荧光(反射)光谱电化学和电化学石英晶体微天平新方法及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱电化学(SEC)将光谱学和电化学结合起来,具有比经典电化学更好的选择性,且提供了在分子或原子水平上研究电极表面过程及机理的可能;电化学石英晶体微天平(EQCM)技术将压电传感器用与电化学联用,能现场监测电化学过程中伴随的质量效应,其监测下限低至纳克级;压电光谱电化学是将压电与光谱电化学技术有机结合的新技术,能现场提供压电、光谱、电化学多维信息,有助于对实际体系的深入了解。
     本文在文献基础上,在荧光(反射)光谱电化学及压电-荧光光谱电化学联用新方法及应用等方面做了一些探索性的工作。
     1.综述了光谱电化学及压电光谱电化学研究近年相关文献。
     2.建立了单电位阶跃计时荧光法(SPS/CF)测定异相电子转移动力学参数的理论模型,据此测定了邻联甲苯胺在1mol l~(-1) HClO_4+0.5mol l~(-1) HAc溶液中电氧化过程的标准速率常数(K_s)和电子转移系数(α),结果与常规的计时库仑法测定的结果吻合。结果表明该模型推广到循环伏安法也是可行的。
     3.提出了一种将荧光、石英晶体微天平(QCM)和电化学技术有机结合的新方法,并用该方法研究了盐酸吡哆醇在碱性条件下金电极上的吸附/脱附及电化学行为。另外,建立了伏安电生荧光法用于测定药剂中盐酸吡哆醇含量,结果满意。
     4.提出了一种将反射光谱、石英晶体微天平(QCM)和电化学技术有机结合的新方法,初步用于监测吡咯、氮甲基吡咯的聚合及聚合膜氧化还原过程中电流(I)、反射强度(RI,)、共振频率(Δf_0)、动态电阻
    
    (△Rl)的响应,结果满意
    荧光反射,QCM频率,
    界面表面现象有一定意义
    。我们认为这种实验技术能同时原位获得
    阻抗,电化学等多维数据,对于现场研究
Spectroelectrochemistry (SEC), which is the combination of spectroscopy and electrochemistry, is of higher selectivity than conventional electrochemisty and feasible to investigate the electrochemical process at the molecular or atomic level. Electrochemical piezoelectric quartz crystal microbalance (EQCM) provides a useful tool for in situ measuring concurrent mass loading on the electrode surface by using a piezoelectric crystal sensor in electrochemical processes. Piezoelectric Spectroelectrochemistry, which combines piezoelectric sensor with Spectroelectrochemistry, can provide piezoelectric, spectral and electrochemical information in one experiment and thus lead to less ambiguity in the description of a practical electrochemical process.
    The studies in the thesis are summarized as follows:
    1. The recent progress of Spectroelectrochemistry and piezoelectric Spectroelectrochemistry researches is reviewed
    2. The theory underlying the single potential-step chronofluorometric (SPS/CF) determination of heterogeneous electron transfer rate constants using a long optical pathlength spectroelectrochemical cell has presented. The resulting expressions have been verified via experiments of o-tolidine oxidation at a platinum electrode in 1 M HC1O4+ 0.5 M HAc medium. Results show that a modification of the present model to
    
    
    
    fit cyclic voltammetry is also feasible.
    3. A simultaneous EQCM-fluorescence method has been proposed as a novel and informative tool for the study of adsorption/desorption and oxidation for vitamin Be (pyridoxol) at a polycrystalline Au electrode in aqueous KOH. In addition, the voltammetrically electrogenerated fluorescence is proposed as a new and sensitive method for assay of pyridoxol with satisfactory results.
    4. Piezoelectric reflectance spectroelectrochemistry (PRSEC), a new technique of SEC in combination with QCM detection, has been proposed. The simultaneous measurements of reflectance spectra on the electrode surface, the QCM frequency and resistance as well as the electrochemical signals have been performed during growth and redox switching of polypyrrole and poly(N-methylpyrrole) film. This technique can provide in situ multidimensional information in an electrochemical process and is thus recommended for wider applications to surface/interface phenomena studies.
引文
[1] T. Kuwana, W. R. Heineman, Study of electrogenerated reactants using optically transparent electrodes. Acc. Chem. Res., 1976, 9(7): 241-248.
    [2] K. Mizuoka, Y. Ikeda, IR Spectroelectrochemical study on UVO~(2+) complex: first evidence for weakening of U=O bond strength in uranyl moiety with reduction from U(Ⅵ) to U(Ⅴ). Inorg. Chem., (Communication), 2003, 42(11): 3396-3398.
    [3] M. Pflughoefft, H. Weller, Spectroelectrochemical analysis of the electrochromism of antimony-doped nanoparticulate tin-dioxide electrodes. J. Phys. Chem. B., 2002, 106(41): 10530-10534.
    [4] H. Visser, A. Curtright, E. McCusker, J. K., K. Sauer, Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies. Anal. Chem., 2001, 73(17): 4374-4378.
    [5] S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, S. Lefrant, In situ spectroelectrochemical Raman studies of poly (3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 1999, 32(20): 6807-6812.
    [6] R. M. Q. Mello, R. M. Torresi, S. I. Cordobade Torresi, E. A. Ticianelli, Ellipsometric, electrogravimetric, and spectroelectrochemical studies of the redox process of sulfonated polyaniline. Langmuir, 2000, 16(20): 7835-7841.
    [7] W.R.Heineman, F.M.Hawkridge and H.N.Blount in A.J.Bard (Ed.) Electroanalytical chemistry, P.L Marcel Dekker. 1984,13.
    [8] T. Kuwana, R. K. Darlington, D. W. Leedy, Electrochemical studies using conducting glass indicator electrodes. Anal. Chem., 1964, 36(10): 2023-2025.
    [9] B. Armand, H. Joseph, W. Shmuel, C. Zelig, Y. Raphael, O. Dan, Reflection-FTIR spectroelectrochemistry using ionically conductive polymer films:
    
    electrochemical preparation and spectroscopic characterization of some metal hydrides. Journal of Electroanalytical Chemistry, 1996, 405(1): 251-254.
    [10] J. Zak, M. D. Porter, T. Kuwana, Thin-layer electrochemical cell for long optical pathlength observation of solution species. Anal. Chem., 1983, 55(14): 2219-2222.
    [11] T. Kuwana, N. Winograd, (A.J.Bard, Ed.) Electroanalytical chemistry, P.L Marcel Dekker, 1974, 7
    [12] R. W. Murray, W. R. Heineman, G. W. O'Dom, An optically transparent thin layer electrochemical cell. Anal. Chem., 1967, 39(13): 1666-1668.
    [13] M. Albertas, H. Rudolf, UV-VIS spectroelectrochemical detection of intermediate species in the electropolymerization of an aniline derivative. Electrochimica Acta, 1998, 43(17): 2413-2422
    [14] I. V. Chernyshova, In Situ FTIR-Spectroelectrochemical Study of the Anodic Processes on a Galena (PbS) Electrode under Open-Air Conditions in the Absence and Presence of n-Butyl Xanthate. Langmuir, 2002, 18(18): 6962-6968.
    [15] B. H. Erne, F. Ozanam, M. Stchakovsky, D. Vanmaekelbergh, et al., GaAs/H_2O_2 electrochemical interface studied In situ by infrared spectroscopy and ultraviolet-visible ellipsometry part Ⅱ: chemical origin of cathodic oscillations. J. Phys. Chem. B., 2000, 104(25): 5974-5985.
    [16] D. L. Jeanmaire, M. R. Suchanski, R. P. Van Duyne, Resonance Raman spectroelectrochemistry. Ⅰ. Tetracyanoethylene anion radical. J, Am. Chem. Soc., 1975, 97(7): 1699-1707.
    [17] J. A. Richards, D. H. Evans, Flow cell for electrolysis within the probe of a nuclear magnetic resonance spectrometer. Anal. Chem., 1975, 47(6): 964-966.
    [18] D. R. Staveren, E. Bothe, N. Metzler-Nolte, O. C. Dichroism, spectroelectrochemical investigations on the fluxional diamagnetic and paramagnetic organometallic complexes [Mo (His-N-C_2H_4COOCH_3)(2-Rallyl)(CO)_2]~(n+)(R = H, Me; His = O,N,N-L-Histidinate; n = 0, 1)van, 2003, 22(15): 3102-3106.
    [19] P. V. Kamat, Fluorescence emission as a probe to investigate electrochemical polymerization of 9-vinylanthracene Anal. Chem., 1987, 59(13): 1636-1638.
    
    
    [20] J. S. Michael, R. H. William, P. K. George, Long optical path electrochemical cell for absorption or fluorescence spectrometers. Anal. Chem., 1982, 54(13): 2382-2384.
    [21] Zh. Lin, S. Ye, M. Huang and P. Shen, Spectroscopic technique in electrochemistry. Academic Press, 1990.
    [22] R. W. Murray, W. R. Heineman, G. W. O'Dom, An optically transparent thin layer electrochemical cell. Anal. Chem., 1967, 39(13): 1666-1668.
    [23] W. R. Heineman, T. Kuwana, Spectroelectrochemical studies of metal deposition and stripping and of specific adsorption on mercury-platinum optically transparent electrodes. Anal. Chem., 1972, 44(12): 1972-1978.
    [24] M. Petek, T. E. Neal, R. W. Murray, Spectroelectrochemistry application of optically transparent minigrid electrodes under semiinfinite diffusion conditions. Anal. Chem., 1971, 43(8): 1069-1074.
    [25] W. R. Heineman, T. Kuwana, Mercury-platinum optically transparent electrode. Anal. Chem., 1971, 43(8): 1075-1078.
    [26] W. J. Blaedel, S. L. Boyer, Electrochemical characteristics of the gold micromesh electrode. Anal. Chem., 1973, 45(2): 258-263.
    [27] M. L. Meyer, T. P. DeAngelis, W. R. Heineman, Mercury-gold minigrid optically transparent thin-layer electrode. Anal. Chem., 1977, 49(4): 602-606.
    [28] D. Lexa, J. M. Saveant, J. Zickler, Electrochemistry of vitamin B12. 2. Redox and acid-base equilibria in the B_(12a)/B_(12r) system. J. Am. Chem. Soc., 1977, 99(8): 2786-2790.
    [29] J. W. Sorrels, H. D. Dewald, Spectroelectrochemical characteristics of the reticulated vitreous carbon electrode. Anal. Chem., 1990, 62(15): 1640-1643.
    [30] V. E. Norvell, G. Mamantov, Optically transparent vitreous carbon electrode. Anal. Chem., 1977, 49(9): 1470-1472.
    [31] M. D. Porter, T. Kuwana, Glassy carbon and graphite electrodes with a hole for long path length thin-layer spectroelectrochemistry. Anal. Chem., 1984, 56(3): 529-534.
    [32] W. V. Benken,T. Kuwana, Preparation and properties of thin gold and platinum films on glass or quartz for transparent electrodes. Anal. Chem., 1970, 42(9): 1114-1116.
    [33] R. Cieslinski, N. R. Armstrong, Metallized-plastic optically transparent electrodes. Anal. Chem., 1979, 51(4): 565-568.
    
    
    [34] A. Yildiz, P. T. Kissinger, C. N. Reilley, Evaluation of an improved thinlayer electrode. Anal. Chem., 1968, 40(7): 1018-1024.
    [35] B. S. Pons, J. S. Mattson, L. O. Winstrom, H. B. Mark, Jr. Application of deposited thin metal films as optically transparent electrodes for internal reflection spectrometric observation of electrode solution interfaces. Anal. Chem., 1967, 39(6): 685-688.
    [36] W. R. Heineman, T. Kuwana, Spectroelectrochemical studies of metal deposition and stripping and of specific adsorption on mercury-platinum optically transparent electrodes. Anal. Chem., 1972, 44(12): 1972-1978.
    [37] T. Kuwana, W. R. Heineman, Study of electrogenerated reactants using optically transparent electrodes. Acc. Chem. Res., 1976, 9(7): 241-248.
    [38] N. R. Armstrong, A. W. C. Lin, M. Fujihira, T. Kuwana, Electrochemical and surface characteristics of tin oxide and indium oxide electrodes. Anal. Chem., 1976, 48(4): 741-750.
    [39] R. Cieslinski, N. R. Armstrong, Metallized-plastic optically transparent electrodes. Anal. Chem., 1979, 51(4): 565-568.
    [40] T. P. DeAngelis, R. W. Hurst, A. M. Yacynych, H. B. Mark, Carbon and mercury-carbon optically transparent electrodes. Anal. Chem., 1977, 49(9): 1395-1398.
    [41] H. B. Mark, Jr. B. S. Pons, An in situ Spectrophotometric Method for Observing the Infrared Spectra of Species at the Electrode Surface During Electrolysis. Anal. Chem., 1966, 38(1): 119-121.
    [42] D. R. Tallant, D. H. Evans, Application of infrared internal reflection spectrometry to studies of the electrochemical reduction of carbonyl compounds. Anal. Chem., 1969, 41(6): 835-838.
    [43] R. W. Murray, Chemically modified electrodes. Acc. Chem. Res., 1980, 13(5): 135-141
    [44] H. L. Landrum, R. T. Salmon, F. M. Hawkridge, A surface-modified gold minigrid electrode which heterogeneously reduces spinach ferredoxin. J. Am. Chem. Soc., 1977, 99(9): 3154-3158.
    [45] J. F. Stargardt, F. M. Hawkridge, H. L. Landrum, Reversible heterogeneous reduction and oxidation of sperm whale myoglobin at a surface modified gold minigrid electrode. Anal. Chem., 1978, 50(7): 930-932.
    
    
    [46] H. Akahoshi, S.Toshima, K. Itaya, Electrochemical and spectroelectrochemical properties of polyviologen complex modified electrodes. J. Phys. Chem., 1981, 85(7): 818-822.
    [47] F. B. Kaufman, E. M. Engler, Solid-state spectroelectrochemistry of crosslinked donor bound polymer films. J. Am. Chem. Soc., 1979, 101(3): 547-549.
    [48] F. B. Kaufman, A. H. Schroeder, E. M. Engler, S. R. Kramer, J. Q. Chambers, Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes. J. Am. Chem. Soc., 1980, 102(2): 483-488.
    [49] J. Zak, M. D. Porter, T. Kuwana, Thin-layer electrochemical cell for long optical pathlength observation of solution species. Anal. Chem., 1983, 55(14): 2219-2222.
    [50] Y. Gui, M. D. Porter, T. Kuwana, Long optical path length thin-layer spectroelectrochemistry. Quantitation of adsorbed aromatic molecules at platinum. Anal. Chem., 1985, 57(7): 1474-1476.
    [51] J. L. Anderson, Circulating, long-optical-path, thin-layer electrochemical cell for spectroelectrochemical characterization of redox enzymes. Anal. Chem., 1979, 51(14): 2312-2315.
    [52] M. D. Porter, T. Kuwana, Glassy carbon and graphite electrodes with a hole for long path length thin-layer spectroelectrochemistry. Anal. Chem., 1984, 56(3): 529-534.
    [53] 刘士杰.李慧玉.宾群英,平行双光透电极吸收光谱电化学的研究谢青季 湖南师范大学自然科学学报.1999.22:56.
    [54] 庞代文,王宗礼,张敏,iR 降近于零的长光程薄层光谱电化学池的设计.化学通报 1996,58:1.
    [55] 林详钦,杨锋利,汪尔康,一种简易多用途可见紫外薄层光谱电化学池.分析化学 1991,19(9):1100.
    [56] 冶保献,方程,周性尧,血红蛋白在裸银电极上的光谱电化学研究.高等化学学报.1998,19(9):1405.
    [57] P. A. Flowers, S. A. Callender, Variable path length transmittance cell for ultraviolet, visible, and infrared spectroscopy and spectroelectrochemistry. Anal. Chem., 1996, 68(1): 199-202.
    
    
    [58] P. A. Mosier-Boss, R. Newbery, S. Szpak, S. H. Lieberman, et al., Low-volume, thin-Layer cell for in situ spectroelectrochemistry. Anal. Chem. (Technical Note), 1996, 68(18): 3277-3282.
    [59] I. Zavarine, C. Kubiak, A versatile variable temperature thin layer reflectance spectroelectrochemical cell. J. Electroana. Chem., 2001, 495: 106-109.
    [60] 杨晨,于俊生,周桃玉,方惠群,多用途薄层光谱电化学池的设计和表征.高等学校化学学报,1999,20(8):1205-1209.
    [61] F. C. Anson, Harry B. Gray Studies of the thermodynamics of electron transfer reactions of blue copper proteins. J. Am. Chem. Soc.; 1979, 101(2): 455-458.
    [62] J. W. Long, L. R. Qadir, R. M. Stroud, D. et al., Spectroelectrochemical Investigations of Cation-Insertion Reactions at Sol-Gel-Derived Nanostructured, Mesoporous Thin Films of Manganese Oxide. J. Phys. Chem. B., 2001, 105(37): 8712-8717.
    [63] N. S Fujieda, M. Mori, K. Kano, T. Ikeda, Spectroelectrochemical evaluation of redox potentials of cysteine tryptophylquinone and two hemes c in quinohemoprotein amine dehydrogenase from paracoccus denitrificans. Biochemistry, 2002, 41(46): 13736-13743.
    [64] C. Sivakumar, T. Vasudevan, A. Gopalan, T. C. Wen, Chemical oxidative polymerization and in situ spectroelectrochemical studies of a sulfonated aniline derivative by UV-Visible spectroscopy. Ind. Eng. Chem. Res., 2001, 40(1): 40-51.
    [65] D. E. Albertson, H. N. Blount, F. M. Hawkridge, Spectroelectrochemical determination of heterogeneous electron transfer rate constants. Anal. Chem., 1979, 51(4): 556-560.
    [66] W. Wei, Q. Xie, S. Yao, A kinetic parameter estimation technique with long path length spectroelectrochemical method. Electrochimica Acta., 1995, 40(8): 1057-1061.
    [67] S. Dong, Y. Zhu, Investigation of electric dichroism of cetylpyridinium bromide by spectroelectrochemistry with a long optical path length thin-layer cell. Langmuir, 1991, 7(2): 394-397.
    [68] A. Kitani, J. Yano, K. Sasaki, ECD materials for the three primary colors developed by polyanilines. J. Electroanal. Chem., 1986, 209: 227-231.
    
    
    [69]P.L. Konash, G. J. Bastiaans, Piezoelectric crystals as detectors in liquid chromatography. Anal. Chem., 1980, 52(12): 1929-1931.
    [70]G.L. Hayward, G. Z. Chu, Simultaneous measurement of mass and viscosity using piezoelectric quartz crystals in liquid media. Anal. Chim. Acta., 1994, 288: 197-185.
    [71]S. Z. Yao, T.A. Zhou, Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids., Anal. Chim. Acta, 1988, 212: 61-72.
    [72]姚守拙,周铁安,两性药物土霉素的传感电极及其选择性规律.高等学校化学学报,1988,9:637-639.
    [73]T. Nomura, M. Iijima, Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal., Anal.Chim.Acta, 1981, 131:97-102.
    [74]Q. Xie, D. Shen, L. Nie, S. Yao, A new technique of absorption spectroelectrochemistry at grazing incidence in combination with piezoelectric quartz crystal detection: electrodeposition and stripping process., Electrochim. Acta., 1993, 38(15): 2277-2280.
    [75]S. Bruckenstein, S. Swathirajan, Potential dependence of lead and silver underpotential coverages in acetonitrile using a piezoelectric crystal oscillator. Electrochim.Acta. 1985, 30:851-855.
    [76]O. Melroy, K. Kanazawa, J. G. Gordon, Ⅱ D. Buttry, Direct determination of the mass of an underpotentially deposited monolayer of lead on gold. Langmuir, 1986, 2(6): 697-700.
    [77]M. R. Deakin, O. Melroy, Underpotential metal deposition on gold, monitored in situ with a quartz microbalance., J.Electroanal.Chem, 1988, 239:321-331.
    [78]M. Hepel, K. Kanige, S. Bruckenstein, Expulsion of borate ions from the silver/solution interfacial region during underpotential deposition discharge of lead(Ⅱ) in borate buffers. Langmuir, 1990, 6(6): 1063-1067.
    [79]W. C. Paul, P. Devi, An EQCM study of corrosion and complexation at electrode surfaces. Oxidation of silver in the presence of 4,4'-bipyridyl. J. Electroana. Chem. 1995, 398(1): 143-150.
    
    
    [80]A. Zhou, B. Xie, Bin, N. Xie, Comparison of polarization curve--and electrochemical quartz crystal microbalance methods for determination of copper corrosion rateCorrosion. Science, 2000, 42(3): 469-480
    [81]J. Eimutis, L. Konstantinas, S. Meilute, M. Povilas, Magnetron sputtered Au-Pd-In alloys microgravimetric and electrochemical characterisation in simulated physiological solutions. Corro. Sci., 2002, 44(7): 1541-1554.
    [82]T. L. Daikhin, G. Zilberman, E. Gileadi, Response of the EQCM for electrostatic and specific adsorption on gold and silver electrodes, V. Faraday Discuss., 1997, 337-350.
    [83]Q Xie, C. Xiang, Y. Yuan, Y. Zhang, L. Nie, S. Yao, A novel dual-impedance-analysis EQCM system-investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces., J. Colloid and Interface Sci., 2003, 262(1):107-115.
    [84]M. R. Deakin, H. Byrd, Prussian Blue coated quartz crystal microbalance as a detector for electroinactive cations in aqueous solution. Anal. Chem., 1989, 61(4): 290-295.
    [85]S. J. Lasky, D. A. Buttry, Mass measurements using isotopically labeled solvents reveal the extent of solvent transport during redox in thin films on electrodes. J. Am.Chem.Soc., 1988, 110(18): 6258-6260.
    [86]D. Orata, D. A. Buttry, Determination of ion populations and solvent content as functions of redox state and pH in polyaniline. J. Am. Chem. Soc., 1987, 109(12):3574-3581.
    [87]P. T. Varineau, D. A. Buttry, Applications of the quartz crystal microbalance to electrochemistry. Measurement of ion and solvent populations in thin films of poly(vinylferrocene) as functions of redox state. J. Phys. Chem., 1987, 91(6): 1292-1295.
    [88]M.D. Ward, Investigation of open-circuit reactions of polymer films using the quartz crystal microbalance: reactions of polyvinylferrocene films. J. Phys. Chem., 1988, 92(7): 2049-2054.
    [89]I. Jureviciute, S. Bruckenstein, A. R. Hillman, A. Jackson, Kinetics of redox switching of electroactive polymers using the electrochemical quartz crystal microbalance. Part Ⅰ. Identifying the rate limiting step in the presence of coupled electron/ion and solvent transfer. Phys. Chem. Chem. Phys., 2000, 4193-4198.
    
    
    [90]S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 2000, 283-293.
    [91]E. M. Pater, S. Bruckenstein, A. R. Hillman, Film mass and volume changes accompanying redox-driven solvent and salt transfer during redox switching of polyvinylferrocene films. J. Chem. Soc., Faraday Trans., 1998, 1097-1103.
    [92]A. R. Hillman, M. J. Swann, S. Bruckenstein, General at praoch to the interpretation of electrochemical quartz crystal microbalance data. 1. Cyclic voltammetry: kinetic subtleties in the electrochemical doping of polybithiophene films. J. Phys. Chem.; 1991, 95(8): 3271-3277.
    [93]S.W. Han, T. H. Ha, C. H. Kim, K. Kim, Self-assembly of anthraquinone-2-carboxylic acid on silver: fourier transform infrared spectroscopy, ellipsometry, quartz crystal microbalance, and atomic force microscopy study. Langmuir, 1998, 14(21): 6113-6120.
    [94]J. Rishpon, A. Redondo, C. Derouin, S. Gotttesfeld, Simultaneous ellipsometric and microgravimetric measurements during the electrochemical growth of polyaniline. J. Electronanal. Chem., 1990, 73(1): 73-78.
    [95]I. Rubinstein, J. Rishpon, E. Sabatani, A. Redondo, S. Gottesfeld, Morphology control in electrochemically grown conducting polymer films. 1. Precoating the metal substrate with an organic monolayer. J. Am. Chem. Soc., 1990, 112(16): 6135-6136.
    [96]Hook, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sort, K.; Elwing, H.; Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during Adsorption and Cross-Linking: a Quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem., 2001, 73(24): 5796-5804.
    [97]Q. Xie, D. Shen, L. Nie, S.Yao, A new technique of absorption spectroelectrochemistry at grazing incidence in combination with piezoelectric quartz crystal detection: electrodeposition and stripping process. Electrochim. Acta. 1993, 38(15): 2277-2280.
    [98]K. Shimazu, M. Yanagida, K. Uosaki, Simultaneous UV-vis spectroelectrochemical and quartz crystal microgravimetric measurements during the redox of viologens. J. Electroanal. Chem. 1993, 350: 321.
    [99]Y. Mo, E. Hwang, D. A. Scherson, Simultaneous normalized optical reflectivity and microgravimetric measurements at electrode/electrolyte
    
    interfaces: the adsorption of bromide on gold in aqueous media., Anal. Chem., 1995, 67(14): 2415-2418.
    [100]Y. Xu, Q. Xie, M. Hu, L. Nie, S. Yao, Simultaneous UV-visible spectroelectrochemical and quartz crystal microgravimetric measurements during the growth of poly(1-naphthylamine) film, J. Electroanal. Chem., 1995, 389: 85.
    [101]H.S. Shim, I. H. Yeo, S. M. Park, Simultaneous multimode experiments for studies of electrochemical reaction mechanisms: demonstration of concept, Anal. Chem., 2002, 74(14): 3540-3546.
    [102]M. J. Henderson, A. R. Hillman, E. Vieil, C. Lopez, Combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD): validation of the technique by a study of silver ion mass transport, J. Electroanal. Chem., 1998, 458: 241.
    [103]M. J. Henderson, A. R. Hillman, E. Vieil, Chronoamperometric resolution of ion and solvent transfers at a poly(o-toluidine) modified electrode by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD), Electrochim. Acta., 2000, 45: 3885.
    [104]H. M. French, M. J. Henderson, A. R. Hillman, E. Vieil, Ion and solvent transfer discrimination at a nickel hydroxide film exposed to LiOH by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) techniques, J. Eiectroanal. Chem., 2001, 500:192.
    [105]H. M. French, M. J. Henderson, A. R. Hillman, E. Vieil, Temporal resolution of ion and solvent transfers at nickel hydroxide films exposed to LiOH. Solid State Ionics. 2002, 150: 27.
    [106]Y. Shi, A. F. Slaterbek, C. J. Seliskar, W. R. Heineman, Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 1. demonstration of concept with ferricyanide, Anal. Chem., 1997, 69(18): 3679-3686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700