提高锌浸出渣中银浮选回收率的工艺与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在不影响锌冶炼主系统生产条件下提高湿法炼锌浸出渣中银的浮选回收率,在进行新型捕收剂研制及组合调整剂研究基础上开发出的新药剂制度使锌浸出渣中银浮选的回收率由50%提高到84%。为进一步认识浮选药剂结构与性能的关系,研究了绝对硬度最小原则浮选判据。通过腐蚀极化图(Evans图)等电化学原理与实验方法等手段,建立硫化矿物浮选体系的Evans图理论,阐明了锌浸渣中银矿物浮选体系的电化学作用机理。主要研究结果如下:
     1.提高了锌浸出渣中银浮选的回收率
     对含银的锌浸出渣浮选银工艺进行了系统研究。研制出环己酮缩氨基硫脲等几种新型捕收剂,开发出银的特效浮选捕收剂H-4及活化剂NS-6。以H-4为捕收剂、NS-6活化剂为主的用药制度下的闭路实验结果表明,银回收率达84.5%,银精矿品位为0.46%。浮选指标超过合同规定的银回收率为75%的要求。
     研究表明,新的用药制度抗矿浆中锌离子影响能力强,银精矿中的锌含量比原厂家使用的用药制度少;而且新的用药制度不改变矿浆pH。因此,它不会改变锌生产系统中的酸碱平衡。另外,从新的用药组成及结构看,新的用药制度不会影响锌的电解生产。因此,新的浮选工艺有工业应用前景。
     2.进行了银矿物的浮选研究
     天然的Ag_2S、Ag及合成的银浸染闪锌矿、AgCl、Ag_2SO_4、Ag_2O的单矿物浮选实验表明,这些矿物在pH≤5.5(锌浸渣浮选银的pH)都具有很好的可浮性。锌离子对银浸染闪锌矿浮选有活化作用,而对AgCl、Ag_SO_4、Ag_2O浮选起抑制作用。
     3.提出绝对硬度最小原则浮选新判据
     绝对硬度最小原则浮选新判据研究表明,当捕收剂绝对硬度η_F和矿物中金
    
    中南大学博士学位论文
    属离子的绝对硬度几M之和为最小时,捕收剂优先与该矿物作用,即△n矿几计
    nM。该判据与溶度积肠判据、基团电负性判据xe、能量判据△肠成正比的对
    应关系。rtF反映了捕收剂对矿物作用的反应活性及其电化学活性。nF越小,捕
    收剂越易氧化,对矿物的反应活性高,而且与矿物作用的腐蚀电流越大。该判据
    可预测硫化矿物新捕收剂的浮选性能。对锌浸渣浮选银的应用研究表明,捕收剂
    H并可把银矿、方铅矿从闪锌矿中分离出来。
    4.提出硫化矿物一捕收剂浮选体系的腐蚀极化图(Evans图)理论
     硫化矿物一捕收剂浮选体系的Ev田招图可以非常直观地分析硫化矿物表面氧
    化速度大小或硫化矿物一捕收剂反应速度及反应速度控制因素及控制程度,并可
    判断添加剂的电化学作用机理。
     从电化学角度研究了捕收剂的结构与性能关系。硫化矿(方铅矿、黄铁矿)
    与捕收剂作用的Evans图研究发现,矿物与捕收剂作用的腐蚀电流强度与捕收剂
    的结构有关。捕收剂的极性基团的反应活性越大,则捕收剂与矿物作用的电流越
    强。该电流可作为浮选剂结构活性的电化学参数,值得进一步研究。
     银矿物一捕收剂的Evans图研究表明,银矿物一捕收剂作用受氧气阴极还原控
    制。银矿物一捕收剂作用的腐蚀电流随捕收剂浓度的增加或捕收剂的极性基增强
    而增大。
    5.探讨浮选抑制剂及浮选活化剂的电化学作用模型
     从电化学观点出发,依据参与了矿物电化学反应的浮选抑制剂对矿物浮选体
    系腐蚀电化学过程发生的主要影响,认为该抑制剂可分成三类:阳极型抑制剂、
    阴极型抑制剂、混合型抑制剂(阳极、阴极都抑制)。
     通过研究锌离子对自然银一捕收剂作用的影响,发现锌离子起阴极型抑制作
    用。
     依据参与了矿物电化学反应的浮选活化剂对矿物浮选体系腐蚀电化学过程
    的影响,将该活化剂分成三类:阴极型活化剂、阳极型活化剂、混合型活化剂(阴
    极、阳极都活化)。
     研究表明,银浸染闪锌矿中的银离子对闪锌矿的浮选起混合型活化作用,调
    
    中南大学博士学位论文
    整剂NS一6对银矿物浮选起阳极型活化剂作用。
    6.阐明了银矿物与捕收剂作用的表面琉水产物及电化学反应机理
     热力学计算、半导体能带理论分析、红外光谱实验证明银矿物与捕收剂作用
    的疏水产物是捕收剂金属盐。伏安法、恒电位、恒电流以及交流阻抗法的研究结
    果表明,银矿物与捕收剂反应是一个不可逆过程。银矿物表面的疏水膜在银矿
    表面吸附牢固,且还原时存在较大的过电位,还原速率低。
     辉银矿与捕收剂作用的微分电容与电位关系研究表明:当用乙基黄药作为捕
    收剂时,最适宜的电位区间为0.2一0.4v;而采用H碑的适宜区间为一0.2一0. 6V。
In order to upgrade silver recovery of flotation from zinc leaching residues without affecting zinc metallurgical production of main production system, the new chemicals prescription of flotation based on the study of the new flotation collectors and mixed conditioners increases silver recovery from 50% to 84%. The new criterion of flotation reagents has been studied for better understanding structure-reactivity relation of flotation reagents. The theory of electrochemical Evans diagrams of sulphide mineral flotation system has been set up by means of the electrochemical principles and measurements of corrosion Evans diagrams and the electrochemical mechanism of flotation system of silver minerals has been elucidated. The main points of the paper read as follows:
    1. Silver recovery of flotation from zinc leaching residues raised
    The flotation technology of recovery silver from zinc leaching residues has been systematically investigated. Several kinds of new flotation collectors have been made and the effective new silver collector H-4 and conditioner NS-6have been developed. The locked cycle tests mainly based on collector H-4 and activator NS-6 demonstrate that silver concentrates grade are 0.45% at 84.5% Ag recovery.
    The flotation results clearly show that the new chemicals prescription of flotation has strong ability to resist Zn2+ effect and the Zn2+ in the silver concentrates obtained by the new chemicals prescription of flotation is less than the old's in the existing zinc plan. The new flotation technology don't change the nature pH of ore slurry and will not destroy the acid-base equilibrium of system of zinc metallurgical production. In addition, the chemicals ingredients of the new chemicals prescription will also not affect the zinc electrodeposition of electrolytic zinc production considering the composition and structure of chemicals. So, the new flotation technology has promising future for the industrial application.
    2. Flotation research of pure silver mineral studied
    Flotation tests with synthetic silver minerals (chemically precipitated silver chloride, silver oxide and silver sulphosalt) and silver-doped sphalerite show that all the silver minerals and compounds can be readily floated with high recovery at pH< 5.5 at which silver recovery from zinc leaching residues by using sulphydryl
    
    
    
    collectors. Zinc2+ activates the flotation of silver-doped sphalerite while depresses the flotation of AgCl, Ag2SO4 and Ag2O.
    3. The new criterion of minimum principle of absolute harness for flotation reagents put forth
    The new criterion of minimum principle of absolute hardness for flotation reagents has been studied. The results show that the value between absolute hardness of collector, F, and absolute hardness of metal ion in mineral, m, is smallest, The reaction between collector and mineral first take place, that is min= F+ M By comparing with ksp criterion, radical electronegativity criterion xg and energy criterion
    Et, can symbolizes the ability of flotation collectors fixed on the surface of minerals and collector's electrochemical activity. When f is smaller, the collector is not only easily oxidized but also has high reaction activity on minerals. In addition,
    f is smaller, the corrosion electricity of sulphide mineral-collector is large. The new criterion min of flotation can be used to predict the flotation property of new collectors. The application of new criterion min in silver recovery of flotation from zinc leaching residues shows that collector H-4 can separate silver mineral, lead mineral from sphalerite.
    4. The theory of Evans diagrams of flotation system of sulphide mineral set up
    with Evans diagrams of flotation system of sulphide mineral, not only the oxidizing rate of sulphide mineral, reaction rate of sulphide-collector but also the controlling factors of reaction rate can be explained clearly and directly. The electrochemical mechanism of flotation additives can also be analysed by the theory of the Evans diagrams.
    The relation of structures and properties of collectors ha
引文
[1] Hayes. W. British Patent [P] : GB488.
    [2] Everson. C. U. S. Patent [P]: US348145.
    [3] 王淀佐.矿物浮选与浮选剂[M].长沙:中南工业大学出版社,1986,1.
    [4] 胡为柏.浮选[M].北京:冶金工业出版社,1987,1.
    [5] 王淀佐.浮选理论的新进展[M].北京:科学出版社,1992,70~90,128~135.
    [6] Hogan. P. Trans. Inst. Min. Metall., 1979, 88: 83.
    [7] 冯其明,陈荩.硫化矿浮选电化学[M].长沙:中南工业大学出版社,1992,1~2,84~85,77~79,154~158.
    [8] Taggart. A. F. Trans. AIME., 1930, 87: 217~260.
    [9] Taggart. A. F. Handbook of Mineral Dressing; Ores and Industrial Minerals [M]. John Wiley. New York, 1945.
    [10] Gaudin. A. M. and Fuerstenau. D. W. Trans. AIME., 1955, 202: 66.
    [11] Wark. I. W. Trans. AIME., 1934, 112: 189~244.
    [12] Barsky. G. Trans. AIME., 1934, 112: 246.
    [13] 恩格斯.自然辩证法[M].北京:人民出版社,1971,95.
    [14] Woods. R. The Oxidation of Ethyl-Xanthate on Relation to the Mechanism of Mineral Flotation [J]. J. Phys. Chem., 1971, 75: 354~362.
    [15] Allison. S. A. Determination of the Product of Reaction Between Various Sulphide Minerals and Aqueous Xanthate Solution and a Correction of the Products with Electrode Rest Potentials [J]. Metal. Trans., 1972(3): 2613~2618.
    [16] Kowal. A.Cyclic Voltammetry of Ethyl-Xanthate on a Natural Copper Sulphide Electrode [J]. J. Electroanal. Chem. Inteffacial Electrochemistry, 1973, 46: 411~420.
    [17] Gaudner. J. R. An Electrochemical Investigation of Contact Angle and of Flotation in the Presence of Alkyl-Xanthate. Ⅱ: Gelena and Pyrite Surface [J].
    
    Aust. J. chem., 1977, 30: 981~991.
    [18] Usual. A. H. Electrochemical Study of the Pyrite-Oxygen-Xanthate System [J]. Int. J. Miner. Process., 1974, (1): 135~140.
    [19] Ahrned. S. M. Electrochemical Studies of Suphides Ⅱ: Measurment of the Galvanic Currents in Galena and the General Mechanism of Oxygen Reduction and Xanthate Adsorption on Sulphides in Relation to Flotation [J]. Int. J. Miner. Process., 1978, (5): 175~182.
    [20] 胡庆春.方铅矿-毒砂浮选分离的电化学[D].长沙:中南工业大学,1988.
    [21] 周荣华.巯基乙酸-乙黄药-黄铜矿体系的电化学研究[D].长沙:中南工业大学,1987.
    [22] 王云楚.黄铜矿-黄铁矿诱导浮选的研究[D].长沙:中南工业大学,1989.
    [23] 孙水裕.黄铜矿-方铅矿浮选分离的电化学[D].长沙:中南工业大学,1987.
    [24] Toperri. D. Electrochemical Studies and Thermodynamic Equilibria of the Galena-Xanthate Flotation System [J]. Transations of the Institute of Mining and Metallurgy. Section C, 1969, 78: 191~197.
    [25] Woods. R. The Anodic Oxidation of Ethyl-Xanthate on Metal and Galena Electrode [J]. Australian Journal of Chemistry, 1972, 25:2329~2335.
    [26] Gardner. J. R. and Woods. R. A Electrochemical Investigation of Contact Angle and of Flotation in the Presence of Alkyl-Xanthates. I: Platinum and Gold Surface [J]. Australian Journal of Chemistry, 1974, 2139~2148.
    [27] Tolun. R. Trans. Inst. Min. Metall., 1964, 73:313~322.
    [28] Woods. R. Electrochemistry of Sulfide Flotation [A]. In A. M. Gaudin Memorial Volume [C]. M. C. Fuerstenau (ed.), Vol. 11: 298~333.
    [29] Woods. R. Flotation. Vol. 1: 298~333.
    [30] Toper. R. Trans. Inst. Miner. Metal., 1969, 78: 191~197.
    [31] Woods. R. Principles of Mineral Flotation [M]. The Wark Symposium, Rd. Jones. M. H. and Wood cock. J. T., 1984, 91~115.
    [32] Finkelstein. N. R Mineral Sci. Eng., 1977, 9(4): 117.
    [33] Richardson.RE.在电化学浮选槽中浮选辉铜矿、斑铜矿、黄铁矿、黄铜矿[A].第15届国际选矿学术会议论文集[C].1994.
    
    
    [34] Woods.R硫化矿浮选的电化学[J].国外金属矿选矿.1993,30(4):1~28.
    [35] 顾国华.硫化矿磨矿-浮选体系中的氧化-还原反应与原生电位浮选[D].长沙:中南工业大学,1998.
    [36] Richardon. P. E. Semiconducting Characteristics of Galena Electrodes Relationship to Mineral Flotation [J]. J. Electrochem. Soc., 1985, 132(6): 1350~1356.
    [37] 胡熙庚等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991,26~28.
    [38] Carta. M. The Influence of The Surface energy Structure of Minerals on Electric Seperation and Flotaion [A]. 6th International Mineral Processing Congress (impc), Prague, 1970: 47.
    [39] Carta. M. Improvement in Electric Seperation and Flotation by Modification of Energy Levels in Sulface Layers [A]. 10th International Mineral processings Congress (impc), London, 1973, Vol. 1: 1~22.
    [40] Hobery. H. Investigation into the Improvement of Floatability of Minerals by Means of Radiation [A]. 11th International Mineral Processings Congress, Cagliari, German, 1975: 467~490.
    [41] 陈建华.电化学调控浮选能带理论及其在有机抑制剂研究中的应用[D].长沙:中南工业大学,1999.
    [42] Woods. R. J. Electroanal. Chem., 1992, 328: 179.
    [43] Toperi. D. Electrochemical Study and Thermodynamic Equilibria of the Galena-Xanthate Flotation System [J]. Transation of the Institute of Mining and Metallurgy. Section C., 1969, 78: 191~197.
    [44] Janetsei. N. and Woods. R. An Electrochemical Investigation of Pyrite Flotation and Depression [J]. Int. J. Min. Process., 1977(4): 227~239.
    [45] Palsson. B. Computer Assisted Calculation of Thermodynamic Equilibria in Galena-Ethyl Xanthate System [J]. Int. Min. Process., 1988, 23: 93~121.
    [46] Berry. V. K. Galvanic Interaction Between Chalcopyrite and Pyrite during Bacterial Leaching of Low-Grade Waste [J]. Hydrometallurgy, 1973, 3: 209.
    [47] Hiskey. J. B. Met. Trans. B., 1975, 6B: 183.
    
    
    [48] Majima, H. How Oxidation Affects Selective Flotation of Complex Sulfide Ore [J]. Can. Met. Quart., 1969, 8: 269.
    [49] Pavlica, J. J. Electrochemical and Magnetic Interaction in Pyrrhotite Flotation [J]. Trans. SME-AIME, 1982, 272: 1885~1889.
    [50] Learment. Effect of Grinding Media on Galena Flotation [J]. Minerals and Metallurgical Processing. 1984, 1: 136~142.
    [51] Nakazawa. H. Effect of Pyrite-Pyrrhotite Contact on Their Floatabilities [J]. Minerals and Metallurgical Processing, 1985, (11): 206~211.
    [52] Nakazawa. H. Galvanic Conact Between Nickel Arsenide and Pyrrhotite and Its Effect on Flotation [J]. International Journal of Mineral Processing, 1986, 18: 203~215.
    [53] Rao. S. R.Galvanie Interaction Studies on Sulphide Minerals [J]. Can. Met. Quart., 1988, 27(4): 253~259.
    [54] Evans. U. R. J. Franklin Inst., 1929, 45: 208.
    [55] 黄开国.硫脲法从锌的酸浸渣中回收银[J].中南工业大学学报,1998,29(6):538~541.
    [56] Europe Patent [P]: EPO 257548, 1980.
    [57] 游力挥译.用硫脲法从锌浸出渣中回收银[J].株冶科技,1990,18:29.
    [58] 比利时专利[P]:No.847441.
    [59] 加拿大专利[P]:CA1090141.
    [60] 谢颂明.氯盐溶液处理锌热酸浸出渣回收铅银新工艺研究[J].重有色冶炼,1994,(1):5~7.
    [61] 挪威专利[P]:No.142406,1980.
    [62] U.S. Patent [P]: US8602477.
    [63] Vinals. J.Hydrometallurgy, 1991, 26(2): 179.
    [64] U.S. Patent [P]: US4225342, 1980.
    [65] Tachan Kwangsan. Metal. Abs., 1980, (10): 11.
    [66] 赵德铮等.浸没熔炼技术及其在锌渣处理上的应用[J].株冶科技,1989,17(2):10~15.
    [67] Robilliard. K. R. Sirosmelt Technology for Solving the Lead and Einc Industry
    
    Waste Problem [J]. The Miner'as, Metals and Materials Society, 1991, 331.
    [68] 傅作健.湿法炼锌挥发窑渣处理方法的讨论[J].有色金属(冶炼部分),1988,(1):41.
    [69] 周洪武,徐子平.熔池溶炼法从锌窑渣中回收银[J].有色金属(冶炼部分),1991,(6):18.
    [70] Bere Zowsry. R. M. G. S. Silver and Gold Recovery from zinc Pressure Leach Residue [A]. Lead-Zinc' 90 [C]. 1990: 135.
    [71] 选矿手册编辑委员会.选矿手册,第四分册.[M].北京:冶金工业出版社,1990,487~491。
    [72] 孟繁杓.铅锌冶炼废渣的处理及综合利用[A].1988年第二届全国矿产资源综合利用学术会议论文集[C].184~185.
    [73] 游力挥.老山公司银浮选生产[J].株冶科技,1990,18(1):64~65.
    [74] 南非专利[P]:ZA7602986,1977.
    [75] 日本专利[P]:特开昭52-35 197,1977.
    [76] 梁经冬.浮选理论与选冶实践[M].北京:冶金工业出版社,1995,186~191.
    [77] 田广荣等.黄金、白银及铂族金属回收方法[M].重庆:科学技术出版社重庆分社,1965,2000~2001.
    [78] 邓华.银浮选改进[J].株冶科技,1994,22(4):50.
    [79] 黄开国.从锌浸出渣中浮选回收银[J].中南工业大学学报,1997,28(6):530~532.
    [80] 徐文贤译.硫化.浮选法从炼锌过程的残渣中回收铅、银和金[J].有色金属文摘,1991年增刊:89~97.
    [81] 英国专利[P]:GB2084491,1975.
    [82] 沈湘黔.铁矾法炼锌工艺中回收银的研究[J].矿冶工程,1992,12(2);51~55.
    [83] 李华译.浸出浮选联合法从锌渣中回收银[J].国外金属矿选矿,1996,(8):22~24.
    [84] Kin. J. Y在酸性介质中浮选银矿物及其沉淀物[J].国外金属矿选矿,1990.(10):53.
    
    
    [85] Marabini. A. M. Trans IMM, 1983, (20): 92.
    [86] 王淀佐.矿物浮选和浮选剂[M].长沙:中南工业大学出版社,1986.
    [87] 王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1986.
    [88] 蒋玉仁.能量判据及应用[J].中南大学学报.1999,(4):28.
    [89] 见百熙.浮选药剂的分子结构及其规律性(J].国外金属选矿,1983,(1):8~16.
    [90] 周国华等.化学反应电子转移数判据在浮选捕收剂结构与性能关系的应用研究[J].有色金属(季刊),2001,53(1):19~21.
    [91] 曹育才.基团连接指数在捕收剂结构与性能研究中的应用[D].长沙:中南工业大学矿物系,1998.
    [92] Ralph G. Pearson. Inorg. Chem., 1988, 27(4): 734~740.
    [93] 刘永辉.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [94] Price. D. W. The Electrochemical Behaviour of Silver Sulfide in Sulphuric Acid Solutions [J]. J. of Applied Electrochemistry, 1986, 16:719~731.
    [95] 株洲冶炼厂科研所.从湿法炼锌渣中回收银的试验[J].株冶科技,1982,(2):1.
    [96] M.A.巴尼尔.人工合成闪锌矿表面的金属离子吸附及其无捕收剂浮选[J].国外金属矿选矿,1997,(10):45.
    [97] Mostafa. S. N. Electrochemical Investigations on Silver Sulfide [J]. Electrochim Acta, 1985, 30(5): 635.
    [98] Fong. C. Y. Comparison of Band Structures on Charge Distributions of Copper and Silver [J]. Physical Review B, 1975, 11(8): 2759.
    [99] Peter M. Scop. Band Structure of Silver Chloride and Silver Bromide [J]. Physical Review, 1965, 139(3A): 934.
    [100] Czyzyk. M. I. Ag_2O Band Structure and X-my-absorption near-edge spectra [J]. Physical Review B, 1989, 39(14): 9831.
    [101] Gerischer. H. Appl. Phys. Lett., 1983, 43: 393.
    [102] Transatti. S. Pure And Appl. Chem., 1986, 58: 955.
    [103] Parr, R.G. Chem. Phys, 1978, 63: 3801.
    [104] Parr, R.G, Pearoson R.G.J. Am. Chem. Soc., 1983, 105: 1503.
    
    
    [105] Koopmans T. Physica, 1933, 1: 104.
    [106] Moore, C. E. Ionization Potentials and Ionization Limits [M]. Natl. Stand. Ref. Data Ser. (U. S. Natl. Bur. Bur. Stand.); 1970, NSRDS-ND334.
    [107] Robert G. Parr. J. Am. Sot., 1983, 105: 7512~7516.
    [108] 王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988,303.
    [109] El-Shall, H. Mechanisms Involved in Activation and Depression of Zinc Sulfide by Zinc Sulfate [J]. Muslim Sci., 1981, 10(4): 512~513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700