. Chem. B 1999, 103, 4825
    [22] Music, S., Popovic, S., Maljkovic, M., Furic, K., Gajovic, A., Mater. Lett. 2002,56,806
    [23] Musawir, M., Davey, P.N., Kelly, G., Kozhevnikov, I. V. Chem. Commun. 2003,1414
    [24] Unnikrishnan R., Pillai, Endalkachew S.-D., J. Carol., 2002, 211, 434
    [25] Hanyu A. Takeyawa E., Sakaguchi S., Ishii T., Tetrahedron Lett., 1998, 39, 5557
    [26] Dijkman A., Arends I.W.C.E., Sheldon, R. A., Chem. Commun. 1999, 1591
    [27] 徐华龙,沈伟,黄玮石,甄胜艳,项一非,1,2-丙二醇氧化脱氢合成丙酮醛 石油化工,1995,24(12),865
    [28] 崔小明,乙二醛的生产应用及市场分析 化工中间体导刊,2005,15,7
    [29] 王彦明,姜德双,银催化剂法和铁钼催化剂法生产甲醛的比较 小氮肥,2002,1,7
    [30] Waterhouse Geoffrey I.N., Bowmaker Graham A., Metson James B., Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst, Appl. Catal. A-General, 2004, 265, 85
    [31] 王晋海,邓景发,丁醇在电解银表面的氧化 化学物理学报,1993,6(5),475
    [32] 邓景发,表面技术研究工业催化剂的催化过程,石油化工,1989,18,180
    [1] Knyazev A.S., Boronin A.I., Koshcheev S.V., Salanov A.N., Vodyankina O.V.,Kurina L.N., Surface state of a silver catalyst for ethylene glycol oxidation, Kinec.Catal., 2003, 44, 408 (in Russian)
    [2] 王晋海,邓景发,乙二醇在电解银表面的氧化,催化学报,1994,15,250
    [3] 朱京,项一非,苏斌,王力江,丙二醇空气氧化制丙酮醛的电结晶银催化剂,复旦学报(自然科学版),1989,28(1),14
    [4] 李保山,牛玉舒,翟玉春,化工冶金,1998,19(3),199
    [5] Pestryakov A.N., Bogdanchikova N.E., Knop-Gericke A., Alcohol selective oxidation over modified foam-silver catalysts, Catal. Today, 2004, 91-92, 49
    [6] Broilovski S.M., Temkin O.N., Trofimova I.V., Partial oxidation, of organic compounds: Oxidation of alcohols on copper subgroup, Khimiya, Moscow, 1985, 147
    [7] Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel Ag/SiO_2 catalyst, Appl. Catal. A-General, 1997, 158, 27
    [8] Liu Q., Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel low-loading Ag/SiO_2-TiO_2 catalyst, Catal. Lett., 1998, 55, 87
    [9] Dai W.L., Li J.L., Cao Y., Deng J.F., Catal. Lett., 2000, 64(1), 37
    [10] Cao Y., Dai W.L., Deng J.F., Mater. Lett., 2001, 50(1), 12
    [11] Dai W.L., Cao Y., Ren L.P., Yang X.L., Xu J.H., Li H.X., He H.Y., Fan K.N.,Ag-SiO_2-AI_2O_3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol, J Catal., 2004, 228, 80
    [12] 单玉华,邬国英,黄卫,李为民,龚丽一,1,2-丙二醇氧化制丙酮醛催化剂,石油化工,2000,29,746
    [13] Xu C., Chen L., Xia C., Catalyst for preparing aldehyde by oxidation and dehydrogenation of 3-methyl-butenol and preparation method thereof(P),CN 1422691-A,2003
    [14] Pestryakov A.N., Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 1996, 28, 239
    [15] Yamamoto R., Sawayama Y., Shibahara H., Ichihashi Y., Nishiyama S., Tsuruya S., Promoted partial oxidation activity of supported Ag catalysts in the gas-phase catalytic oxidation ofbenzyl alcohol, J. Catal., 2005, 234, 308
    [16] 徐华龙,沈伟,黄玮石,甄胜艳,项一非,1,2-丙二醇氧化脱氢合成丙酮醛 石油化工,1995,24(12),865
    [17] 崔小明,乙二醛的生产应用及市场分析 化工中间体导刊,2005,15,7
    [18] 王彦明,姜德双,银催化剂法和铁钼催化剂法生产甲醛的比较 小氮肥,2002,1,7
    [19] 沈百荣,王文宁,范康年,邓景发 银表面甲醇氧化反应机理的ab initio计算研究 Ⅰ.银表面静态吸附物种的几何构型和吸附性质[J] 化学学报,1997,55 13—18
    [20] 唐海榕,范康年,邓景发 碘和氧修饰银(110)表面对甲醇吸附的影响——密度泛函理论的计算研究[J] 化学学报,2000,58(6)647—653
    [21] Shen jiang, Shah wei, Zhang Yahong, Du Junming, Xu Hualong, Fankangnian, Shenwei, Tang Yi A novel catalyst with high activity for polyhydric alcohol oxidation: Nano-silver/zeolite film[J] Chem. Commun., 2004 2880-2881
    [1] Lafarga D., M.A. AI-Juaied, Bondy C.M, Varma A., Ethylene Epoxidation on Ag-Cs/α-Al_2O_3 Catalyst: Experimental Results and Strategy for Kinetic Parameter Determination, Ind. Eng Chem. Res. 2000, 39, 2148
    [2] Broilovski S.M., Temkin O.N., Trofimova I.V., Partial oxidation of organic compounds: Oxidation of alcohols on copper subgroup, Khimiya, Moscow, 1985, 147
    [3] Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel Ag/SiO_2 catalyst, Appl. Catal. A-General, 1997, 158, 27
    [4] Liu Q., Cao Y., Dai W.L., Deng J.F., The oxidative dehydrogenation of methanol over a novel low-loading Ag/SiO_2-TiO_2 catalyst, Catal. Lett., 1998, 55, 87
    [5] Pestryakov A.N., Bogdanchikova N.E., Knop-Gericke A., Alcohol selective oxidation over modified foam-silver catalysts, Catal. Today, 2004, 91-92, 49
    [6] Pestryakov A.N., Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 1996, 28,239
    [7] Yamamoto R., Sawayama Y., Shibahara H., Ichihashi Y., Nishiyama S., Tsuruya S., Promoted partial oxidation activity of supported Ag catalysts in the gas-phase catalytic oxidation of benzyl alcohol, J. Catal., 2005, 234, 308
    [8] 卢伟京、张慧玲,Ag/ZSM-5催化乙醇为乙醛及其物性研究,广西大学学报(自然科学版),1995,20(3),279
    [9] 陈为,李家麟,周明华,周文涛,高分散碳纳米管载银催化剂的制备,华中师范大学学报(自然科学版),2003,37(2),211
    [10] Tu C.H., Wang A.Q., Zheng M.Y., Meng Y., Shah J.H., Zhang T., A novel active catalyst Ag/SBA-15 for CO oxidation, Chin. J. Catal., 2005, 26(8), 631
    [11] Dai, W.L.; Cao, Y.; Ren, L.P; Yang, X.L.; Xu, J.H.; Li, H.X.; He, H.Y.; Fan, K.N. J Catal, 2004, 228, 90.
    [12] Pestryakov, A.N.; Bogdanchikova, N.E.; Knop-Gericke, A.; Catal. Today, 2004, 91-92, 49-52
    [13] Pestryakov, A.N.; Davydov, A.A.; Appl. Catal. A, 1994, 120, 7-15
    [14] Pestryakov, A.N.; Davydov, A.A.; Kurina, L.N. Rus. J Phys Chem, 1986, 60, 2081.
    [15] Noskova, S.P. ; Davydov, A.A.; Pestryakov, A.N. Rus. J Appl. Chem, 1988, 61, 2021
    [16] Rhodes, H.E.; Wang, P. K.; Stokes, H.T.; Slichter, C.P.; Sinfelt, J.H. Phys. Rev, 1982, 1326, 3559.
    
    [17] Schon, G. Acta Chem. Scand. 1973, 27, 2623
    
    [18] Batyan, E.Yu.; Materveichuk, S.V.;Branitskii, G.A. Kinet. Catal, 1995, 136,816
    [19] Dai, W.L.; Cao Y; Ren, L.P.; Yang, X.L.;Xu, J.H.; Li, H.X.; He, H.Y; Fan, K.N. J. Catal,2004, 228, 90
    
    [20] Wolan, J.T.; Hoflund, G.B. Appl. Surf. Sci. 1998,125, 251-253
    [21] Pestryakov, A.N. Catal Today, 1996, 28, 239-244
    [22] Kresge, C. T.; Leonowicz, M. E.; Roth W. J.; Vartuli, J. C; Beck, J. S. Nature 1992,359,710.
    [23] Beck, J. S.; Vartuli, J. C; Roth W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olsen, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am . Chem. Soc. 1992,114, 10834.
    [24] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 348.
    [25] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
    [1] J Shen, W. Shan, Y.-H. Zhang, J.-M. Du, H.-L. Xu, K.-N. Fan, W. Shen, Y. Tang,Chem. Commun. 24 (2004) 2880.
    [2] R.P. Unnikrishnan, S.-D. Endalkachew, J. Catal. 211(2002) 434
    [3] R.A.Sheldon and J.K. Kochi, "Metal-Catalyzed Oxidation of Organic Compounds."Academic Press, New York, 1981.
    [4] W.-L. Dai, Q. Liu, Y. Cao, J.-F. Deng, Appl. Catal. A 175 (1998) 83.
    [5] A.N. Pestryakov, Catal. Today 28(1996) 239.
    [6] W.-L. Dai, Y. Cao, L.-R Ren, X.-L. Yang, J.-H. Xu, H.-X. Li, H.-Y. He, K.-N. Fan, J.Catal. 228 (2004) 80.
    [7] M.V. Twigg, in: Catalyst Handbook, Wolfe, London, 1989, p. 490.
    [8] 石川,程谟杰,曲振平,纳米银催化的甲烷选择还原NO 反应研究[J].复旦学报(自然科学版),2002,41(3),269
    [9] 曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1996.20
    [10] Xu J, Yin J S, Ma E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J]. Nanostructured Mater., 1997,8(1): 91
    [11] Chang H B, Sang H N, Seung M P. Formation of silver nanoparticles by laser ablation of a silver target in NaCI solution[J]. Appl. Surf Sci., 2002, 197-198:628
    [12] Fitz-Gerald J, Pennycook S, Gao H, et al. Synthesis and properties of nanofunctionalized particulate materials[J]. Nanostructured Mater., 1999, 12:1167
    [13] Arai N, Tsuji H, Motono M, et al. Formation of silver nanoparticles in thin oxide layer on Si by negative-ion implantation[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206:629
    [14] Chen W, Zhang J. Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method[J].Scripta Mater.,2003,49:321
    [15] 黄磊,凌国平,郦剑.纳米Ag-A12O3复合粉末的制备[J].浙江大学学报(工学版),2003,37(1):65
    [16] 曾戎,岳中仁,曾汉民.活性炭纤维对贵金属的吸附[J].材料研究学报,1998,12(2):203
    [17] 陈水挟,黄镇洲,梁瑾等.银在活性炭纤维上的吸附及分布[J].新型炭材料,2002,17(3):6
    [18] 符若文.活性炭纤维的氧化还原特性及其应用前景[J].新型炭材料,1998,13(4):1
    [19] 赵斌,马海燕,张宗涛等.银超细粉末的制备[J].华东理工大学学报,1996,22(2):221
    [20] Tan Y, Li Y, Zhu D. Preparation of silver nanocrystals in the presence of aniline[J].J. Colloid lnter.Sci., 2003, 258:244
    [21] Sondi I, Goia Dan V, Matijevic E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles[J]. J. Colloid lnter. Sci., 2003, 260:75
    [22] Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles[J].Mater. Lett., 2003, 57:3874
    [23] 陈祖耀,朱英杰,陈敏等.Υ-射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996,(1):44
    [24] Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders by Υ-ray radiation combined with hydrothermal treatment[J]. Mater. Lett., 1993, 17:314
    [25] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Adv.Mater., 1999, 11(10): 850
    [26] Li H X, Lin M Z, Hou J G. Electrophoretic deposition of ligand-stabilized silver nanoparticles synthesized by the process of photochemical reduction[J]. J. Cry. Growth,2000, 212:222
    [27] 廖学红,李鑫.电化学制备纳米银[J].黄冈师范学院学报,2001,21(5):58
    [28] 廖学红,朱俊杰,赵小宁等.纳米银的电化学合成[J].高等学校化学学报,2000,12(21):1837
    [29] Rong M, Zhang M, Liu H. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J]. Polymer,1999, 40:6169
    [30] Kameo A, Yoshimura T, Esumi K. Preparation of noble metal nanoparticles in supercritical carbon dioxide[J].Colloids Surf A: Physicochemical and Engineering Aspects, 2003, 215: 181
    [31] Chang J Y, Chang J J, Lo B, et al. Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water[J]. Chem. Phys. Lett., 2003, 379:261
    [32] I. Kumakiri, T. Yamaguchi, S. Nakao, Ind. Eng. Chem. Res. 38 (1999) 4682.
    [33] A.N. Pestryakov, A.A. Davydov, Appl. Catal. A 120 (1994) 12.
    [34] A.N. Pestryakov, V.V. Lunin, J. Mol. Catal. A 158 (2000) 329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700