罗格列酮对大鼠急性胰腺炎肺损伤的作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分静脉注射罗格列酮干预大鼠急性胰腺炎量效关系的探讨
     目的:探讨罗格列酮(rosiglitazone, ROSI)静脉注射给药,干预大鼠急性胰腺炎(acute pancreatitis, AP)模型的量效关系,为ROSI干预急性胰腺炎肺损伤(acute pancreatitis associated-lung injury, APALI)选择合适的用药剂量提供依据。
     方法:雄性Wistar大鼠42只,体重200~250g,随机分为7组(N=6):正常对照组(control group, CON组)、急性胰腺炎模型组(acute pancreatitis model group,AP组)、罗格列酮0.3mg/kg、3mg/kg、6mg/kg、10mg/kg预处理组(rosiglitazone pretreatment group, ROSI组)和药物对照组(drug control group, Drug-CON组)。实验前大鼠禁食12 h,自由饮水。10%水合氯醛腹腔注射(0.3ml/100g)麻醉,无菌操作下大鼠行上腹正中切口进腹,逆行穿刺胆胰管注射5%牛磺胆酸钠溶液(sodium taurocholate, STC) (0.1ml/100g)制备急性胰腺炎模型;CON组和Drug-CON组操作如上所述,但胆胰管内注射等容量生理盐水。CON组、AP组造模前30min经股静脉注射10%二甲基亚砜(dimethyl sulphoxide, DMSO)溶液(0.2ml/100g);不同剂量梯度罗格列酮预处理组则注射等量、10%DMSO溶解的ROSI。大鼠术后12 h心脏取血分离血清,全自动生化仪检测各组血清淀粉酶(amylase, AMY)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)水平。HE染色观察各组胰腺组织病理学改变并评分。药物对照组操作同正常对照组,根据干预效果选择最佳剂量的ROSI,术前30min经股静脉注射最佳剂量ROSI取代10% DMSO,术后12h检测其血清AMY、ALT水平变化,观察胰腺组织病理学改变并评分。
     结果:0.3mg/kg、3 mg/kg ROSI预处理组血清AMY和血清ALT与AP组比较差异无统计学意义(P>0.05),胰腺组织病理学评分有所改善,差异有统计学意义(P<0.05);6mg/kg ROSI预处理组血清AMY、血清ALT和胰腺组织病理学评分较AP组降低,差异有统计学意义(P<0.05),10 mg/kg ROSI预处理组血清AMY、胰腺组织病理学评分较AP组降低,差异有统计学意义(P<0.05),但血清ALT与AP组比较差异无统计学意义(P>0.05)。6 mg/kg和10 mg/kg ROSI预处理组间对比,上述指标差异无统计学意义(P>0.05)。药物对照组(6 mg/kg)血清AMY、血清ALT和胰腺组织病理学评分与CON组比较差异无统计学意义(P>0.05)。
     结论:罗格列酮干预牛磺胆酸钠诱导的大鼠AP模型时,6 mg/kg静脉注射是安全、有效的剂量。
     第二部分罗格列酮对大鼠急性胰腺炎肺损伤的作用
     目的:探讨罗格列酮(rosiglitazone, ROSI)静脉给药对大鼠急性胰腺炎肺损伤(acute pancreatitis associated-lung injury, APALI)的作用。
     方法:雄性Wistar大鼠54只,体重200~250g,随机分为3组(N=18):正常对照组(control group, CON组)、急性胰腺炎模型组(acute pancreatitis model group, AP组)和罗格列酮预处理组(rosiglitazone pretreatment group, ROSI组)。实验前大鼠禁食12 h,自由饮水。10%水合氯醛腹腔注射(0.3ml/100g)麻醉,大鼠无菌操作下行上腹正中切口进腹,逆行穿刺胆胰管注射5%牛磺胆酸钠溶液(sodium taurocholate, STC) (0.1ml/100g)制备急性胰腺炎模型;CON组操作如上所述,但胆胰管内注射等容量生理盐水。CON组、AP组造模前30min经股静脉注射10%二甲基亚砜(dimethyl sulphoxide, DMSO)溶液(0.2ml/100g);ROSI组造模前30min经股静脉注射10%DMSO溶解的ROSI (6 mg/kg)。术后3h、6h、12h分批剖杀大鼠,每个时间点6只。HE染色观察各组胰腺组织和肺脏病理学改变并评分。心脏取血分离血清,全自动生化仪检测各组血清淀粉酶(amylase, AMY)水平。比色法检测肺组织髓过氧化物酶(myeloperoxidase, MPO)活性(间接表示中性粒细胞浸润程度)。左主支气管穿刺插管行支气管肺泡灌洗,收集支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)并检测其蛋白含量(反应肺毛细血管渗透性)。取右肺中叶拭去肺组织表面血迹及水分后称湿重,置于70℃烘箱24h后称干重,计算肺湿干比(W/D)(反应肺脏水肿程度)。
     结果:随着时间的延长,AP组血清AMY水平、肺脏MPO活性、肺脏W/D比值、BALF蛋白含量、胰腺和肺组织评分逐渐升高,至12 h达最高值,分别为(5353.0±728.2)U/L、(1.12±0.14)U/g、(3.00±0.14)、(0.438±0.056)g/L、(11.17±0.93)和(8.17±0.75);上述指标在各时点均高于CON组,差异有统计学意义(P<0.05)。ROSI组上述指标均较AP组有所下降,以6h、12h差异有统计学意义(P<0.05)。
     结论:罗格列酮通过减低肺组织MPO活性,降低肺脏水肿程度和肺毛细血管渗透性,对急性胰腺炎肺损伤具有保护作用。
     第三部分罗格列酮对大鼠急性胰腺炎肺损伤保护作用的机制探讨
     目的:探讨罗格列酮(rosiglitazone, ROSI)静脉给药对大鼠急性胰腺炎肺损伤(acute pancreatitis associated-lung injury, APALI)保护作用的机制。
     方法:雄性Wistar大鼠54只,体重200~250g,随机分为3组(N=18):正常对照组(control group, CON组)、急性胰腺炎模型组(acute pancreatitis model group, AP组)和罗格列酮预处理组(rosiglitazone pretreatment group, ROSI组)。实验前大鼠禁食12 h,自由饮水。10%水合氯醛腹腔注射(0.3ml/100g)麻醉,大鼠无菌操作下行上腹正中切口进腹,逆行穿刺胆胰管注射5%牛磺胆酸钠溶液(sodium taurocholate, STC) (0.1ml/100g)制备急性胰腺炎模型;CON组操作如上所述,但胆胰管内注射等容量生理盐水。CON组、AP组造模前30min经股静脉注射10%二甲基亚砜(dimethyl sulphoxide, DMSO)溶液(0.2ml/100g);ROSI组造模前30min经股静脉注射10%DMSO溶解的ROSI (6mg/kg)。术后3h、6h、12h分批剖杀大鼠。免疫组化法检测肺组织核因子-κB (nuclear factor-kappa B, NF-κB) p65的表达水平。逆转录聚合酶链反应(reverse transcription-reverse transcription, RT-PCR)检测肺组织肿瘤坏死因子-α(tumor necrosis factor-a, TNF-α)、细胞问粘附分子-1(intercellular adhesion molecule, ICAM-1)、P-选择素(P-selectin) mRNA表达水平。Western blot法检测肺组织ICAM-1、P-selectin蛋白的表达水平。
     结果:随着时间的延长,AP组肺脏NF-κB评分、TNF-a mRNA表达、ICAM-1 mRNA表达和P-selectin mRNA表达逐渐升高,均在12h达高峰,分别为(1.04±0.13)、(0.57±0.03)、(1.53±0.08)、(0.51±0.09);上述指标在各时点均高于CON组,差异有统计学意义(P<0.05)。ROSI组肺脏NF-κB评分和TNF-αmRNA较AP组下降,以6h、12h差异有统计学意义(P<0.05)。ROSI组肺脏ICAM-1、P-selectin mRNA和蛋白表达在12h点较AP组下降,差异有统计学意义(P<0.05)。
     结论:罗格列酮通过抑制肺组织NF-κB和TNF-α,减少ICAM-1、P-selectin的表达,对大鼠急性胰腺炎肺损伤具有保护作用。
Part 1. Dose-response relationship of rosiglitazone administered via vein on acute pancreatitis in rats
     Objective:The aim of this study is to investigate dose-response relationship of rosiglitazone administered via vein on acute pancreatitis in order to obtain the optimal dose of rosiglitazone for preventing sodium taurocholate-induced acute pancreatitis associated-lung injury.
     Methods:Forty-two male Wistar rats, weighing 200-250g, were randomly divided into seven groups (N=6):control group (CON group), acute pancreatitis model group(AP group), different dosage(0.3mg/kg,3mg/kg,6mg/kg and 10mg/kg) rosiglitazone pretreatment group (ROSI group) and drug control group (Drug-CON group) (dosage according to the effect of rosiglitazone). Prior to the experiment, rats were deprived of food for 12 hours, while drinking water was available ad libitum. Anaesthesia was conducted by intraperitoneal injection of 10% chloraldurat (0.3ml/ 100g) and rats underwent sterile laparotomy. The bile-pancreatic duct was cannulated through the duodenum and acute pancreatitis model was induced by a standardized pressure-controlled retrograde infusion 5% sodium taurocholate(0.1ml/100g) into the bile-pancreatic duct. The CON group was identical to the AP group except that the saline was injected instead of sodium taurocholate. The CON group and the AP group were received 10% dimethyl sulphoxide (DMSO) (0.2ml/100g) administered via femoral vein 30min prior to the operation. In the ROSI group, different concentration rosiglitazone were injected partes aequales respectivly instead of 10% DMSO. The drug control group was identical to the CON group except that partes aequales rosiglitazone was injected instead of 10% DMSO. Rats were killed at 12 hours after operation. Blood were obtained from the left ventricle of heart. The samples were centrifuged and the serum amylase level, alanine aminotransferase level were detected by automatic biochemistry analyzer. Continuous sections of the paraffin embedded tissue were taken for pathological examination with hematoxylin-eosin (HE) staining. Morphometric documentation for pancreatic and pulmonary sections under light microscope were evaluated.
     Results:Compared with the AP group,0.3mg/kg,3mg/kg dosage failed to improve the levels of amylase and alanine aminotransferase (P> 0.05), but attenuated severity of pancreatic injury (P<0.05).6mg/kg dosage had the best effect on improving the levels of amylase, alanine aminotransferase and pathologic score (P<0.05). The dosage of 10mg/kg also improve level of amylase and pathologic score (P<0.05), but failed to improve the level of alanine aminotransferase (P>0.05). There was no statistically significant between 6mg/kg dosage and 10mg/kg dosage of all the indexes. Compared with the CON group, rats of preteatment with rosiglitazone (6mg/kg) in the absence of sodium taurocholate revealed virtually the same serum amylaselevel, alanine aminotransferase level and pathologic score (P>0.05).
     Conclusion:Rosiglitazone (6mg/kg) administered intravenously was the safe, effective dosage for attenuating the severity of acute pancreatitis induced by retrograde infusion sodium taurocholate.
     Part 2. Effect of rosiglitazone on acute pancreatitis associated lung injury in rats
     Objective:The aim of this study is to investigate the effect of rosiglitazone on acute pancreatitis associated lung injury in rats.
     Methods:Fifty-four male Wistar rats, weighing 200-250g, were randomly divided into three groups (N=18):control group (CON group), acute pancreatitis model group (AP group) and rosiglitazone pretreatment group (ROSI group). Prior to the experiment, rats were deprived of food for 12 hours, while drinking water was available ad libitum. Anaesthesia was conducted by intraperitoneal injection of 10% chloraldurat(0.3ml/100g) and rats underwent sterile laparotomy. The bile-pancreatic duct was cannulated through the duodenum and acute pancreatitis model was induced by a standardized pressure-controlled retrograde infusion 5% sodium taurocholate (0.1ml/100g) into the bile-pancreatic duct. The CON group was identical to the AP group except that the saline was injected instead of sodium taurocholate. The CON group and the AP group were received 10% dimethyl sulphoxide (DMSO) (0.2ml/ 100g) administered via femoral vein 30min prior to the operation. In the ROSI group, rosiglitazone (6mg/kg) dissolved in 10% DMSO was injected by femoral vein 30 minutes piror to the operation. Rats were killed at 3,6 and 12 hours after operation. Blood were obtained from the left ventricle of heart. The samples were centrifuged and the serum amylase level was detected by automatic biochemistry analyzer. Continuous sections of the paraffin embedded tissue were taken for pathological examination with hematoxylin-eosin (HE) staining. Morphometric documentation for pancreatic and pulmonary sections under light microscope were evaluated. Lung myeloperoxidase (MPO) activity was detceted by chromatometry(reflect neutrophil infiltration). The left main bronchus was instilled with 3 mL saline at appropriate pressure, and bronchoalveolar lavage fluid (BALF) was collected for detecting protein content (reflect pulmonary microvascular permeability). The lung wet/dry ratio (W/D) was determined by calculating from the initial weight of the right lung middle lobe (wet weight) to its weight after desiccation at 70℃for 24 hours (dry weight) (reflect pulmonary edema extent).
     Results In the AP group, serum amylase level, lung MPO activity, W/D ratio, protein content of BALF, pancreatic and pulmonary pathologic score reached the peak level at 12 hours after operation(5353.0±728.2 U/L,1.12±0.14 U/g,3.00±0.14, 0.438±0.056,11.17±0.93 and 8.17±0.75 respectively). All the indexes were increased significantly at each time point in the AP group than in the CON group (P< 0.05). Compared with the AP group, pretreatment with rosiglitazone reduced serum amylase level, lung MPO activity, W/D weight ratio, protein content of BALF, pancreatic and pulmonary pathologic score at 6h and 12h(P<0.05).
     Conclusions:Rosiglitazone exerts the protective effect against acute pancreatitis associated lung injury by inhibition of lung MPO activity, reducing pulmonary edema and pulmonary microvascular permeability.
     Part 3. Effect mechanism of rosiglitazone on acute pancreatitis associated lung injury in rats
     Objective:The aim of this study is to investigate the effect of rosiglitazone on adhesion molecules expression in acute pancreatitis associated lung injury in rats.
     Methods:Fifty-four male Wistar rats, weighing 200-250g, were randomly divided into three groups (N=18):control group (CON group), acute pancreatitis model group(AP group)and rosiglitazone pretreatment group(ROSI group). Prior to the experiment, rats were deprived of food for 12 hours, while drinking water was available ad libitum. Anaesthesia was conducted by intraperitoneal injection of 10% chloraldurat(0.3ml/100g) and rats underwent sterile laparotomy. The bile-pancreatic duct was cannulated through the duodenum and acute pancreatitis model was induced by a standardized pressure-controlled retrograde infusion 5% sodium taurocholate (0.1ml/100g) into the bile-pancreatic duct. The CON group was identical to the AP group except that the saline was injected instead of sodium taurocholate. The CON group and the AP group were received 10% dimethyl sulphoxide (DMSO) (0.2ml/ 100g) administered via femoral vein 30min prior to the operation. In the ROSI group, rosiglitazone (6mg/kg) dissolved in 10% DMSO was injected by femoral vein 30 minutes piror to the operation. Rats were killed at 3,6 and 12 hours after operation. In pulmonary tissue, nuclear factor-kappa B (NF-κB) p65 expression was assayed by immuno-histochemistry. Tumor necrosis factor-α(TNF-α), intercellular adhesion molecule-1 (ICAM-1) and P-selectin mRNA expression were detected by reverse transcriptase polymerase chain reaction (RT-PCR). ICAM-1 and P-selectin protein expression were studied using Western blot analysis.
     Results In the AP group, the peak of NF-κB score, TNF-a mRNA expression ICAM-1 mRNA expression, P-selectin mRNA expression of the lung tissue were at 12 hours (1.04±0.13, 0.57±0.03,1.53±0.08,0.51±0.09). All the indexes were increased significantly at each time point in the AP group than in the CON group (P< 0.05). Compared with the AP group, pretreatment with rosiglitazone decreased the NF-κB score and the expression of TNF-a mRNA at 6h and 12h(P< 0.05), down-regulation the expression of ICAM-1, P-selectin mRNA and protein at 12 hours (P<0.05).
     Conclusions:Rosiglitazone exerts the protective effect against acute pancreatitis associated lung injury by inhibition of NF-κB and TNF-α, down-regulation the expression of ICAM-1 and P-selectin.
引文
1. Yadav D, Lowenfels AB. Trends in the epidemiology of the first attack of acute pancreatitis:a systematic review[J]. Pancreas,2006,3(4):323-330.
    2. Spanier BW, Dijkgraaf MG, Bruno MJ. Epidemiology, aetiology and outcome of acute and chronic pancreatitis:An update[J]. Best Pract Res Clin Gastroenterol, 2008,22(1):45-63.
    3. Lund H, T(?)nnesen H, Tonnesen MH, et al. Long-term recurrence and death rates after acute pancreatitis[J]. Scand J Gastroenterol,2006,41(2):234-238.
    4. Renzulli P, Jakob SM, Tauber M, et al. Severe acute pancreatitis:case-oriented discussion of interdisciplinary management [J]. Pancreatology,2005,5(2-3):145-156.
    5. Bhatia M. Acute pancreatitis as a model of SIRS[J]. Front Biosci,2009,14(1):2042-2050.
    6. Vonlaufen A, Wilson JS, Apte MV. Molecular mechanisms of pancreatitis:current opinion[J]. J Gastroenterol Hepatol,2008,23(9):1339-1348.
    7. Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis [J]. J Pathol,2000,190 (2):117-125.
    8. Michalik L, Wahli W. Peroxisome proliferators-activated receptors:three isotypes for a multitude of functions[J]. Curr Opin Biotechnol,1999,10(6):564-570.
    9. Kliewer SA, Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors[J]. Nature,1992,358(6389):771-774.
    10.环奕,申竹芳.选择性PPARy调节剂治疗糖尿病的研究新进展[J].中国药理学通报,2008,24(2)149-152.
    11. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)[J]. J Biol Chem,1995,270(22):12953-12956.
    12. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines[J]. Nature,1998,391(6662):82-86.
    13. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation[J]. Nature,1998,391 (6662):79-82.
    14. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock[J]. Cardiovasc Res, 2005,65(4):772-781.
    15. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone and 15-deoxy-Delta 12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut[J]. Br J Pharmacol, 2003,140(2):366-376.
    16. Su CG, Wen X, Bailey ST, et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response[J]. J Clin Invest,1999, 104(4):383-389.
    17. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation[J]. Eur J Pharmacol,2004,483(1):79-93.
    18. Hashimoto K, Ethridge RT, Saito H, et al. The PPARgamma ligand,15d-PGJ2, attenuates the severity of cerulein-induced acute pancreatitis[J]. Pancreas,2003,27 (1):58-66.
    19. Rollins MD, Sudarshan S, Firpo MA, et al. Anti-inflammatory effects of PPAR-gamma agonists directly correlate with PPAR-gamma expression during acute pancreatitis[J]. J Gastrointest Surg,2006,10(8):1120-1130.
    1. Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors[J]. Pharmacol Rev,2006,58(4):726-741.
    2. Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs[J]. Pharmacol Res,2005,51(2):85-94.
    3. Escher P, Wahli W. Peroxisome proliferator-activated receptors:insight into multiple cellular functions[J]. Mutat Res,2000,448(2):121-138.
    4. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation[J]. Eur J Pharmacol,2004,483(1):79-93.
    5. Hashimoto K, Ethridge RT, Saito H, et al. The PPARgamma ligand,15d-PGJ2, attenuates the severity of cerulein-induced acute pancreatitis[J]. Pancreas,2003,27 (1):58-66.
    6. Rollins MD, Sudarshan S, Firpo MA, et al. Anti-inflammatory effects of PPAR-gamma agonists directly correlate with PPAR-gamma expression during acute pancreatitis[J]. J Gastrointest Surg,2006,10(8):1120-1130.
    7.谷俊朝,王宇.急性胰腺炎动物模型的研究进展[J].国外医学外科学分册,2005,32(6):462-464.
    8. Chan YC, Leung PS. Acute pancreatitis:animal models and recent advances in basic research[J]. Pancreas,2007,34(1):1-14.
    9. Granger J, Remick D. Acute pancreatitis:models, markers, and mediators[J]. Shock, 2005, Suppl 1:45-51.
    10. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy[J]. Ann Surg,1992,215(1):44-56.
    11.中华医学会外科学会胰腺组.急性胰腺炎的临床诊断及分级标准(1996年第二次方案)[J].中华外科杂志,1997,35(12):773-775.
    12.中华医学会消化病学分会胰腺疾病学组.中国急性胰腺炎诊治指南(草案)[J]. 中华内科杂志,2004,43(3):236-238.
    13. Renzulli P, Jakob SM, Tauber M, et al. Severe acute pancreatitis:case-oriented discussion of interdisciplinary management[J]. Pancreatology,2005,5(2-3):145-156.
    14. Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis [J]. J Pathol,2000,190 (2):117-125.
    15. Furuhama K, Yabe K. Application of hepatic tolerance tests to the functional reserve assessment in rat models of fatty liver[J]. J Vet Med Sci,1998,60(5):635-637.
    16. Bulbuller N, Dogru O, Umac H, et al. The effects of melatonin and pentoxiphylline on L-arginine induced acute pancreatitis[J]. Ulus Travma Derg,2005,11(2):108-114.
    17. Cui HF, Bai ZL. Protective effects of transplanted and mobilized bone marrow stem cells on mice with severe acute pancreatitis[J]. World J Gastroenterol,2003,9(10): 2274-2277.
    18. Tashiro M, Schafer C, Yao H, et al. Arginine induced acute pancreatitis alters the actin cytoskeleton and increases heat shock protein expression in rat pancreatic acinar cells[J]. Gut,2001,49(2):241-250.
    19. Dabrowski A, Konturek SJ, Konturek JW, et al. Role of oxidative stress in the pathogenesis of caerulein-induced acute pancreatitis[J]. Eur J Pharmacol,1999,377 (1):1-11-
    20. Klar E, Schratt W, Foitzik T, et al. Impact of microcirculatory flow pattern changes on the development of acute edematous and necrotizing pancreatitis in rabbit pancreas[J]. Dig Dis Sci,1994,39(12):2639-2644.
    21. Kahle M, Lippert J, Willemer S, et al. Effects of positive end-expiratory pressure (PEEP) ventilation on the exocrine pancreas in minipigs[J]. Res Exp Med (Berl), 1991,191(5):309-325.
    22. Otani T, Matsukura A, Takamoto T, et al. Effects of pancreatic duct ligation on the pancreatic response to bombesin[J]. Am J Physiol Gastrointest Liver Physiol,2006, 290(4):G633-639.
    23. Kasimay 0, Iseri SO, Barlas A, et al. Ghrelin ameliorates pancreaticobiliary inflammation and associated remote organ injury in rats[J]. Hepatol Res,2006,36 (1):11-19.
    24. Apodaca-Torrez FR, Goldenberg A, Lobo EJ, et al. Evaluation of the effects of noniodinized and iodinized ionic contrast media and gadoteric acid in acute necrotizing pancreatitis:experimental study in rabbits[J]. Pancreas,2007,35 (4):e 41-44.
    25. Satoh H, Harada M, Tashiro S, et al. The effect of continuous arterial infusion of gabexate mesilate (FOY-007) on experimental acute pancreatitis[J]. J Med Invest, 2004,51 (3-4):186-193.
    26. Kinnala PJ, Kuttila KT, Gronroos JM, et al. Splanchnic and pancreatic tissue perfusion in experimental acute pancreatitis[J]. Scand J Gastroenterol,2002,37(7): 845-849.
    27. Viterbo D, Callender GE, DiMaio T, et al. Administration of anti-Reg I and anti-PAPII antibodies worsens pancreatitis[J]. JOP,2009,10(1):15-23.
    28. Yubero S, Ramudo L, Manso MA, et al. Targeting peripheral immune response reduces the severity of necrotizing acute pancreatitis[J]. Crit Care Med,2009,37 (1):240-245.
    29. Zhang XP, Zhang L, Yang P, et al. Protective effects of baicalin and octreotide on multiple organ injury in severe acute pancreatitis[J]. Dig Dis Sci,2008,53(2):581-591.
    30. Leveau P, Wang X, Sun Z, et al. Severity of pancreatitis-associated gut barrier dysfunction is reduced following treatment with the PAF inhibitor lexipafant[J]. Biochem Pharmacol,2005,69(9):1325-1331.
    31. Yang YL, Li JP, Li KZ, et al. Tumor necrosis factor alpha antibody prevents brain damage of rats with acute necrotizing pancreatitis[J]. World J Gastroenterol,2004, 10(19):2898-2900.
    32. Folch E, Salas A, Panes J, et al. Role of P-selectin and ICAM-1 in pancreatitis-induced lung inflammation in rats:significance of oxidative stress[J]. Ann Surg, 1999,230(6):792-798; discussion 798-799.
    33. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines[J]. Nature,1998,391(6662):82-86.
    34. Ivashchenko CY, Duan SZ, Usher MG, et al. PPAR-gamma knockout in pancreatic epithelial cells abolishes the inhibitory effect of rosiglitazone on caerulein-induced acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2007,293(1):319-326.
    35.聂盛丹,吕品,苗雄鹰,等.过氧化物酶体增殖物激活受体激动剂治疗急性胰腺炎的实验研究[J].中国现代医学杂志,2007,17(5):539-542.
    36. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein [J]. Intensive Care Med,2004,30(5):951-956.
    37. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone and 15-deoxy-Deltal2,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut[J]. Br J Pharmacol, 2003,140(2):366-376.
    38. Sidell RJ, Cole MA, Draper NJ, et al. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart[J]. Diabetes, 2002,51(4):1110-1117.
    39. Umrani DN, Banday AA, Hussain T, et al. Rosiglitazone treatment restores renal dopamine receptor function in obese Zucker rats[J]. Hypertension,2002,40(6): 880-885.
    40. Liu D, Zeng BX, Zhang SH, et al. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia[J]. Inflamm Res,2005,54(11):464-470.
    41. El-Naggar MH, Helmy A, Moawad M, et al. Late-onset rosiglitazone-associated acute liver failure in a patient with Hodgkin's lymphoma[J]. Ann Pharmacother, 2008,42(5):713-718.
    1. Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis [J]. J athol,2000,190(2):117-125.
    2. Lund H, T(?)esen H, T(?0esen MH, et al. Long-term recurrence and death rates after acute pancreatitis[J]. Scand J Gastroenterol,2006,41(2):234-238.
    3. Renzulli P, Jakob SM, Tauber M, et al. Severe acute pancreatitis:case-oriented discussion of interdisciplinary management J]. Pancreatology,2005,5(2-3):145-156.
    4. Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-{gamma} as a regulator of lung inflammation and repair[J]. Proc Am Thorac Soc,2005,2(3):226-231.
    5. Reddy RC, Narala VR, Keshamouni VG, et al. Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-{gamma} [J]. Blood,2008,112(10):4250-4258.
    6. Liu D, Zeng BX, Zhang SH, et al. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia[J]. Inflamm Res,2005,54(11:464-470.
    7. Liu D, Zeng BX, Zhang SH, et al.Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, reduces acute lung injury in endotoxemic rats[J]. Crit Care Med,2005,33(10):2309-2316.
    8. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy[J]. Ann Surg,1992,215(1):44-56.
    9. 程石,何三光,张佳林.肺泡巨噬细胞活化在急性坏死性胰腺炎大鼠肺损伤中的作用[J].中华外科杂志,2002,40:609-612.
    10. Werner J, Z'graggen K, Fernandez-del Castillo C, et al. Specific therapy for local and systemic complications of acute pancreatitis with monoclonal antibodies against ICAM-1[J]. Ann Surg,1999,229(6):834-840; discussion 841-842.
    11. Morel DR, Frossard JL, Cikirikcioglu B, et al. Time course of lung injury in rat acute pancreatitis[J]. Intensive Care Med,2006,32(11):1872-1880.
    12. Folch E, Salas A, Panes J, et al. Role of P-selectin and ICAM-1 in pancreatitis-induced lung inflammation in rats:significance of oxidative stress[J]. Ann Surg, 1999,230(6):792-798; discussion 798-799.
    13. Ivashchenko CY, Duan SZ, Usher MG, et al. PPAR-gamma knockout in pancreatic epithelial cells abolishes the inhibitory effect of rosiglitazone on caerulein-induced acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2007,293(1):G319-G326.
    14. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein[J]. Intensive Care Med,2004,30(5):951-956.
    1. Vonlaufen A, Apte MV, Imhof BA, et al. The role of inflammatory and parenchymal cells in acute pancreatitis[J]. J Pathol,2007,213(3):239-248.
    2. de la Mano AM, Sevillano S, Manso MA, et al. Cholecystokinin blockade alters the systemic immune response in rats with acute pancreatitis[J]. Int J Exp Pathol,2004, 85(2):75-84.
    3. Bhatia M, Brady M, Zagorski J, et al. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury[J]. Gut,2000,47(6):838-844.
    4. 林铮,陈维雄.粘附分子、炎症介质及细胞因子在急性胰腺炎中的作用研究进展[J].国外医学消化系统分册,2001,21(3):180-183.
    5. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation[J]. Eur J Pharmacol,2004,483(1):79-93.
    6. 王蛟,蒋俊明.粘附分子与急性胰腺炎[J].国外医学消化系统分册,2001,21(2):104-107.
    7. 马振华,马清涌.重症急性胰腺炎合并肺损伤发病机制的研究[J].肝胆外科杂志,2005,13(1):72-73.
    8. Lundberg AH, Granger DN, Russell J, et al. Quantitative measurement of P-and E-selectin adhesion molecules in acute pancreatitis:correlation with distant organ injury[J]. Ann Surg,2000,231(2):213-222.
    9. Telek G, Ducroc R, Scoazec JY, et al. Differential up-regulation of cellular adhesion molecules at the sites of oxidative stress in experimental acute pancreatitis[J]. J Surg Res,2001,1:56-67.
    10. Folch E, Salas A, Prats N, et al. H2O2 and PARS mediate lung P-selectin up-regulation in acute pancreatitis[J]. Free Radic Biol Med,2000,28(8):1286-1294.
    11. Folch E, Salas A, Panes J, et al. Role of P-selectin and ICAM-1 in pancreatitis induced lung inflammation in rats:significance of oxidative stress[J]. Ann Surg, 1999,230(6):792-798; discussion 798-799.
    12. Zhang X, Wu D, Jiang X. Icam-1 and acute pancreatitis complicated by acute lung injury[J]. JOP,2009,10(1):8-14.
    13. Zhao X, Dib M, Wang X, et al. Influence of mast cells on the expression of adhesion molecules on circulating and migrating leukocytes in acute pancreatitis-associated lung injury[J]. Lung,2005,183(4):253-264.
    14. Werner J, Z'graggen K, Fernandez-del Castillo C, et al. Specific therapy for local and systemic complications of acute pancreatitis with monoclonal antibodies against ICAM-1[J]. Ann Surg,1999,229(6):834-840; discussion 841-842.
    15. Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury[J]. Gastroenterology,1999,116(3):694-701.
    16. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone and 15-deoxy-Deltal2,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut[J]. Br J Pharmacol, 2003,140(2):366-376.
    17.刘东,曾邦雄,张诗海,等.PPARγ受体激动剂抑制急性肺损伤大鼠肺脏粘附分子和趋化因子的表达[J].中国病理生理杂志,2006,22(8)1558-1561.
    18. Hashimoto K, Ethridge RT, Saito H, et al. The PPARgamma ligand,15d-PGJ2, attenuates the severity of cerulein-induced acute pancreatitis[J]. Pancreas,2003, 27(1):58-66.
    19. Celinski K, Madro A, Prozorow-Krol B, et al. Rosiglitazone, a peroxisome proliferator-activated receptor gamma (PPARgamma)-specific agonist, as a modulator in experimental acute pancreatitis[J]. Med Sci Monit,2009, 15(1):BR21-29.
    20. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation[J]. Nature,1998,391 (6662):79-82.
    21. Fahmi H, Di Battista JA, Pelletier JP, et al. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1 beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes[J]. Arthritis Rheum,2001, 44 (3):595-607.
    22. Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA [J]. Nat Immunol,2004,5(1):104-112.
    23. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute pancreatitis induced by cerulein[J]. Intensive Care Med,2004,30(5):951-956.
    24. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces the development of nonseptic shock induced by zymosan in mice[J]. Crit Care Med,2004,32(2):457-466.
    25. Rollins MD, Sudarshan S, Firpo MA, et al. Anti-inflammatory effects of PPAR-gamma agonists directly correlate with PPAR-gamma expression during acute pancreatitis [J]. J Gastrointest Surg,2006,10(8):1120-1130.
    26. Lawrence T, Bebien M, Liu GY, et al. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation[J]. Nature,2005,28, 434(7037):1138-1143.
    27. Dunn JA, Li C, Ha T, et al. Therapeutic modification of nuclear factor kappa B binding activity and tumor necrosis factor-alpha gene expression during acute biliary pancreatitis[J]. Am Surg,1997,63(12):1036-1044.
    28. Gukovsky I, Gukovskaya AS, Blinman TA, et al. Early NF-kappaB activation is associated with hormone-induced pancreatitis[J]. Am J Physiol,1998,275(6Pt1): G1402-1414.
    29. Malleo G, Mazzon E, Siriwardena AK, et al. Role of tumor necrosis factor-alpha in acute pancreatitis:from biological basis to clinical evidence[J]. Shock,2007,28(2): 130-140.
    30. Tietz AB, Malo A, Diebold J, et al. Gene deletion of MK2 inhibits TNF-alpha and IL-6 and protects against cerulein-induced pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2006,290(6):G1298-1306.
    31. Pastor CM, Frossard JL. Are genetically modified mice useful for the understanding of acute pancreatitis?[J]. FASEB J,2001,15(6):893-897.
    32. Bernot D, Peiretti F, Canault M, et al. Upregulation of TNF-alpha-induced ICAM-1 surface expression by adenylate cyclase-dependent pathway in human endothelial cells[J]. J Cell Physiol,2005,202(2):434-441.
    33. Pereda J, Sabater L, Cassinello N, et al. Effect of simultaneous inhibition of TNF-alpha production and xanthine oxidase in experimental acute pancreatitis:the role of mitogen activated protein kinases[J]. Ann Surg,2004,240(1):108-116.
    1. 中华医学会消化病学分会胰腺疾病学组.中国急性胰腺炎诊治指南(草案)[J].中华消化杂志,2004,24(3):190-192.
    2. Toouli J, Brooke-Smith M, Bassi C, et al. Working Party of the Program Committee of the BangkokWorld Congress of Gastroenterology 2002. Guidelines for the management of acute pancreatitis[J]. J Gastroenterol Hepatol,2002,17(Suppl): S15-S39.
    3. Cappell MS. Acute pancreatitis:etiology, clinical presentation, diagnosis, and therapy[J]. Med Clin North Am,2008,92(4):889-923.
    4. Yadav D, Lowenfels AB. Trends in the epidemiology of the first attack of acute pancreatitis:a systematic review[J]. Pancreas,2006,33(4):323-330.
    5. Cartmell MT, Kingsnorth AN. Acute pancreatitis[J]. Hosp Med,2000,61(6):382-385.
    6. Liu TH, Kwong KL, Tamm EP, et al. Acute pancreatitis in intensive care unit patients:value of clinical and radiologic prognosticators at predicting clinical course and outcome[J]. Crit Care Med,2003,31(4):1026-1030.
    7. Spanier BW, Dijkgraaf MG, Bruno MJ. Epidemiology, aetiology and outcome of acute and chronic pancreatitis:An update[J]. Best Pract Res Clin Gastroenterol, 2008,22(1):45-63.
    8. Frossard JL, Steer ML, Pastor CM. Acute pancreatitis[J]. Lancet,2008,371(9607): 143-152.
    9. Lund H, Tonnesen H, Tonnesen MH, et al. Long-term recurrence and death rates after acute pancreatitis[J]. Scand J Gastroenterol,2006,41(2):234-238.
    10. Renzulli P, Jakob SM, Tauber M, et al. Severe acute pancreatitis:case-oriented discussion of interdisciplinary management[J]. Pancreatology,2005,5(2-3):145-156.
    11. Beger HG, Rau BM. Severe acute pancreatitis:Clinical course and management [J]. World J Gastroenterol,2007,13(38):5043-5051.
    12. Bhatia M. Acute pancreatitis as a model of SIRS[J]. Front Biosci,2009,14:2042-2050.
    13. Vonlaufen A, Wilson JS, Apte MV. Molecular mechanisms of pancreatitis:current opinion[J]. J Gastroenterol Hepatol,2008,23(9):1339-1348.
    14. Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis [J]. J Pathol,2000,190 (2):117-125.
    15.杨雪菲,王春友.对重型急性胰腺炎的认识现况[J].中国综合临床,2005,21(1):95-96
    16. Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis[J]. Pancreatology,2005,5(2-3):132-144.
    17. Yamauchi J, Shibuya K, Sunamura M, et al. Cytokine modulation in acute pancreatitis[J]. J Hepatobiliary Pancreat Surg,2001,8(3):195-203.
    18. Bhatia M, Neoptolemos JP, Slavin J. Inflammatory mediators as therapeutic targets in acute pancreatitis[J]. Curr Opin Investig Drugs,2001,2(4):496-501.
    19. Granger J, Remick D. Acute pancreatitis:models, markers, and mediators[J]. Shock, 2005,24 Suppl 1:45-51.
    20. Bhatia M. Inflammatory response on the pancreatic acinar cell injury[J]. Scand J Surg,2005,94(2):97-102.
    21.费书珂,张树友.细胞因子在重症急性胰腺炎中的作用[J].南华大学学报医学版,2004,32(4)527-529.
    22.董瑞,王自法,吕毅,等.炎症介质在急性胰腺炎病程中的作用[J].肝胆外科杂志,2004,12(2)156-158.
    23. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily:players, rules and the games[J]. Immunology, 2005,115(1):1-20.
    24. Malleo G, Mazzon E, Siriwardena AK, et al. Role of tumor necrosis factor-alpha in acute pancreatitis:from biological basis to clinical evidence[J]. Shock,2007,28(2): 130-140.
    25. Schafer C, Tietz AB, Goke B. Pathophysiology of acute experimental pancreatitis: lessons from genetically engineered animal models and new molecular approaches[J]. Digestion,2005,71(3):162-172.
    26. Tietz AB, Malo A, Diebold J, et al. Gene deletion of MK2 inhibits TNF-alpha and IL-6 and protects against cerulein-induced pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2006,290(6):G1298-1306.
    27. Pastor CM, Frossard JL. Are genetically modified mice useful for the understanding of acute pancreatitis?[J]. FASEB J,2001,15(6):893-897.
    28. Norman JG, Fink GW, Franz MG. Acute pancreatitis induces intrapancreatic tumor necrosis factor gene expression[J]. Arch Surg,1995,130(9):966-970.
    29. Pereda J, Sabater L, Cassinello N, et al. Effect of simultaneous inhibition of TNF-alpha production and xanthine oxidase in experimental acute pancreatitis:the role of mitogen activated protein kinases[J]. Ann Surg,2004,240(1):108-116.
    30. Ramudo L, Manso MA, Sevillano S, et al. Kinetic study of TNF-alpha production and its regulatory mechanisms in acinar cells during acute pancreatitis induced by bile-pancreatic duct obstruction[J]. J Pathol,2005,206(1):9-16.
    31. Ramudo L, Manso MA, Vicente S, et al. Pro- and anti-inflammatory response of acinar cells during acute pancreatitis. Effect of N-acetyl cysteine[J]. Cytokine,2005, 32(3-4):125-131.
    32. Hughes CB, Grewal HP, Gaber LW, et al. Anti-TNFalpha therapy improves survival and ameliorates the pathophysiologic sequelae in acute pancreatitis in the rat[J]. Am J Surg,1996,171(2):274-280.
    33. Hughes CB, Gaber LW, Mohey el-Din AB, et al. Inhibition of TNF alpha improves survival in an experimental model of acute pancreatitis[J]. Am Surg,1996, 62(1):8-13.
    34. Oruc N, Ozutemiz AO, Yukselen V, et al. Infliximab:a new therapeutic agent in acute pancreatitis?[J]. Pancreas,2004,28(1):el-8.
    35. Malleo G, Mazzon E, Genovese T, et al. Etanercept attenuates the development of cerulein-induced acute pancreatitis in mice:a comparison with TNF-alpha genetic deletion[J]. Shock,2007,27(5):542-551.
    36. Malleo G, Mazzon E, Genovese T, et al. Effects of thalidomide in a mouse model of cerulein-induced acute pancreatitis[J]. Shock,2008,29(1):89-97.
    37. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis[J]. J Hepatobiliary Pancreat Surg,2002,9(4):401-410.
    38. Arend WP. The balance between IL-1 and IL-1Ra in disease[J]. Cytokine Growth Factor Rev,2002,13(4-5):323-340.
    39.葛全兴,陈垦,王晖.炎症介质在急性胰腺炎发病机制中的作用研究进展[J].广东药学院学报,2008,24(1):92-95.
    40. Scholmerich J. Interleukins in acute pancreatitis[J]. Scand J Gastroenterol Suppl, 1996,219:37-42.
    41. Rau BM, Kruger CM, Schilling MK. Anti-cytokine strategies in acute pancreatitis: pathophysiological insights and clinical implications [J]. Rocz Akad Med Bialymst, 2005,50:106-115.
    42. Mayer J, Rau B, Gansauge F, et al. Inflammatory mediators in human acute pancreatitis:clinical and pathophysiological implications[J].Gut,2000,47(4): 546-552.
    43. Fink GW, Norman JG Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis[J]. Cytokine, 1997,9(12):1023-1027.
    44. Paszkowski AS, Rau B, Mayer JM, et al. Therapeutic application of caspase 1/interleukin-1beta-converting enzyme inhibitor decreases the death rate in severe acute experimental pancreatitis[J]. Ann Surg,2002,235(1):68-76.
    45. Rau B, Paszkowski A, Lillich S, et al. Differential effects of caspase-1/ interleukin-1 beta-converting enzyme on acinar cell necrosis and apoptosis in severe acute experimental pancreatitis[J]. Lab Invest,2001,81(7):1001-1013.
    46. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome[J]. J Pathol,2004,202(2):145-156.
    47. Sathyanarayan G, Garg PK, Prasad H, et al. Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis[J]. J Gastroenterol Hepatol,2007,22(4):550-554.
    48. Laveda R, Martinez J, Munoz C, et al. Different profile of cytokine synthesis according to the severity of acute pancreatitis[J]. World J Gastroenterol,2005,11 (34):5309-5313.
    49. Suzuki S, Miyasaka K, Jimi A, et al. Induction of acute pancreatitis by cerulein in human IL-6 gene transgenic mice[J]. Pancreas,2000,21(1):86-92.
    50.林栋栋,孙家邦,李非,等.IL-8、IL-10在大鼠急性胰腺炎并发肺损伤中的作用[J].首都医科大学学报,2005,26(2):193-196.
    51.马万里,程若川.急性胰腺炎与细胞因子的研究进展[J].国外医学外科学分册,2005,32(3):237-240.
    52. Osman MO, Kristensen JU, Jacobsen NO, et al. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits[J]. Gut,1998,43(2):232-239.
    53. Liu LR, Xia SH. Role of platelet-activating factor in the pathogenesis of acute pancreatitis[J]. World J Gastroenterol,2006,12(4):539-545.
    54. Stafforini DM, McIntyre TM, Zimmerman GA, et al. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes[J]. Crit Rev Clin Lab Sci,2003,40(6):643-672.
    55. Flickinger BD, Olson MS. Localization of the platelet-activating factor receptor to rat pancreatic microvascular endothelial cells[J]. Am J Pathol,1999,154(5): 1353-1358.
    56.王刚,孙备.血小板活化因子乙酰水解酶在急性胰腺炎中的应用进展[J].中华实验外科杂志,2006,23(1):120-121.
    57. Chen C, Xia SH, Chen H, et al. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists[J]. World J Gastroenterol,2008,14(30): 4735-4738.
    58. Leveau P, Wang X, Sun Z, et al. Severity of pancreatitis-associated gut barrier dysfunction is reduced following treatment with the PAF inhibitor lexipafant[J]. Biochem Pharmacol,2005,69(9):1325-1331.
    59. Lane JS, Todd KE, Gloor B, et al. Platelet activating factor antagonism reduces the systemic inflammatory response in a murine model of acute pancreatitis[J]. J Surg Res,2001,99(2):365-370.
    60. Johnson CD, Kingsnorth AN, Imrie CW, et al. Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis[J]. Gut,2001,48(1):62-69.
    61. Abu-Zidan FM, Windsor JA. Lexipafant and acute pancreatitis:a critical appraisal of the clinical trials[J]. Eur J Surg,2002,168(4):215-219.
    62.夏国栋,夏时海.血小板活化因子受体的研究进展[J].世界华人消化杂志,2005,13(3):381-384.
    63. Xia SH, Hu CX, Zhao ZL, et al. Significance of platelet activating factor receptor expression in pancreatic tissues of rats with severe acute pancreatitis and effects of BN52021[J]. World J Gastroenterol,2007,13(21):2992-2998.
    64.夏时海,房殿春,胡春秀,等.银杏苦内酯B治疗大鼠急性坏死性胰腺炎量效关系的实验研究[J].胰腺病学,2007,7(5):309-312.
    65. Bedirli A, Gokahmetoglu S, Sakrak O, et al. Beneficial effects of recombinant platelet-activating factor acetylhydrolase and BN 52021 on bacterial translocation in cerulein-induced pancreatitis[J]. Eur Surg Res,2004,36(3):136-141.
    66. Mann O, Tiefenbacher WJ, Kaifi J, et al. Effect of platelet-activating factor antagonist WEB 2086 on microcirculatory disorders in acute experimental pancreatitis of graded severity[J]. Pancreas,2009,38(1):58-64.
    67. Balafa OC, Karabina SA, Pappas CA, et al. Urine of patients with nephritic syndrome contains the plasma type of PAF-acetylhydrolase associated with lipoproteins[J]. Nephron Physiol,2004,97(3):p45-52.
    68. Hofbauer B, Saluja AK, Bhatia M, et al. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis[J]. Gastroenterology,1998,115(5):1238-1247.
    69. Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression[J]. J Leukoc Biol,1999,66(6):876-888.
    70. Pietruczuk M, Pietruczuk A, Pancewicz S, et al. ICAM-1:structure, biological role and clinical significance[J].(abstract) Pol Merkur Lekarski,2004,17(101):507-511.
    71. Bhatia M. Novel therapeutic targets for acute pancreatitis and associated multiple organ dysfunction syndrome[J]. Curr Drug Targets Inflamm Allergy,2002,1(4): 343-351.
    72. Zhang X, Wu D, Jiang X. Icam-1 and acute pancreatitis complicated by acute lung injury[J]. JOP,2009,10(1):8-14.
    73. Vonlaufen A, Apte MV, Imhof BA, et al. The role of inflammatory and parenchymal cells in acute pancreatitis[J]. J Pathol,2007,213(3):239-248.
    74. Hartwig W, Carter EA, Jimenez RE, et al. Neutrophil metabolic activity but not neutrophil sequestration reflects the development of pancreatitisassociated lung injury[J]. Crit Care Med,2002,30(9):2075-2082.
    75. Hartwig W, Werner J, Warshaw AL, et al. Membrane-bound ICAM-1 is upregulated by trypsin and contributes to leukocyte migration in acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2004,287(6):G1194-G 1199.
    76. Sun W, Watanabe Y, Wang ZQ. Expression and significance of ICAM-1 and its counter receptors LFA-1 and Mac-1 in experimental acute pancreatitis of rats[J]. World J Gastroenterol,2006,12(31):5005-5009.
    77. Lundberg AH, Granger N, Russell J, et al. Temporal correlation of tumor necrosis factor-alpha release, upregulation of pulmonary ICAM-1 and VCAM-1, neutrophil sequestration, and lung injury in diet-induced pancreatitis[J]. J Gastrointest Surg, 2000,4(3):248-257.
    78. Zaninovic V, Gukovskaya AS, Gukovsky I, et al. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells [J]. Am J Physiol Gastrointest Liver Physiol,2000,279(4):G666-G676.
    79. Zhao X, Dib M, Wang X, et al. Influence of mast cells on the expression of adhesion molecules on circulating and migrating leukocytes in acute pancreatitis-associated lung injury[J]. Lung,2005,183(4):253-264.
    80. He M, Horuk R, Bhatia M. Treatment with BX471, a nonpeptide CCR1 antagonist, protects mice against acute pancreatitis-associated lung injury by modulating neutrophil recruitment [J]. Pancreas,2007,34(2):233-241.
    81. Genovese T, Mazzon E, Di Paola R, et al. Role of peroxisome proliferator-activated receptor-alpha in acute pancreatitis induced by cerulein[J]. Immunology, 2006,118(4):559-570.
    82. Werner J, Z'graggen K, Fernandez-del Castillo C, et al. Specific therapy for local and systemic complications of acute pancreatitis with monoclonal antibodies against ICAM-1 [J]. Ann Surg,1999,229(6):834-840;discussion 841-842.
    83. Lundberg AH, Fukatsu K, Gaber L, et al. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis[J]. Ann Surg,2001, 233(2):213-220.
    84. Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury[J]. Gastroenterology,1999,116(3):694-701.
    85. Bhatia M, Saluja AK, Hofbauer B, et al. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury[J]. Int J Pancreatol,1998,24(2):77-83.
    86. Frossard JL, Kwak B, Chanson M, et al. Cd40 ligand-deficient mice are protected against ceruleininduced acute pancreatitis and pancreatitis-associated lung injury[J]. Gastroenterology,2001,121(1):184-194.
    87. Sun J, Bhatia M. Blockade of neurokinin-1 receptor attenuates CC and CXC chemokine production in experimental acute pancreatitis and associated lung injury[J]. Am J Physiol Gastrointest Liver Physiol,2007,292(1):G143-153.
    88. Bhatia M, Saluja A, Hofbauer B, et al. Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitisassociated lung injury[J]. Proc Natl Acad Sci USA,1998,95(8):4760-4765.
    89. Lau HY, Wong FL, Bhatia M. A key role of neurokinin 1 receptors in acute pancreatitis and associated lung injury[J]. Biochem Biophys Res Commun,2005, 327(2):509-515.
    90. Lau HY, Bhatia M. The effect of CP96,345 on the expression of tachykinins and neurokinin receptors in acute pancreatitis[J]. J Pathol,2006,208(3):364-371.
    91. Bhatia M, Slavin J, Cao Y, et al. Preprotachykinin-A gene deletion protects mice against acute pancreatitis and associated lung injury[J]. Am J Physiol Gastrointest Liver Physiol,2003,284(5):G830-G836.
    92. Lowicka E, Beltowski J. Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists[J]. Pharmacol Rep,2007,59(1):4-24.
    93. Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis:in vitro studies using isolated mouse pancreatic acinar cells[J]. J Cell Mol Med,2007,11(2):315-326.
    94. Bhatia M, Sidhapuriwala JN, Ng SW,et al. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis[J]. J Cell Mol Med, 2008,12(2):580-590.
    95. Bhatia M, Wong FL, Fu D, et al. Role of hydrogen sulfide in acute pancreatitis and associated lung injury[J]. FASEB J,2005,19(6):623-625.
    96. Collin M, Anuar FB, Murch O, et al. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia[J]. Br J Pharmacol, 2005,146(4):498-505.
    97. Yang BM, Demaine AG, Kingsnorth A. Chemokines MCP-1 and RANTES in isolated rat pancreatic acinar cells treated with CCK and ethanol in vitro[J]. Pancreas,2000,21(1):22-31.
    98. Bhatia M, Brady M, Kang YK, et al. MCP-1 but not CINC synthesis is increased in rat pancreatic acini in response to cerulein hyperstimulation[J]. Am J Physiol Gastrointest Liver Physiol,2002,282(1):G77-G85.
    99. Brady M, Bhatia M, Christmas S,et al. Expression of the chemokines MCP-1/JE and cytokine-induced neutrophil chemoattractant in early acute pancreatitis[J]. Pancreas,2002,25(3):260-269.
    100.Bhatia M, Brady M, Zagorski J, et al. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury[J]. Gut,2000,47(6):838-844.
    101.Shokuhi S, Bhatia M, Christmas S, et al. Levels of the chemokines growth-related oncogene alpha and epithelial neutrophil-activating protein 78 are raised in patients with severe acute pancreatitis[J]. Br J Surg,2002,89(5):566-572.
    102.Uh1 W, Warshaw A, Imrie C, et al. IAP Guidelines for the Surgical Management of Acute Pancreatitis[J]. Pancreatology,2002,2(6):565-573.
    103.吴国庆,刘旭盛.细胞因子在急性胰腺炎发病中的作用[J].中华肝胆外科杂志,2005,11(1):49-52
    104.Dembinski A, Warzecha Z, Ceranowicz P, et al. Pancreatic damage and regeneration in the course of ischemia-reperfusion induced pancreatitis in rats[J]. J Physiol Pharmacol,2001,52(2):221-235.
    105.Osman MO, Gesser B, Mortensen JT, et al. Profiles of pro-inflammatory cytokines in the serum of rabbit s after experimentally induced acute pancreatitis [J]. Cytokine, 2002,17(1):53-59.
    106.Zou WG, Wang DS, Lang MF, et al. Human interleukin 10 gene therapy decreases the severity and mortality of lethal pancreatitis in rats[J]. J Surg Res,2002,103 (1):121-126.
    107.Pezzilli R, Billi P, Miniero R, et al. Serum interleukin-10 in human acute pancreatitis[J]. Dig Dis Sci,1997,42(7):1469-1472.
    108.Wereszczynska-Siemiatkowska U, Dabrowski A, Siemiatkowski A, et al. Serum profiles of E-selectin, interleukin-10, and interleukin-6 and oxidative stress parameters in patients with acute pancreatitis and nonpancreatic acute abdominal pain[J]. Pancreas,2003,26(2):144-152.
    109.Dumot JA, Conwell DL, Zuccaro G Jr, et al. A randomized, double blind study of interleukin 10 for the prevention of ERCP-induced pancreatitis[J]. Am J Gastroenterol,2001,96(7):2098-2102.
    110.Deviere J, Le Moine O, Van Laethem JL, et al. Interleukin-10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangio- pancreatography [J]. Gastroenterology,2001,120(2):498-505.
    111.Hirota M, Nozawa F, Okabe A, et al. Relationship between plasma cytokine concentration and multiple organ failure in patients with acute pancreatitis[J]. Pancreas,2000,21(2):141-146.
    112.Denham W, Yang J, Fink G, et al. Gene targeting demonstrates additive detrimental effects of interleukin-1 and tumor necrosis factor during pancreatitis [J]. Gastroenterology,1997,113(5):1741-1746.
    113.Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist[J]. Int Rev Immunol,1998,16(5-6):457-499.
    114.Maa J, Grady EF, Yoshimi SK, et al. Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice[J]. Surgery,2000,128(2):232-239.
    115.Day AL, Wick E, Jordan TH, et al. Neutral endopeptidase determines the severity of pancreatitis-associated lung injury[J]. J Surg Res,2005,128(1):21-27.
    116.Lightner AM, Jordan TH, Bunnett NW, et al. Recombinant human neutral endopeptidase ameliorates pancreatic elastase-induced lung injury[J]. Surgery,2002, 132(2):193-199.
    117. Ward PA. Functions of C5a receptors[J]. J Mol Med,2009 [Epub ahead of print]
    118.Monk PN, Scola AM, Madala P, et al. Function, structure and therapeutic potential of complement C5a receptors[J]. Br J Pharmacol,2007,152(4):429-448.
    119.彭涛.补体C5抑制剂对实验性急性出血坏死性胰腺炎大鼠肾损害的治疗作用.华中科技大学硕士学位论文,2006.
    120.Guo RF, Ward PA. Role of C5a in inflammatory responses[J]. Annu Rev Immunol, 2005,23:821-852.
    121.Guo RF, Riedemann NC, Ward PA. Role of C5a-C5aR interaction in sepsis[J]. Shock,2004,21(1):-7.
    122.Flierl MA, Perl M, Rittirsch D, et al. The role of C5a in the innate immune response after experimental blunt chest trauma[J]. Shock,2008,29(1):25-31.
    123.周峰,彭涛,杨鹏,等.补体C5抑制剂对急性胰腺炎大鼠肾细胞因子的调控作用[J].中华实验外科杂志,2008,25(5):565-567.
    124.彭涛,周峰,杨鹏,等.补体C5抑制剂对大鼠出血坏死性胰腺炎时肾损害的保护作用[J].中华实验外科杂志,2007,24(3)3:65.
    125.Bhatia M, Saluja AK, Singh VP, et al. Complement factor C5a exerts an anti-inflammatory effect in acute pancreatitis and associated lung injury[J]. Am J Physiol Gastrointest Liver Physiol,2001,280(5):G974-G978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700